Hallux Limitus: Exploring the Variability in Lower Limb Symmetry and Its Connection to Gait Parameters—A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Sample
2.2. Methods
2.3. Statistical Analysis
3. Results
3.1. Sociodemographic Data
3.2. Main Outcome Measure Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drago, J.J.; Oloff, L.; Jacobs, A.M. A comprehensive review of hallux limitus. J. Foot Surg. 1984, 23, 213–220. Available online: https://europepmc.org/article/MED/6376607 (accessed on 10 January 2025). [PubMed]
- Cuevas-Martínez, C.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Casado-Hernández, I.; Turné-Cárceles, O.; Pérez-Palma, L.; Martiniano, J.; Gómez-Salgado, J.; López-López, D. Analysis of Static Plantar Pressures in School-Age Children with and without Functional Hallux Limitus: A Case-Control Study. Bioengineering 2023, 10, 628. [Google Scholar] [CrossRef]
- Viehöfer, A.F.; Vich, M.; Wirth, S.H.; Espinosa, N.; Camenzind, R.S. The Role of Plantar Fascia Tightness in Hallux Limitus: A Biomechanical Analysis. J. Foot Ankle Surg. 2019, 58, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Fung, J.; Sherman, A.; Stachura, S.; Eckles, R.; Doucette, J.; Chusid, E. Nonoperative Management of Hallux Limitus Using a Novel Forefoot Orthosis. J. Foot Ankle Surg. 2020, 59, 1192–1196. [Google Scholar] [CrossRef] [PubMed]
- Fuller, E.A. The windlass mechanism of the foot. A mechanical model to explain pathology. J. Am. Podiatr. Med. Assoc. 2000, 90, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.H. The mechanics of the foot: II. The plantar aponeurosis and the arch. J. Anat. 1954, 88, 24–31. [Google Scholar]
- Manfredi-Márquez, M.J.; Tavara-Vidalón, S.P.; Tavaruela-Carrión, N.; Gómez Benítez, M.Á.; Fernandez-Seguín, L.M.; Ramos-Ortega, J. Study of Windlass Mechanism in the Lower Limb Using Inertial Sensors. Int. J. Environ. Res. Public Health 2023, 20, 3220. [Google Scholar] [CrossRef]
- Hicks, J.H. The Foot As A Support. Cells Tissues Organs 1955, 25, 34–45. [Google Scholar] [CrossRef]
- Sockalingam, N.; Reymond, N.; Rybnikov, A.; Dubois-Ferriere, V.; Assal, M. Do Patients with Functional Hallux Limitus Have a Low-Lying or Bulky FHL Muscle Belly? Foot Ankle Orthop. 2023, 8, 24730114231153140. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Calvo-Lobo, C.; Navarro-Flores, E.; Palomo-López, P.; Romero-Morales, C.; López-López, D. Reliability Study of Diagnostic Tests for Functional Hallux Limitus. Foot Ankle Int. 2020, 41, 457–462. [Google Scholar] [CrossRef]
- Cuevas-Martínez, C.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Casado-Hernández, I.; Navarro-Flores, E.; Pérez-Palma, L.; Martiniano, J.; Gómez-Salgado, J.; López-López, D. Hallux Limitus Influence on Plantar Pressure Variations during the Gait Cycle: A Case-Control Study. Bioengineering 2023, 10, 772. [Google Scholar] [CrossRef] [PubMed]
- Meyr, A.J.; Berkelbach, C.; Dreikorn, C.; Arena, T. Descriptive Quantitative Analysis of First Metatarsal Sagittal Plane Motion. J. Foot Ankle Surg. 2020, 59, 1244–1247. [Google Scholar] [CrossRef]
- Padrón, L.; Bayod, J.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.; López-López, D.; Casado-Hernández, I. Influence of the center of pressure on baropodometric gait pattern variations in the adult population with flatfoot: A case-control study. Front. Bioeng. Biotechnol. 2023, 11, 1147616. [Google Scholar] [CrossRef]
- Dananberg, H.J. Functional hallux limitus and its relationship to gait efficiency. J. Am. Podiatr. Med. Assoc. 1986, 76, 648–652. [Google Scholar] [CrossRef]
- Dananberg, H.J. Gait style as an etiology to chronic postural pain. Part I. Functional hallux limitus. J. Am. Podiatr. Med. Assoc. 1993, 83, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Van Gheluwe, B.; Dananberg, H.J.; Hagman, F.; Vanstaen, K. Effects of hallux limitus on plantar foot pressure and foot kinematics during walking. J. Am. Podiatr. Med. Assoc. 2006, 96, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Rodriguez-Sanz, D. Static and dynamic plantar pressures in children with and without sever disease: A case-control study. Phys. Ther. 2014, 94, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Kosik, K.B.; Johnson, N.F.; Terada, M.; Thomas, A.C.; Mattacola, C.G.; Gribble, P.A. Decreased ankle and hip isometric peak torque in young and middle-aged adults with chronic ankle instability. Phys. Ther. Sport. 2020, 43, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Lee, S.Y.; Ha, S. Alterations of lower extremity function, health-related quality of life, and spatiotemporal gait parameters among individuals with chronic ankle instability. Phys. Ther. Sport 2021, 51, 22–28. [Google Scholar] [CrossRef]
- López-López, D.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Palomo-López, P.; Rodríguez-Sanz, D.; Brandariz-Pereira, J.M.; Calvo-Lobo, C. Evaluation of foot health related quality of life in individuals with foot problems by gender: A cross-sectional comparative analysis study. BMJ Open. 2018, 8, e023980. [Google Scholar] [CrossRef]
- Moffa, S.; Perna, A.; Candela, G.; Cattolico, A.; Sellitto, C.; De Blasiis, P.; Guerra, G.; Tafuri, D.; Lucariello, A. Effects of Hoverboard on Balance in Young Soccer Athletes. J. Funct. Morphol. Kinesiol. 2020, 5, 60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lugade, V.; Kaufman, K. Center of pressure trajectory during gait: A comparison of four foot positions. Gait Posture 2014, 40, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Awale, A.; Hagedorn, T.J.; Dufour, A.B.; Menz, H.B.; Casey, V.A.; Hannan, M.T. Foot Function, Foot Pain, and Falls in Older Adults: The Framingham Foot Study. Gerontology 2017, 63, 318–324. [Google Scholar] [CrossRef] [PubMed]
- De Castro, M.P.; Abreu, S.C.; Sousa, H.; MacHado, L.; Santos, R.; Vilas-Boas, J.P. In-shoe plantar pressures and ground reaction forces during overweight adults’ overground walking. Res. Q. Exerc. Sport 2014, 85, 188–197. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; Von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Epidemiology 2007, 18, 805–835. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.; Chuter, V.; Miller, K. Sensitivity and specificity of the functional hallux limitus test to predict foot function. J. Am. Podiatr. Med. Assoc. 2002, 92, 269–271. [Google Scholar] [CrossRef]
- Painceira-Villar, R.; García-Paz, V.; Becerro de Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; López-López, D.; Martiniano, J.; Pereiro-Buceta, H.; Martínez-Jiménez, E.M.; Calvo-Lobo, C. Impact of Asthma on Plantar Pressures in a Sample of Adult Patients: A Case-Control Study. J. Pers. Med. 2021, 11, 1157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Bengoa Vallejo, R.B.; Iglesias, M.E.L.; Zeni, J.; Thomas, S. Reliability and repeatability of the portable EPS-platform digital pressure-plate system. J. Am. Podiatr. Med. Assoc. 2013, 103, 197–203. [Google Scholar] [CrossRef]
- Casado-Hernández, I.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.; Gómez-Salgado, J.; López-López, D.; Bayod, J. Variability of the lower limb symmetry index associated with the gait parameters in the overweight adult population with flatfoot: A case-control study. Front. Bioeng. Biotechnol. 2023, 11, 1189309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chuckpaiwong, B.; Nunley, J.A.; Mall, N.A.; Queen, R.M. The effect of foot type on in-shoe plantar pressure during walking and running. Gait Posture. 2008, 28, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.O.; Herzog, W.; Nigg, B.M. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manip. Physiol. Ther. 1987, 10, 172–176. [Google Scholar]
- Błazkiewicz, M.; Wiszomirska, I.; Wit, A. Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait. Acta Bioeng. Biomech. 2014, 16, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarczyk, K.; Błażkiewicz, M.; Wit, A.; Wychowański, M. Assessing the asymmetry of free gait in healthy young subjects. Acta Bioeng. Biomech. 2017, 19, 101–106. [Google Scholar] [PubMed]
- Zammit, G.V.; Menz, H.B.; Munteanu, S.E.; Landorf, K.B. Plantar pressure distribution in older people with osteoarthritis of the first metatarsophalangeal joint (hallux limitus/rigidus). J. Orthop. Res. 2008, 26, 1665–1669. [Google Scholar] [CrossRef]
- Hershkovich, O.; Tenenbaum, S.; Gordon, B.; Bruck, N.; Thein, R.; Derazne, E.; Tzur, D.; Shamiss, A.; Afek, A. A Large-Scale Study on Epidemiology and Risk Factors for Chronic Ankle Instability in Young Adults. J. Foot Ankle Surg. 2015, 54, 183–187. [Google Scholar] [CrossRef]
- Kim, D.; Lewis, C.L.; Silverman, A.K.; Gill, S.V. Changes in dynamic balance control in adults with obesity across walking speeds. J. Biomech. 2022, 144, 111308. [Google Scholar] [CrossRef]
- Ko, S.U.; Stenholm, S.; Ferrucci, L. Characteristic gait patterns in older adults with obesity—Results from the Baltimore Longitudinal Study of Aging. J. Biomech. 2010, 43, 1104–1110. [Google Scholar] [CrossRef]
- Cau, N.; Cimolin, V.; Galli, M.; Precilios, H.; Tacchini, E.; Santovito, C.; Capodaglio, P. Center of pressure displacements during gait initiation in individuals with obesity. J. Neuroeng. Rehabil. 2014, 11, 82. [Google Scholar] [CrossRef]
- Liu, M.; Kang, N.; Wang, D.; Mei, D.; Wen, E.; Qian, J.; Chen, G. Analysis of Lower Extremity Motor Capacity and Foot Plantar Pressure in Overweight and Obese Elderly Women. Int. J. Environ. Res. Public Health 2023, 20, 3112. [Google Scholar] [CrossRef]
- Pau, M.; Capodaglio, P.; Leban, B.; Porta, M.; Galli, M.; Cimolin, V. Kinematics Adaptation and Inter-Limb Symmetry during Gait in Obese Adults. Sensors 2021, 21, 5980. [Google Scholar] [CrossRef]
- Banks, J.J.; Umberger, B.R.; Boyer, K.A.; Caldwell, G.E. Lower back kinetic demands during induced lower limb gait asymmetries. Gait Posture 2022, 98, 101–108. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total Sample (n = 70) Mean ± SD (Range) | Case Group (n = 35) Mean ± SD (Range) | Control Group (n = 35) Mean ± SD (Range) | p-Value |
---|---|---|---|---|
Age (years) | 25.80 ± 4.46 (21–39) | 26.09 ± 4.27 (21–36) | 25.51 ± 4.69 (21–39) | 0.138 † |
Weight (kg) | 72.26 ± 14.28 (53–98) | 77.49 ± 15.58 (56–98) | 67.09 ± 10.73 (53-89) | <0.007 † |
Height (cm) | 164.96 ± 8.41 (150–185) | 163.80 ± 7.98 (152–185) | 166.11 ± 8.79 (150–185) | 0.205 † |
BMI (kg/m2) | 26.62 ± 5.48 (19.00–39.26) | 28.98 ± 6.27 (21.08–39.26) | 24.27 ± 3.20 (19.00–30.44) | <0.002 † |
Sex, male/female (%) | 11/59 (15.7/84.3) | 7/28 (20/80) | 4/31 (11.4/88.6) | 0.256 ‡ |
Foot size (N) | 38.97 ± 2.41 (36–46) | 38.78 ± 2.11 (36–44) | 39.17 ± 2.69 (36–46) | 0.523 † |
Characteristics | Total Sample (n = 70) Mean ± SD (Range) | Case Group (n = 35) Mean ± SD (Range) | Control Group (n = 35) Mean ± SD (Range) | p-Value | Partial Eta Squared |
---|---|---|---|---|---|
Anterior load in the LLL (%) | 48.58 ± 3.79 (36.80–53.70) | 49.47 ± 3.52 (42.80–53.70) | 47.68 ± 3.90 (36.80–53.20) | 0.076 † | 0.132 |
Posterior load in the LLL (%) | 51.42 ± 3.79 (46.30–63.20) | 50.53 ± 3.52 (46.30–57.20) | 52.32 ± 3.90 (46.80–63.20) | 0.076 † | 0.132 |
Medial load in the LLL (%) | 44.55 ± 4.20 (36.70–52.80) | 43.11 ± 4.06 (36.70–49.40) | 45.98 ± 3.88 (40.00–52.80) | 0.018 † | 0.229 * |
Lateral load in the LLL (%) | 55.47 ± 4.20 (47.20–63.30) | 56.89 ± 4.06 (50.60–63.30) | 54.05 ± 3.90 (47.20–60.00) | 0.018 † | 0.228 * |
Left foot FFP (ms) | 268.24 ± 63.02 (162.70–442.00) | 274.25 ± 60.91 (176.20–367.00) | 262.23 ± 65.39 (162.70–442.00) | 0.184 † | 0.031 |
Left foot FFCP (ms) | 389.58 ± 88.83 (257.30–605.60) | 395.59 ± 108.85 (265.30–605.60) | 383.57 ± 63.96 (257.30–465.00) | 0.769 † | 0.013 |
Left foot ICP (ms) | 94.00 ± 31.56 (43.70–166.50) | 91.41 ± 32.30 (43.70–166.50) | 96.60 ± 31.05 (44.60–154.30) | 0.353 † | 0.018 |
Anterior load in the LRL (%) | 47.80 ± 4.49 (40.30–54.90) | 48.92 ± 4.95 (41.20–54.90) | 46.68 ± 3.70 (40.30–52.00) | 0.048 † | 0.109 |
Posterior load in the LRL (%) | 52.20 ± 4.49 (45.10–59.70) | 51.08 ± 4.95 (45.10–58.80) | 53.32 ± 3.70 (47.80–59.70) | 0.048 † | 0.083 |
Medial load in the LRL (%) | 52.45 ± 5.15 (40.60–61.80) | 50.56 ± 5.51 (40.60–56.50) | 54.33 ± 4.02 (48.00–61.80) | 0.016 † | 0.015 |
Lateral load in the LRL (%) | 47.55 ± 5.15 (38.20–59.40) | 49.44 ± 5.51 (43.50–59.40) | 45.67 ± 4.02 (38.20–52.00) | 0.016 † | 0.063 |
Right foot FFP (ms) | 249.46 ± 59.31 (165.80–405.50) | 241.13 ± 51.64 (187.20–323.00) | 257.78 ± 65.80 (165.80–405.50) | 0.359 † | 0.079 |
Right foot FFCP (ms) | 390.02 ± 103.00 (34.15–544.00) | 417.47 ± 89.10 (268.70–544.00) | 362.57 ± 109.73 (34.15–513.20) | 0.011 † | 0.054 |
Right foot ICP (ms) | 95.90 ± 28.89 (42.80–141.80) | 98.20 ± 24.61 (54.40–141.40) | 93.61 ± 32.83 (42.80–141.80) | 0.897 † | 0.132 |
Symmetry index anterior load (%) | 94.51 ± 4.63 (80.70–99.80) | 95.44 ± 3.48 (89.10–99.80) | 93.58 ± 5.44 (80.70–99.10) | 0.165 † | 0.109 |
Symmetry index posterior load (%) | 95.03 ± 4.10 (82.00–99.80) | 95.91 ± 2.66 (91.40–98.80) | 94.16 ± 5.05 (82.00–99.00) | 0.502 † | 0.093 |
Symmetry index medial load (%) | 85.13 ± 5.89 (75.40–99.40) | 85.60 ± 5.75 (76.50–99.40) | 84.66 ± 6.07 (75.40–99.40) | 0.204 † | 0.015 |
Symmetry index lateral load (%) | 85.71 ± 6.31 (72.10–99.50) | 86.85 ± 6.13 (76.70–99.50) | 84.56 ± 6.38 (72.10–99.50) | 0.023 † | 0.063 |
Symmetry index FFP (%) | 86.27 ± 9.62 (64.00–99.90) | 82.72 ± 8.59 (64.00–91.50) | 89.83 ± 9.36 (73.50–99.90) | <0.001 † | 0.079 |
Symmetry index FFCP (%) | 90.66 ± 7.47 (69.10–99.30) | 89.46 ± 8.45 (69.10–98.50) | 91.86 ± 6.24 (79.60–99.30) | 0.200 † | 0.054 |
Symmetry index ICP (%) | 84.17 ± 14.46 (51.90–100.00) | 79.82 ± 14.95 (51.90–96.50) | 88.52 ± 12.73 (53.00–100.00) | 0.003 † | 0.132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tovaruela Carrión, N.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; López-López, D.; Gómez-Salgado, J.; Bayod-López, J. Hallux Limitus: Exploring the Variability in Lower Limb Symmetry and Its Connection to Gait Parameters—A Case–Control Study. Bioengineering 2025, 12, 298. https://doi.org/10.3390/bioengineering12030298
Tovaruela Carrión N, Becerro-de-Bengoa-Vallejo R, Losa-Iglesias ME, López-López D, Gómez-Salgado J, Bayod-López J. Hallux Limitus: Exploring the Variability in Lower Limb Symmetry and Its Connection to Gait Parameters—A Case–Control Study. Bioengineering. 2025; 12(3):298. https://doi.org/10.3390/bioengineering12030298
Chicago/Turabian StyleTovaruela Carrión, Natalia, Ricardo Becerro-de-Bengoa-Vallejo, Marta Elena Losa-Iglesias, Daniel López-López, Juan Gómez-Salgado, and Javier Bayod-López. 2025. "Hallux Limitus: Exploring the Variability in Lower Limb Symmetry and Its Connection to Gait Parameters—A Case–Control Study" Bioengineering 12, no. 3: 298. https://doi.org/10.3390/bioengineering12030298
APA StyleTovaruela Carrión, N., Becerro-de-Bengoa-Vallejo, R., Losa-Iglesias, M. E., López-López, D., Gómez-Salgado, J., & Bayod-López, J. (2025). Hallux Limitus: Exploring the Variability in Lower Limb Symmetry and Its Connection to Gait Parameters—A Case–Control Study. Bioengineering, 12(3), 298. https://doi.org/10.3390/bioengineering12030298