Progress in the Application of Artificial Intelligence in Ultrasound-Assisted Medical Diagnosis
Abstract
:1. Introduction
2. The Technological Foundations of AI in Ultrasound Medicine
2.1. Machine Learning
2.2. Deep Learning
2.3. Convolutional Neural Networks (CNNs)
3. Classification and Implementation of AI Technologies in Ultrasound
3.1. AI-Assisted Diagnostic Technologies
3.1.1. Thyroid Nodules
3.1.2. Breast Nodules
3.1.3. Heart Disease
3.1.4. Liver Diseases
3.1.5. Obstetrics and Gynecology (OB/GYN)
3.1.6. Other Applications
3.2. AI-Driven Autonomous Systems
3.3. AI-Enhanced Educational Technologies
3.3.1. Intelligent Simulation Platforms
3.3.2. Competency Assessment and Adaptive Learning Systems
3.3.3. Educational Workflow Integration
4. Future Development Trends
4.1. Technological Integration and Innovation
4.2. Standardization and Normalization
4.3. Personalized Treatment and Intelligent Management
4.4. Telemedicine and Smart Healthcare
5. Challenges and Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bahl, M. Combining AI and Radiomics to Improve the Accuracy of Breast US. Radiology 2024, 312, e241795. [Google Scholar] [CrossRef] [PubMed]
- Sanjeevi, G.; Gopalakrishnan, U.; Parthinarupothi, R.K.; Madathil, T. Deep learning supported echocardiogram analysis: A comprehensive review. Artif. Intell. Med. 2024, 151, 102866. [Google Scholar] [CrossRef]
- Akkus, Z.; Cai, J.; Boonrod, A.; Zeinoddini, A.; Weston, A.D.; Philbrick, K.A.; Erickson, B.J. A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence-Powered Ultrasound for Improving Clinical Workflow. J. Am. Coll. Radiol. 2019, 16, 1318–1328. [Google Scholar] [CrossRef]
- Getzmann, J.M.; Zantonelli, G.; Messina, C.; Albano, D.; Serpi, F.; Gitto, S.; Sconfienza, L.M. The use of artificial intelligence in musculoskeletal ultrasound: A systematic review of the literature. Radiol. Med. 2024, 129, 1405–1411. [Google Scholar] [CrossRef]
- Loppini, M.; Gambaro, F.M.; Chiappetta, K.; Grappiolo, G.; Bianchi, A.M.; Corino, V.D.A. Automatic Identification of Failure in Hip Replacement: An Artificial Intelligence Approach. Bioengineering 2022, 9, 288. [Google Scholar] [CrossRef] [PubMed]
- Aruleba, R.T.; Adekiya, T.A.; Ayawei, N.; Obaido, G.; Aruleba, K.; Mienye, I.D.; Aruleba, I.; Ogbuokiri, B. COVID-19 Diagnosis: A Review of Rapid Antigen, RT-PCR and Artificial Intelligence Methods. Bioengineering 2022, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Roussel, E.; Capitanio, U.; Kutikov, A.; Oosterwijk, E.; Pedrosa, I.; Rowe, S.P.; Gorin, M.A. Novel Imaging Methods for Renal Mass Characterization: A Collaborative Review. Eur. Urol. 2022, 81, 476–488. [Google Scholar] [CrossRef]
- Xu, W.; Jia, X.; Mei, Z.; Gu, X.; Lu, Y.; Fu, C.C.; Zhang, R.; Gu, Y.; Chen, X.; Luo, X.; et al. Generalizability and Diagnostic Performance of AI Models for Thyroid US. Radiology 2023, 307, e221157. [Google Scholar] [CrossRef]
- Gandhi, S.; Mosleh, W.; Shen, J.; Chow, C.M. Automation, machine learning, and artificial intelligence in echocardiography: A brave new world. Echocardiography 2018, 35, 1402–1418. [Google Scholar] [CrossRef]
- Goldenberg, S.L.; Nir, G.; Salcudean, S.E. A new era: Artificial intelligence and machine learning in prostate cancer. Nat. Rev. Urol. 2019, 16, 391–403. [Google Scholar] [CrossRef]
- Zegarra, R.R.; Ghi, T. Use of artificial intelligence and deep learning in fetal ultrasound imaging. Ultrasound Obstet. Gynecol. 2023, 62, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.M.; Montagnon, E.; Yamashita, R.; Pan, I.; Cadrin-Chênevert, A.; Romero, F.P.; Chartrand, G.; Kadoury, S.; Tang, A. Deep Learning: An Update for Radiologists. Radiographics 2021, 41, 1427–1445. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.T.; Chen, L.; Yue, W.W.; Xu, H.X. Artificial intelligence in ultrasound. Eur. J. Radiol. 2021, 139, 109717. [Google Scholar] [CrossRef]
- Hernandez, K.A.L.; Rienmüller, T.; Baumgartner, D.; Baumgartner, C. Deep learning in spatiotemporal cardiac imaging: A review of methodologies and clinical usability. Comput. Biol. Med. 2021, 130, 104200. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Kang, H.K.; Kwon, J.H.; Kim, K.S.; Park, M.H.; Seong, Y.K.; Kim, D.W.; Ahn, B.; Ha, K.; Lee, J.; et al. Technology trends and applications of deep learning in ultrasonography: Image quality enhancement, diagnostic support, and improving workflow efficiency. Ultrasonography 2021, 40, 7–22. [Google Scholar] [CrossRef]
- Mitrea, D.A.; Brehar, R.; Nedevschi, S.; Lupsor-Platon, M.; Socaciu, M.; Badea, R. Hepatocellular Carcinoma Recognition from Ultrasound Images Using Combinations of Conventional and Deep Learning Techniques. Sensors 2023, 23, 2520. [Google Scholar] [CrossRef]
- Cao, C.L.; Li, Q.L.; Tong, J.; Shi, L.N.; Li, W.X.; Xu, Y.; Cheng, J.; Du, T.T.; Li, J.; Cui, X.W. Artificial intelligence in thyroid ultrasound. Front. Oncol. 2023, 13, 1060702. [Google Scholar] [CrossRef]
- Barinov, L.; Jairaj, A.; Middleton, W.D.; Beland, D.M.; Kirsch, J.; Filice, R.W.; Reverter, J.L.; Arguelles, I.; Grant, E.G. Improving the Efficacy of ACR TI-RADS Through Deep Learning-Based Descriptor Augmentation. J. Digit. Imaging 2023, 36, 2392–2401. [Google Scholar] [CrossRef]
- Etehadtavakol, M.; Etehadtavakol, M.; Ng, E.Y.K. Enhanced thyroid nodule segmentation through U-Net and VGG16 fusion with feature engineering: A comprehensive study. Comput. Methods Programs Biomed. 2024, 251, 108209. [Google Scholar] [CrossRef]
- Tessler, F.N.; Thomas, J. Artificial Intelligence for Evaluation of Thyroid Nodules: A Primer. Thyroid 2023, 33, 150–158. [Google Scholar] [CrossRef]
- Chang, C.Y.; Lei, Y.F.; Tseng, C.H.; Shih, S.R. Thyroid segmentation and volume estimation in ultrasound images. IEEE Trans. Biomed. Eng. 2010, 57, 1348–1357. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; You, H.; Li, K. A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images. Comput. Methods Programs Biomed. 2020, 185, 105329. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Webb, J.; Gregory, A.; Meixner, D.D.; Knudsen, J.M.; Callstrom, M.; Fatemi, M.; Alizad, A. Automated Segmentation of Thyroid Nodule, Gland, and Cystic Components From Ultrasound Images Using Deep Learning. IEEE Access 2020, 8, 63482–63496. [Google Scholar] [CrossRef]
- Narayan, N.S.; Marziliano, P.; Kanagalingam, J.; Hobbs, C.G. Speckle Patch Similarity for Echogenicity-Based Multiorgan Segmentation in Ultrasound Images of the Thyroid Gland. IEEE J. Biomed. Health Inform. 2017, 21, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Poudel, P.; Illanes, A.; Sheet, D.; Friebe, M. Evaluation of Commonly Used Algorithms for Thyroid Ultrasound Images Segmentation and Improvement Using Machine Learning Approaches. J. Healthc. Eng. 2018, 2018, 8087624. [Google Scholar] [CrossRef]
- Bojunga, J.; Trimboli, P. Thyroid ultrasound and its ancillary techniques. Rev. Endocr. Metab. Disord. 2024, 25, 161–173. [Google Scholar] [CrossRef]
- Peng, S.; Liu, Y.; Lv, W.; Liu, L.; Zhou, Q.; Yang, H.; Ren, J.; Liu, G.; Wang, X.; Zhang, X.; et al. Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: A multicentre diagnostic study. Lancet Digit. Health 2021, 3, e250–e259. [Google Scholar] [CrossRef]
- Wang, B.; Wan, Z.; Li, C.; Zhang, M.; Shi, Y.; Miao, X.; Jian, Y.; Luo, Y.; Yao, J.; Tian, W. Identification of benign and malignant thyroid nodules based on dynamic AI ultrasound intelligent auxiliary diagnosis system. Front. Endocrinol. 2022, 13, 1018321. [Google Scholar] [CrossRef]
- Zhou, T.; Xu, L.; Shi, J.; Zhang, Y.; Lin, X.; Wang, Y.; Hu, T.; Xu, R.; Xie, L.; Sun, L.; et al. US of thyroid nodules: Can AI-assisted diagnostic system compete with fine needle aspiration? Eur. Radiol. 2024, 34, 1324–1333. [Google Scholar] [CrossRef]
- Toro-Tobon, D.; Loor-Torres, R.; Duran, M.; Fan, J.W.; Ospina, N.S.; Wu, Y.; Brito, J.P. Artificial Intelligence in Thyroidology: A Narrative Review of the Current Applications, Associated Challenges, and Future Directions. Thyroid 2023, 33, 903–917. [Google Scholar] [CrossRef]
- Din, N.M.U.; Dar, R.A.; Rasool, M.; Assad, A. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead. Comput. Biol. Med. 2022, 149, 106073. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Bu, Y.; Lu, S.; Pang, H.; Luo, C.; Liu, Y.; Qian, L. Development of a Deep Learning-Based Model for Diagnosing Breast Nodules with Ultrasound. J. Ultrasound Med. 2021, 40, 513–520. [Google Scholar] [CrossRef]
- Dong, F.; She, R.; Cui, C.; Shi, S.; Hu, X.; Zeng, J.; Wu, H.; Xu, J.; Zhang, Y. One step further into the blackbox: A pilot study of how to build more confidence around an AI-based decision system of breast nodule assessment in 2D ultrasound. Eur. Radiol. 2021, 31, 4991–5000. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Wu, R.; Lu, X.; Duan, Y.; Zhu, Y.; Ma, Y.; Nie, F. Deep Learning with Transformer or Convolutional Neural Network in the Assessment of Tumor-Infiltrating Lymphocytes (TILs) in Breast Cancer Based on US Images: A Dual-Center Retrospective Study. Cancers 2023, 15, 838. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Zhou, X.S.; Shi, F.; Shen, D. Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches. Semin. Cancer Biol. 2023, 96, 11–25. [Google Scholar] [CrossRef]
- Yao, Z.; Luo, T.; Dong, Y.; Jia, X.; Deng, Y.; Wu, G.; Zhu, Y.; Zhang, J.; Liu, J.; Yang, L.; et al. Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis. Nat. Commun. 2023, 14, 788. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.Y.; Qaraqe, M.; Righetti, R.; Serpedin, E.; Qaraqe, K. Unveiling the future of breast cancer assessment: A critical review on generative adversarial networks in elastography ultrasound. Front. Oncol. 2023, 13, 1282536. [Google Scholar] [CrossRef]
- Bitencourt, A.; Naranjo, I.D.; Gullo, R.L.; Saccarelli, C.R.; Pinker, K. AI-enhanced breast imaging: Where are we and where are we heading? Eur. J. Radiol. 2021, 142, 109882. [Google Scholar] [CrossRef]
- Fujioka, T.; Kubota, K.; Mori, M.; Katsuta, L.; Kikuchi, Y.; Kimura, K.; Kimura, M.; Adachi, M.; Oda, G.; Nakagawa, T.; et al. Virtual Interpolation Images of Tumor Development and Growth on Breast Ultrasound Image Synthesis with Deep Convolutional Generative Adversarial Networks. J. Ultrasound Med. 2021, 40, 61–69. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Zhao, Y.; Wei, Y. Fast Speckle Noise Suppression Algorithm in Breast Ultrasound Image Using Three-Dimensional Deep Learning. Front. Physiol. 2022, 13, 880966. [Google Scholar] [CrossRef]
- Pang, T.; Wong, J.H.D.; Ng, W.L.; Chan, C.S. Semi-supervised GAN-based Radiomics Model for Data Augmentation in Breast Ultrasound Mass Classification. Comput. Methods Programs Biomed. 2021, 203, 106018. [Google Scholar] [CrossRef] [PubMed]
- Vimala, B.B.; Srinivasan, S.; Mathivanan, S.K.; Muthukumaran, V.; Babu, J.C.; Herencsar, N.; Vilcekova, L. Image Noise Removal in Ultrasound Breast Images Based on Hybrid Deep Learning Technique. Sensors 2023, 23, 1167. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, M.; Yang, L.; Yin, H.; Yang, H.; Zhou, Y. A neural network with a human learning paradigm for breast fibroadenoma segmentation in sonography. Biomed. Eng. Online 2024, 23, 5. [Google Scholar] [CrossRef]
- He, Q.; Yang, Q.; Xie, M. HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation. Comput. Biol. Med. 2023, 155, 106629. [Google Scholar] [CrossRef]
- Huang, Q.; Luo, Y.; Zhang, Q. Breast ultrasound image segmentation: A survey. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 493–507. [Google Scholar] [CrossRef]
- Hussain, S.; Xi, X.; Ullah, I.; Inam, S.A.; Naz, F.; Shaheed, K.; Ali, S.A.; Tian, C. A Discriminative Level Set Method with Deep Supervision for Breast Tumor Segmentation. Comput. Biol. Med. 2022, 149, 105995. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; He, X.; Yao, J.; Wang, T.; Wang, L.; Li, W.; Curran, W.J.; Liu, T.; Xu, D.; Yang, X. Breast tumor segmentation in 3D automatic breast ultrasound using Mask scoring R-CNN. Med. Phys. 2021, 48, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Tagnamas, J.; Ramadan, H.; Yahyaouy, A.; Tairi, H. Multi-task approach based on combined CNN-transformer for efficient segmentation and classification of breast tumors in ultrasound images. Vis. Comput. Ind. Biomed. Art 2024, 7, 2. [Google Scholar] [CrossRef]
- Vakanski, A.; Xian, M.; Freer, P.E. Attention-Enriched Deep Learning Model for Breast Tumor Segmentation in Ultrasound Images. Ultrasound Med. Biol. 2020, 46, 2819–2833. [Google Scholar] [CrossRef]
- Wu, R.; Lu, X.; Yao, Z.; Ma, Y. MFMSNet: A Multi-frequency and Multi-scale Interactive CNN-Transformer Hybrid Network for breast ultrasound image segmentation. Comput. Biol. Med. 2024, 177, 108616. [Google Scholar] [CrossRef]
- Magnuska, Z.A.; Roy, R.; Palmowski, M.; Kohlen, M.; Winkler, B.S.; Pfeil, T.; Boor, P.; Schulz, V.; Krauss, K.; Stickeler, E.; et al. Combining Radiomics and Autoencoders to Distinguish Benign and Malignant Breast Tumors on US Images. Radiology 2024, 312, e232554. [Google Scholar] [CrossRef]
- Nedadur, R.; Wang, B.; Tsang, W. Artificial intelligence for the echocardiographic assessment of valvular heart disease. Heart 2022, 108, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, V.S.D.; Borges, M.M.; Furtado, R.G.; Dourado, C.N.; Costa, R.M.D. Artificial intelligence applied to support medical decisions for the automatic analysis of echocardiogram images: A systematic review. Artif. Intell. Med. 2021, 120, 102165. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, V.S.D.; Rodrigues, D.D.C.; Dourado, C.N.; Borges, M.M.; Costa, R.M.D. Machine Learning Applied to Support Medical Decision in Transthoracic Echocardiogram Exams: A Systematic Review. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020. [Google Scholar]
- Zamzmi, G.; Hsu, L.Y.; Li, W.; Sachdev, V.; Antani, S. Harnessing Machine Intelligence in Automatic Echocardiogram Analysis: Current Status, Limitations, and Future Directions. IEEE Rev. Biomed. Eng. 2020, 14, 181–203. [Google Scholar] [CrossRef] [PubMed]
- Föllmer, B.; Williams, M.C.; Dey, D.; Arbab-Zadeh, A.; Maurovich-Horvat, P.; Volleberg, R.; Rueckert, D.; Schnabel, J.A.; Newby, D.E.; Dweck, M.R.; et al. Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries. Nat. Rev. Cardiol. 2024, 21, 51–64. [Google Scholar] [CrossRef]
- Sengupta, P.P.; Dey, D.; Davies, R.H.; Duchateau, N.; Yanamala, N. Challenges for augmenting intelligence in cardiac imaging. Lancet Digit. Health 2024, 6, e739–e748. [Google Scholar] [CrossRef]
- Schattenberg, J.M.; Chalasani, N.; Alkhouri, N. Artificial Intelligence Applications in Hepatology. Clin. Gastroenterol. Hepatol. 2023, 21, 2015–2025. [Google Scholar] [CrossRef]
- Balsano, C.; Burra, P.; Duvoux, C.; Alisi, A.; Piscaglia, F.; Gerussi, A.; Special Interest Group (SIG) Artificial Intelligence; Liver, D.; Italian Association for the Study of Liver (AISF). Artificial Intelligence and liver: Opportunities and barriers. Dig. Liver Dis. 2023, 55, 1455–1461. [Google Scholar] [CrossRef]
- Zamanian, H.; Mostaar, A.; Azadeh, P.; Ahmadi, M. Implementation of Combinational Deep Learning Algorithm for Non-alcoholic Fatty Liver Classification in Ultrasound Images. J. Biomed. Phys. Eng. 2021, 11, 73–84. [Google Scholar] [CrossRef]
- Yang, Q.; Wei, J.; Hao, X.; Kong, D.; Yu, X.; Jiang, T.; Xi, J.; Cai, W.; Luo, Y.; Jing, X.; et al. Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: A multicentre study. EBioMedicine 2020, 56, 102777. [Google Scholar] [CrossRef]
- Uche-Anya, E.; Anyane-Yeboa, A.; Berzin, T.M.; Ghassemi, M.; May, F.P. Artificial intelligence in gastroenterology and hepatology: How to advance clinical practice while ensuring health equity. Gut 2022, 71, 1909–1915. [Google Scholar] [CrossRef]
- Shrestha, P.; Poudyal, B.; Yadollahi, S.; Wright, D.E.; Gregory, A.V.; Warner, J.D.; Korfiatis, P.; Green, I.C.; Rassier, S.L.; Mariani, A.; et al. A systematic review on the use of artificial intelligence in gynecologic imaging–Background, state of the art, and future directions. Gynecol. Oncol. 2022, 166, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Dhombres, F.; Bonnard, J.; Bailly, K.; Maurice, P.; Papageorghiou, A.T.; Jouannic, J.M. Contributions of Artificial Intelligence Reported in Obstetrics and Gynecology Journals: Systematic Review. J. Med. Internet Res. 2022, 24, e35465. [Google Scholar] [CrossRef]
- Akazawa, M.; Hashimoto, K. Artificial intelligence in gynecologic cancers: Current status and future challenges–A systematic review. Artif. Intell. Med. 2021, 120, 102164. [Google Scholar] [CrossRef]
- Jost, E.; Kosian, P.; Cruz, J.J.; Albarqouni, S.; Gembruch, U.; Strizek, B.; Recker, F. Evolving the Era of 5D Ultrasound? A Systematic Literature Review on the Applications for Artificial Intelligence Ultrasound Imaging in Obstetrics and Gynecology. J. Clin. Med. 2023, 12, 6833. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Droste, R.; Chatelain, P.; Drukker, L.; Papageorghiou, A.T.; Noble, J.A. Spatio-Temporal Partitioning and Description of Full-Length Routine Fetal Anomaly Ultrasound Scans. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 987–990. [Google Scholar] [CrossRef]
- Sharma, H.; Drukker, L.; Chatelain, P.; Droste, R.; Papageorghiou, A.T.; Noble, J.A. Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos. Med. Image Anal. 2021, 69, 101973. [Google Scholar] [CrossRef]
- Drukker, L.; Sharma, H.; Karim, J.N.; Droste, R.; Noble, J.A.; Papageorghiou, A.T. Clinical workflow of sonographers performing fetal anomaly ultrasound scans: Deep-learning-based analysis. Ultrasound Obstet. Gynecol. 2022, 60, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zheng, Q.; Teng, C.; Yasrab, R.; Drukker, L.; Papageorghiou, A.T.; Noble, J.A. Memory-based unsupervised video clinical quality assessment with multi-modality data in fetal ultrasound. Med. Image Anal. 2023, 90, 102977. [Google Scholar] [CrossRef]
- Yasrab, R.; Fu, Z.; Zhao, H.; Lee, L.H.; Sharma, H.; Drukker, L.; Papageorgiou, A.T.; Noble, J.A. A Machine Learning Method for Automated Description and Workflow Analysis of First Trimester Ultrasound Scans. IEEE Trans. Med. Imaging 2023, 42, 1301–1313. [Google Scholar] [CrossRef]
- Shahrivar, R.Y.; Karami, F.; Karami, E. Enhancing Fetal Anomaly Detection in Ultrasonography Images: A Review of Machine Learning-Based Approaches. Biomimetics 2023, 8, 519. [Google Scholar] [CrossRef]
- Martínez-Más, J.; Bueno-Crespo, A.; Khazendar, S.; Remezal-Solano, M.; Martínez-Cendán, J.P.; Jassim, S.; Du, H.; Al Assam, H.; Bourne, T.; Timmerman, D. Evaluation of machine learning methods with Fourier Transform features for classifying ovarian tumors based on ultrasound images. PLoS ONE 2019, 14, e0219388. [Google Scholar] [CrossRef] [PubMed]
- Giourga, M.; Petropoulos, I.; Stavros, S.; Potiris, A.; Gerede, A.; Sapantzoglou, I.; Fanaki, M.; Papamattheou, E.; Karasmani, C.; Karampitsakos, T.; et al. Enhancing Ovarian Tumor Diagnosis: Performance of Convolutional Neural Networks in Classifying Ovarian Masses Using Ultrasound Images. J. Clin. Med. 2024, 13, 4123. [Google Scholar] [CrossRef]
- Christiansen, F.; Epstein, E.L.; Smedberg, E.; Åkerlund, M.; Smith, K.; Epstein, E. Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: Comparison with expert subjective assessment. Ultrasound Obstet. Gynecol. 2021, 57, 155–163. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Bai, X.H.; Chen, H.; Feng, W.W. Machine learning models in evaluating the malignancy risk of ovarian tumors: A comparative study. J. Ovarian Res. 2024, 17, 219. [Google Scholar] [CrossRef]
- Drukker, L.; Noble, J.A.; Papageorghiou, A.T. Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound Obstet. Gynecol. 2020, 56, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Q.; Peng, B.; Jiang, J.; Fang, L.; Weng, W.; Wang, W.; Wang, S.; Zhu, X. Automatic Measurement of Endometrial Thickness from Transvaginal Ultrasound Images. Front. Bioeng. Biotechnol. 2022, 10, 853845. [Google Scholar] [CrossRef]
- Moro, F.; Albanese, M.; Boldrini, L.; Chiappa, V.; Lenkowicz, J.; Bertolina, F.; Mascilini, F.; Moroni, R.; Gambacorta, M.A.; Raspagliesi, F.; et al. Developing and validating ultrasound-based radiomics models for predicting high-risk endometrial cancer. Ultrasound Obstet. Gynecol. 2022, 60, 256–268. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, M.; Wu, S.; Zhang, B.; Burjoo, A.; Yang, Y.; Xu, D. Artificial intelligence diagnosis of intrauterine adhesion by 3D ultrasound imaging: A prospective study. Quant. Imaging Med. Surg. 2023, 13, 2314–2327. [Google Scholar] [CrossRef]
- Szentimrey, Z.; Ameri, G.; Hong, C.X.; Cheung, R.Y.K.; Ukwatta, E.; Eltahawi, A. Automated segmentation and measurement of the female pelvic floor from the mid-sagittal plane of 3D ultrasound volumes. Med. Phys. 2023, 50, 6215–6227. [Google Scholar] [CrossRef]
- van den Noort, F.; Manzini, C.; van der Vaart, C.H.; van Limbeek, M.A.J.; Slump, C.H.; Grob, A.T.M. Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes. Ultrasound Obstet. Gynecol. 2022, 60, 570–576. [Google Scholar] [CrossRef]
- Williams, H.; Cattani, L.; Van Schoubroeck, D.; Yaqub, M.; Sudre, C.; Vercauteren, T.; D’Hooge, J.; Deprest, J. Automatic Extraction of Hiatal Dimensions in 3-D Transperineal Pelvic Ultrasound Recordings. Ultrasound Med. Biol. 2021, 47, 3470–3479. [Google Scholar] [CrossRef]
- Nhat, P.T.H.; Van Hao, N.; Tho, P.V.; Kerdegari, H.; Pisani, L.; Thu, L.N.M.; Phuong, L.T.; Duong, H.T.H.; Thuy, D.B.; McBride, A.; et al. Clinical benefit of AI-assisted lung ultrasound in a resource-limited intensive care unit. Crit. Care 2023, 27, 257. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, H.C.; Prager, R.; Smith, D.; Wu, D.; Dave, C.; Tschirhart, J.; Wu, B.; Van Berlo, B.; Malthaner, R.; Arntfield, R. Automated Real-Time Detection of Lung Sliding Using Artificial Intelligence: A Prospective Diagnostic Accuracy Study. Chest 2024, 166, 362–370. [Google Scholar] [CrossRef] [PubMed]
- VanBerlo, B.; Wu, D.; Li, B.; Rahman, M.A.; Hogg, G.; VanBerlo, B.; Tschirhart, J.; Ford, A.; Ho, J.; McCauley, J.; et al. Accurate assessment of the lung sliding artefact on lung ultrasonography using a deep learning approach. Comput. Biol. Med. 2022, 148, 105953. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Smith, D.; VanBerlo, B.; Roshankar, A.; Lee, H.; Li, B.; Ali, F.; Rahman, M.; Basmaji, J.; Tschirhart, J.; et al. Improving the Generalizability and Performance of an Ultrasound Deep Learning Model Using Limited Multicenter Data for Lung Sliding Artifact Identification. Diagnostics 2024, 14, 1081. [Google Scholar] [CrossRef]
- Yi, P.H.; Garner, H.W.; Hirschmann, A.; Jacobson, J.A.; Omoumi, P.; Oh, K.; Zech, J.R.; Lee, Y.H. Clinical Applications, Challenges, and Recommendations for Artificial Intelligence in Musculoskeletal and Soft-Tissue Ultrasound: AJR Expert Panel Narrative Review. AJR Am. J. Roentgenol. 2024, 222, e2329530. [Google Scholar] [CrossRef]
- Gitto, S.; Serpi, F.; Albano, D.; Risoleo, G.; Fusco, S.; Messina, C.; Sconfienza, L.M. AI applications in musculoskeletal imaging: A narrative review. Eur. Radiol. Exp. 2024, 8, 22. [Google Scholar] [CrossRef]
- Gorelik, N.; Chong, J.; Lin, D.J. Pattern Recognition in Musculoskeletal Imaging Using Artificial Intelligence. Semin. Musculoskelet. Radiol. 2020, 24, 38–49. [Google Scholar] [CrossRef]
- Bowness, J.S.; Metcalfe, D.; El-Boghdadly, K.; Thurley, N.; Morecroft, M.; Hartley, T.; Krawczyk, J.; Noble, J.A.; Higham, H. Artificial intelligence for ultrasound scanning in regional anaesthesia: A scoping review of the evidence from multiple disciplines. Br. J. Anaesth. 2024, 132, 1049–1062. [Google Scholar] [CrossRef]
- Hesse, L.S.; Aliasi, M.; Moser, F.; the INTERGROWTH-21st Consortium; Haak, M.C.; Xie, W.; Jenkinson, M.; Namburete, A.I.L. Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning. Neuroimage 2022, 254, 119117. [Google Scholar] [CrossRef]
- Weichert, J.; Scharf, J.L. Advancements in Artificial Intelligence for Fetal Neurosonography: A Comprehensive Review. J. Clin. Med. 2024, 13, 5626. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Lei, T.; Wang, N.; Cai, H.; Xian, J.; He, M.; Zhang, L.; Xie, H. Computer-aided diagnosis for fetal brain ultrasound images using deep convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.N.; Wang, N.; He, M.; Zhang, L.H.; Cai, H.M.; Xian, J.B.; Lin, M.F.; Zheng, J.; Yang, Y.Z. Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound Obstet. Gynecol. 2020, 56, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Jaremko, J.L.; Hareendranathan, A.; Bolouri, S.E.S.; Frey, R.F.; Dulai, S.; Bailey, A.L. AI aided workflow for hip dysplasia screening using ultrasound in primary care clinics. Sci. Rep. 2023, 13, 9224. [Google Scholar] [CrossRef]
- Ha, E.J.; Lee, J.H.; Lee, D.H.; Moon, J.; Lee, H.; Kim, Y.N.; Kim, M.; Na, D.G.; Kim, J.H. Artificial Intelligence Model Assisting Thyroid Nodule Diagnosis and Management: A Multicenter Diagnostic Study. J. Clin. Endocrinol. Metab. 2024, 109, 527–535. [Google Scholar] [CrossRef]
- Tong, W.J.; Wu, S.H.; Cheng, M.Q.; Huang, H.; Liang, J.Y.; Li, C.Q.; Guo, H.L.; He, D.N.; Liu, Y.H.; Xiao, H.; et al. Integration of Artificial Intelligence Decision Aids to Reduce Workload and Enhance Efficiency in Thyroid Nodule Management. JAMA Netw. Open 2023, 6, e2313674. [Google Scholar] [CrossRef]
- El Naqa, I.; Karolak, A.; Luo, Y.; Folio, L.; Tarhini, A.A.; Rollison, D.; Parodi, K. Translation of AI into oncology clinical practice. Oncogene 2023, 42, 3089–3097. [Google Scholar] [CrossRef]
- Rowe, S.P.; Soyer, P.; Fishman, E.K. The future of radiology: What if artificial intelligence is really as good as predicted? Diagn. Interv. Imaging 2022, 103, 385–386. [Google Scholar] [CrossRef]
- Daum, N.; Blaivas, M.; Goudie, A.; Hoffmann, B.; Jenssen, C.; Neubauer, R.; Recker, F.; Moga, T.V.; Zervides, C.; Dietrich, C.F. Student ultrasound education, current view and controversies. Role of Artificial Intelligence, Virtual Reality and telemedicine. Ultrasound J. 2024, 16, 44. [Google Scholar] [CrossRef]
- Wong, R.S.; Ming, L.C.; Ali, R.A.R. The Intersection of ChatGPT, Clinical Medicine, and Medical Education. JMIR Med. Educ. 2023, 9, e47274. [Google Scholar] [CrossRef]
- Nguyen, G.K.; Shetty, A.S. Artificial Intelligence and Machine Learning: Opportunities for Radiologists in Training. J. Am. Coll. Radiol. 2018, 15, 1320–1321. [Google Scholar] [CrossRef] [PubMed]
- Salastekar, N.V.; Maxfield, C.; Hanna, T.N.; Krupinski, E.A.; Heitkamp, D.; Grimm, L.J. Artificial Intelligence/Machine Learning Education in Radiology: Multi-institutional Survey of Radiology Residents in the United States. Acad. Radiol. 2023, 30, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Nakayama, K.I. Artificial intelligence in oncology. Cancer Sci. 2020, 111, 1452–1460. [Google Scholar] [CrossRef]
- Boeken, T.; Feydy, J.; Lecler, A.; Soyer, P.; Feydy, A.; Barat, M.; Duron, L. Artificial intelligence in diagnostic and interventional radiology: Where are we now? Diagn. Interv. Imaging 2023, 104, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Najjar, R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics 2023, 13, 2760. [Google Scholar] [CrossRef]
- Waring, J.; Lindvall, C.; Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 2020, 104, 101822. [Google Scholar] [CrossRef]
- Narang, A.; Bae, R.; Hong, H.; Thomas, Y.; Surette, S.; Cadieu, C.; Chaudhry, A.; Martin, R.P.; McCarthy, P.M.; Rubenson, D.S.; et al. Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use. JAMA Cardiol. 2021, 6, 624–632. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, S.; Zhu, Y.; Zhang, Z.; Cao, H.; Xie, M.; Zhang, L. Advances in the Application of Artificial Intelligence in Fetal Echocardiography. J. Am. Soc. Echocardiogr. 2024, 37, 550–561. [Google Scholar] [CrossRef]
- Berg, W.A.; Aldrete, A.L.L.; Jairaj, A.; Parea, J.C.L.; García, C.Y.; McClennan, R.C.; Cen, S.Y.; Larsen, L.H.; de Lara, M.T.S.; Love, S. Toward AI-supported US Triage of Women with Palpable Breast Lumps in a Low-Resource Setting. Radiology 2023, 307, e223351. [Google Scholar] [CrossRef]
- Esmaeilzadeh, P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artif. Intell. Med. 2024, 151, 102861. [Google Scholar] [CrossRef]
- Duan, S.; Liu, L.; Chen, Y.; Yang, L.; Zhang, Y.; Wang, S.; Hao, L.; Zhang, L. A 5G-powered robot-assisted teleultrasound diagnostic system in an intensive care unit. Crit. Care 2021, 25, 134. [Google Scholar] [CrossRef]
- Lee, H.; Kang, J.; Yeo, J. Medical Specialty Recommendations by an Artificial Intelligence Chatbot on a Smartphone: Development and Deployment. J. Med. Internet Res. 2021, 23, e27460. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Alami, H.; Rivard, L.; Lehoux, P.; Hoffman, S.J.; Cadeddu, S.B.M.; Savoldelli, M.; Samri, M.A.; Ag Ahmed, M.A.; Fleet, R.; Fortin, J.P. Artificial intelligence in health care: Laying the Foundation for Responsible, sustainable, and inclusive innovation in low- and middle-income countries. Glob. Health 2020, 16, 52. [Google Scholar] [CrossRef]
- Pesapane, F.; Volonté, C.; Codari, M.; Sardanelli, F. Artificial intelligence as a medical device in radiology: Ethical and regulatory issues in Europe and the United States. Insights Imaging 2018, 9, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, J.; Minari, J.; Huys, I. The future regulation of artificial intelligence systems in healthcare services and medical research in the European Union. Front. Genet. 2022, 13, 927721. [Google Scholar] [CrossRef] [PubMed]
- Gottardelli, B.; Gatta, R.; Nucciarelli, L.; Tudor, A.M.; Tavazzi, E.; Vallati, M.; Orini, S.; Di Giorgi, N.; Damiani, A. GEN-RWD Sandbox: Bridging the gap between hospital data privacy and external research insights with distributed analytics. BMC Med. Inform. Decis. Mak. 2024, 24, 170. [Google Scholar] [CrossRef]
- Cohen, I.G.; Gerke, S.; Kramer, D.B. Ethical and Legal Implications of Remote Monitoring of Medical Devices. Milbank Q. 2020, 98, 1257–1289. [Google Scholar] [CrossRef]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.W.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis. NPJ Digit. Med. 2021, 4, 65. [Google Scholar] [CrossRef]
- Miller, D.D.; Brown, E.W. Artificial Intelligence in Medical Practice: The Question to the Answer? Am. J. Med. 2018, 131, 129–133. [Google Scholar] [CrossRef]
- Bukowski, M.; Farkas, R.; Beyan, O.; Moll, L.; Hahn, H.; Kiessling, F.; Schmitz-Rode, T. Implementation of eHealth and AI integrated diagnostics with multidisciplinary digitized data: Are we ready from an international perspective? Eur. Radiol. 2020, 30, 5510–5524. [Google Scholar] [CrossRef] [PubMed]
- Huisman, M.; Ranschaert, E.; Parker, W.; Mastrodicasa, D.; Koci, M.; de Santos, D.P.; Coppola, F.; Morozov, S.; Zins, M.; Bohyn, C.; et al. An international survey on AI in radiology in 1041 radiologists and radiology residents part 2: Expectations, hurdles to implementation, and education. Eur. Radiol. 2021, 31, 8797–8806. [Google Scholar] [CrossRef] [PubMed]
- Kalra, N.; Verma, P.; Verma, S. Advancements in AI based healthcare techniques with FOCUS ON diagnostic techniques. Comput. Biol. Med. 2024, 179, 108917. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Li, Q.; Fu, K.; Zhou, X.; Zhang, K. Progress in the Application of Artificial Intelligence in Ultrasound-Assisted Medical Diagnosis. Bioengineering 2025, 12, 288. https://doi.org/10.3390/bioengineering12030288
Yan L, Li Q, Fu K, Zhou X, Zhang K. Progress in the Application of Artificial Intelligence in Ultrasound-Assisted Medical Diagnosis. Bioengineering. 2025; 12(3):288. https://doi.org/10.3390/bioengineering12030288
Chicago/Turabian StyleYan, Li, Qing Li, Kang Fu, Xiaodong Zhou, and Kai Zhang. 2025. "Progress in the Application of Artificial Intelligence in Ultrasound-Assisted Medical Diagnosis" Bioengineering 12, no. 3: 288. https://doi.org/10.3390/bioengineering12030288
APA StyleYan, L., Li, Q., Fu, K., Zhou, X., & Zhang, K. (2025). Progress in the Application of Artificial Intelligence in Ultrasound-Assisted Medical Diagnosis. Bioengineering, 12(3), 288. https://doi.org/10.3390/bioengineering12030288