Multimodal Classification of Alzheimer’s Disease Using Longitudinal Data Analysis and Hypergraph Regularized Multi-Task Feature Selection
Abstract
:1. Introduction
2. Method
2.1. Data Collection and Preprocessing
2.1.1. Data Collection
2.1.2. Data Preprocessing
2.2. Hypergraph Construction
2.3. Longitudinal Feature Selection
2.3.1. Multi-Task Feature Selection
2.3.2. Fused Lasso Regularization Model
2.3.3. Multi-Task Feature Selection Based on Longitudinal Imaging and Hypergraph
2.3.4. Algorithm Optimization
2.4. Multi-Kernel Support Vector Machine
3. Experimental Procedure and Result Analysis
3.1. Experimental Setup
3.2. Experimental Results
3.2.1. AD vs. NC Classification Results
3.2.2. AD vs. MCI Classification Results
3.2.3. MCI vs. NC Classification Results
3.3. Brain Region Analysis
3.4. Effect of Different Regularization Terms on the Classification Performance
3.5. The Effect of Different Hyperparameters on Classification Performance
3.6. Multimodal Classification
3.7. Comparison with Existing Methods
3.8. Model Complexity Analysis
4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mucke, L. Alzheimer’s disease. Nature 2009, 461, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 2021, 17, 327–406. [Google Scholar]
- Alzheimer’s Association. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023, 19, 1598–1695. [Google Scholar]
- Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2020, 16, 391–460. [Google Scholar]
- Uysal, G.; Ozturk, M. Hippocampal atrophy based Alzheimer’s disease diagnosis via machine learning methods. J. Neurosci. Methods 2020, 337, 108669. [Google Scholar] [CrossRef]
- Fan, Z.; Li, J.; Zhang, L.; Zhu, G.; Li, P.; Lu, X.; Shen, P.; Shah, S.A.A.; Bennamoun, M.; Hua, T.; et al. U-net based analysis of MRI for Alzheimer’s disease diagnosis. Neural Comput. Appl. 2021, 33, 13587–13599. [Google Scholar] [CrossRef]
- Jia, H.; Lao, H. Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer’s disease. Neural Comput. Appl. 2022, 34, 19585–19598. [Google Scholar] [CrossRef]
- Shao, W.; Peng, Y.; Zu, C.; Wang, M.; Zhang, D.; Alzheimer’s Disease Neuroimaging Initiative. Hypergraph based multi-task feature selection for multimodal classification of Alzheimer’s disease. Comput. Med. Imaging Graph. 2020, 80, 101663. [Google Scholar] [CrossRef]
- Shi, Y.; Zu, C.; Hong, M.; Zhou, L.; Wang, L.; Wu, X.; Zhou, J.; Zhang, D.; Wang, Y. ASMFS: Adaptive-similarity-based multi-modality feature selection for classification of Alzheimer’s disease. Pattern Recognit. 2022, 126, 108566. [Google Scholar] [CrossRef]
- Ban, Y.; Lao, H.; Li, B.; Su, W.; Zhang, X. Diagnosis of Alzheimer’s disease using hypergraph p-Laplacian regularized multi-task feature learning. J. Biomed. Inform. 2023, 140, 104326. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Z.; Lin, H.; Zhao, X.; Du, S.; Zou, C. Hypergraph Learning: Methods and Practices. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2548–2566. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J.; Gao, X.; Jie, B.; Kim, M.; Yap, P.T.; Wee, C.Y.; Shen, D. Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification. Med. Image Anal. 2019, 52, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Li, J.; Ma, M.; Qin, J.; Zhang, D.; Liu, F. Hypergraph convolutional network for longitudinal data analysis in Alzheimer’s disease. Comput. Biol. Med. 2024, 168, 107765. [Google Scholar] [CrossRef]
- Dimitriadis, S.I.; Liparas, D.; Tsolaki, M.N. Random Forest Feature Selection, Fusion and Ensemble Strategy: Combining Multiple Morphological MRI Measures to Discriminate among healthy elderly, MCI, cMCI and Alzheimer’s disease patients: From the Alzheimer’s disease neuroimaging initiative (ADNI) database. J. Neurosci. Methods 2017, 302, 14–23. [Google Scholar]
- Du, L.; Liu, K.; Zhu, L.; Yao, X.; Risacher, S.L.; Guo, L.; Saykin, A.J.; Shen, L.; Alzheimer’s Disease Neuroimaging Initiative. Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: A longitudinal study of the ADNI cohort. Bioinformatics 2019, 35, I474–I483. [Google Scholar] [CrossRef]
- Chen, C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Xia, T.; Chartsias, A.; Wang, C.; Tsaftaris, S.A.; Alzheimer’s Disease Neuroimaging Initiative. Learning to synthesise the ageing brain without longitudinal data. Med. Image Anal. 2021, 72, 102169. [Google Scholar] [CrossRef]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Bi, X.A.; Li, L.; Wang, Z.; Wang, Y.; Luo, X.; Xu, L. IHGC-GAN: Influence hypergraph convolutional generative adversarial network for risk prediction of late mild cognitive impairment based on imaging genetic data. Brief. Bioinform. 2022, 23, bbac093. [Google Scholar] [CrossRef]
- Zhou, D.; Huang, J.; Schlkopf, B. Learning with Hypergraphs: Clustering, Classification, and Embedding. In Proceedings of the Advances in Neural Information Processing Systems 19, Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006. [Google Scholar]
- Schölkopf, B.; Platt, J.; Hoffman, T. (Eds.) Learning with hypergraphs: Clustering, classification, and embedding. In Advances in Neural Information Processing Systems 19 (NIPS 2006); MIT Press: Cambridge, MA, USA, 2007; pp. 1601–1608. [Google Scholar]
- Caruana, R. Multitask Learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- Petersen, A.; Witten, D.; Simon, N. Fused Lasso Additive Model. J. Comput. Graph. Stat. 2016, 25, 1005–1025. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Pan, W.; Kwok, J.T.; Carbonell, J.G. Accelerated Gradient Method for Multi-task Sparse Learning Problem. In Proceedings of the IEEE International Conference on Data Mining, Miami Beach, FL, USA, 6–9 December 2009. [Google Scholar]
- Nesterov, Y. Introductory Lectures on Convex Optimization: A Basic Course (Applied Optimization); Center for Operations Research and Econometrics (CORE); Université catholique de Louvain: Ottignies-Louvain-la-Neuve, Belgium, 2013. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Jin, D.; Wang, P.; Zalesky, A.; Liu, B.; Song, C.; Wang, D.; Xu, K.; Yang, H.; Zhang, Z.; Yao, H.; et al. Grab-AD: Generalizability and reproducibility of altered brain activity and diagnostic classification in Alzheimer’s Disease. Hum. Brain Mapp. 2020, 41, 3379–3391. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, A.; Yang, S.; Feng, Z.; Wang, M.; Ahmad, A.S.; Khan, R.; Maqsood, M.; Yaqub, M. A Transfer Learning Approach for Early Diagnosis of Alzheimer’s Disease on MRI Images. Neuroscience 2021, 460, 43–52. [Google Scholar] [CrossRef]
- da Rocha, J.L.D.; Bramati, I.; Coutinho, G.; Tovar Moll, F.; Sitaram, R. Fractional Anisotropy changes in Parahippocampal Cingulum due to Alzheimer’s Disease. Sci. Rep. 2020, 10, 2660. [Google Scholar]
- Poulin, S.P.; Dautoff, R.; Morris, J.C.; Barrett, L.F.; Dickerson, B.C.; Alzheimer’s Disease Neuroimaging Initiative. Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Res. Neuroimaging 2011, 194, 7–13. [Google Scholar] [CrossRef]
- Scheff, S.W.; Price, D.A.; Schmitt, F.A.; Scheff, M.A.; Mufson, E.J. Synaptic Loss in the Inferior Temporal Gyrus in Mild Cognitive Impairment and Alzheimer’s Disease. J. Alzheimers Dis. 2011, 24, 547–557. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Hou, H.; Chen, X.; Zhang, J.; Liu, J.; Guo, Z.; Bai, G. Decreased functional connectivity between the dorsal anterior cingulate cortex and lingual gyrus in Alzheimer’s disease patients with depression. Behav. Brain Res. 2017, 326, 132–138. [Google Scholar] [CrossRef]
- Alexander, G.E.; Bergfield, K.L.; Chen, K.; Reiman, E.M.; Hanson, K.D.; Lin, L.; Bandy, D.; Caselli, R.J.; Moeller, J.R. Gray matter network associated with risk for Alzheimer’s disease in young to middle-aged adults. Neurobiol. Aging 2012, 33, 2723–2732. [Google Scholar] [CrossRef]
- Bubb, E.J.; Metzler-Baddeley, C.; Aggleton, J.P. The cingulum bundle: Anatomy, function, and dysfunction. Neurosci. Biobehav. Rev. 2018, 92, 104–127. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, J.; Ye, J.; Wu, T.; Chen, K.; Fleisher, A.; Reiman, E. Identifying Alzheimer’s disease-related brain regions from multi-modality neuroimaging data using sparse composite linear discrimination analysis. Adv. Neural Inf. Process. Syst. 2021, 24, 1431–1439. [Google Scholar]
- Lin, W.; Lin, W.; Chen, G.; Zhang, H.; Gao, Q.; Huang, Y.; Tong, T.; Du, M.; Alzheimer’s Disease Neuroimaging Initiative. Bidirectional mapping of brain MRI and PET with 3D reversible GAN for the diagnosis of Alzheimer’s disease. Front. Neurosci. 2021, 15, 357. [Google Scholar] [CrossRef] [PubMed]
- Jie, B.; Zhang, D.; Cheng, B.; Shen, D.; Alzheimer’s Disease Neuroimaging Initiative. Manifold regularized multitask feature learning for multimodality disease classification. Hum. Brain Mapp. 2014, 36, 489–507. [Google Scholar] [CrossRef]
Subjects | AD | MCI | NC |
---|---|---|---|
Number | 136 | 200 | 176 |
Gender (M/F) | 80/56 | 132/68 | 90/86 |
Data | ACC | SEN | SPE | F1 | AUC |
---|---|---|---|---|---|
T1 | 87.56 | 88.10 | 87.03 | 88.97 | 0.9018 |
T2 | 90.08 | 89.77 | 90.49 | 91.04 | 0.9538 |
T3 | 89.08 | 89.77 | 88.30 | 90.08 | 0.9321 |
T4 | 92.96 | 94.31 | 91.26 | 93.78 | 0.9664 |
Proposed | 96.75 | 96.01 | 97.69 | 97.12 | 0.9955 |
Data | ACC | SEN | SPE | F1 | AUC |
---|---|---|---|---|---|
T1 | 89.62 | 92.00 | 87.53 | 91.30 | 0.9173 |
T2 | 84.86 | 91.50 | 75.11 | 87.80 | 0.8797 |
T3 | 86.03 | 92.00 | 77.31 | 88.72 | 0.8821 |
T4 | 83.95 | 90.50 | 74.23 | 86.97 | 0.8684 |
Proposed | 93.45 | 95.00 | 89.78 | 94.15 | 0.9571 |
Data | ACC | SEN | SPE | F1 | AUC |
---|---|---|---|---|---|
T1 | 72.33 | 62.97 | 80.50 | 67.57 | 0.6882 |
T2 | 73.72 | 63.14 | 83.00 | 69.32 | 0.6941 |
T3 | 75.26 | 67.12 | 82.50 | 71.59 | 0.7059 |
T4 | 76.88 | 67.65 | 85.00 | 72.85 | 0.7538 |
Proposed | 83.78 | 77.78 | 85.00 | 82.35 | 0.8206 |
Sequence | AD vs. NC | AD vs. MCI | MCI vs. NC |
---|---|---|---|
1 | Hippocampus_L | Rectus_R | Cingulum_Mid_R |
2 | Lingual_L | Temporal_Mid_L | Cingulum_Mid_L |
3 | Temporal_Mid_L | Heschl_R | Temporal_Inf_L |
4 | Pallidum_L | Occipital_Inf_L | Temporal_Inf_R |
5 | Temporal_Inf_R | Paracentral_Lobule_R | Frontal_Mid_R |
6 | Amygdala_L | Caudate_R | Frontal_Inf_Oper_R |
7 | Occipital_Inf_L | Angular_L | Cingulum_Post_L |
8 | Cingulum_Ant_R | Frontal_Inf_Tri_R | Hippocampus_R |
9 | Cingulum_Mid_R | Frontal_Mid_Orb_R | Pallidum_L |
10 | Hippocampus_R | Rectus_L | Cingulum_Post_R |
ROI Full Name | Micro-Number | ROIs Micro-Name |
---|---|---|
Right Middle Frontal Gyrus | 8 | Frontal_Mid_R |
Right Inferior Frontal Gyrus, Opercular Part | 12 | Frontal_Inf_Oper_R |
Right Inferior Frontal Gyrus, Triangular Part | 14 | Frontal_Inf_Tri_R |
Right Superior Frontal Gyrus, Medial Orbital | 26 | Frontal_Mid_Orb_R |
Left Gyrus Rectus | 27 | Rectus_L |
Right Gyrus Rectus | 28 | Rectus_R |
Right Anterior Cingulate and Paracingulate Gyri | 32 | Cingulum_Ant_R |
Left Median Cingulate and Paracingulate Gyri | 33 | Cingulum_Mid_L |
Right Median Cingulate and Paracingulate Gyri | 34 | Cingulum_Mid_R |
Left Posterior Cingulate Gyrus | 35 | Cingulum_Post_L |
Right Posterior Cingulate Gyrus | 36 | Cingulum_Post_R |
Left Hippocampus | 37 | Hippocampus_L |
Right Hippocampus | 38 | Hippocampus_R |
Left Amygdala | 41 | Amygdala_L |
Left Lingual Gyrus | 47 | Lingual_L |
Left Inferior Occipital Gyrus | 53 | Occipital_Inf_L |
Left Angular Gyrus | 65 | Angular_L |
Right Paracentral Lobule | 70 | Paracentral_Lobule_R |
Right Caudate Nucleus | 72 | Caudate_R |
Left Lenticular Nucleus, Pallidum | 75 | Pallidum_L |
Right Heschl Gyrus | 80 | Heschl_R |
Left Middle Temporal Gyrus | 85 | Temporal_Mid_L |
Left Inferior Temporal Gyrus | 89 | Temporal_Inf_L |
Right Inferior Temporal Gyrus | 90 | Temporal_Inf_R |
Data | AD vs. NC | AD vs. MCI | MCI vs. NC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | SEN | SPE | F1 | ACC | SEN | SPE | F1 | ACC | SEN | SPE | F1 | |
fMRI | 91.40 | 92.61 | 89.84 | 92.34 | 87.46 | 83.50 | 93.30 | 88.74 | 73.63 | 68.14 | 78.50 | 70.80 |
sMRI | 92.99 | 90.98 | 95.66 | 93.48 | 88.14 | 87.00 | 89.84 | 89.57 | 75.25 | 65.33 | 84.00 | 70.52 |
fMRI + sMRI | 96.75 | 96.01 | 97.69 | 97.12 | 93.45 | 95.00 | 89.78 | 94.15 | 83.78 | 82.35 | 85.00 | 82.35 |
Method | Data | Classification Results (%) | ||
---|---|---|---|---|
AD vs. NC | AD vs. MCI | MCI vs. NC | ||
Shao et al. [8] | MRI + FDG PET (single time) | 92.51% | - | - |
Huang et al. [36] | MRI + PET (single time) | 94.30% | - | - |
Lin et al. [37] | MRI + PET (single time) | 89.26% | - | 72.84% |
Shi et al. [9] | MRI + PET (single time) | 96.76% | - | 80.73% |
Ban et al. [10] | sMRI+FDG PET+AV-45 PET (single time) | 98.78% | 86.47% | 78.15% |
Proposed | fMRI + sMRI (T1 + T2 + T3 + T4) | 96.75% | 93.45% | 83.78% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, H.; Kong, W. Multimodal Classification of Alzheimer’s Disease Using Longitudinal Data Analysis and Hypergraph Regularized Multi-Task Feature Selection. Bioengineering 2025, 12, 388. https://doi.org/10.3390/bioengineering12040388
Wang S, Zhang H, Kong W. Multimodal Classification of Alzheimer’s Disease Using Longitudinal Data Analysis and Hypergraph Regularized Multi-Task Feature Selection. Bioengineering. 2025; 12(4):388. https://doi.org/10.3390/bioengineering12040388
Chicago/Turabian StyleWang, Shuaiqun, Huan Zhang, and Wei Kong. 2025. "Multimodal Classification of Alzheimer’s Disease Using Longitudinal Data Analysis and Hypergraph Regularized Multi-Task Feature Selection" Bioengineering 12, no. 4: 388. https://doi.org/10.3390/bioengineering12040388
APA StyleWang, S., Zhang, H., & Kong, W. (2025). Multimodal Classification of Alzheimer’s Disease Using Longitudinal Data Analysis and Hypergraph Regularized Multi-Task Feature Selection. Bioengineering, 12(4), 388. https://doi.org/10.3390/bioengineering12040388