Spiking Neural Networks for Multimodal Neuroimaging: A Comprehensive Review of Current Trends and the NeuCube Brain-Inspired Architecture
Abstract
:1. Introduction
1.1. Overview of AI in Neuroimaging
1.2. Limitations of ANNs
1.3. Introduction to SNNs and NeuCube
1.4. Paper Objectives and Contributions
2. Neuromorphic Computing and Brain-Inspired Spiking Neural Networks
2.1. Key Concepts
2.2. Comparison with ANNs
3. Applications of SNNs in Multimodal Neuroimaging
3.1. Structural Neuroimaging
3.2. Functional Neuroimaging
3.3. Multimodal Data Integration
4. SNN Application System Development and NeuCube Advantages
4.1. The State of SNN Application Development
4.2. Software Simulators
4.3. Leading Neuromorphic Computing Platforms
4.4. Hybrid Platforms
4.5. NeuCube Advantages
5. Case Study Illustrations of Using SNN for Neuroimaging Data
- Static, vector-based data, such as MRI images;
- Spatiotemporal data, such as EEG and fMRI;
- Longitudinal spatiotemporal data, such as longitudinal MRI data.
5.1. Using SNN for Modelling Static, Vector-Based Neuroimaging Data
5.2. Using NeuCube for Modelling Spatiotemporal Data
5.3. Using NeuCube for Modelling Longitudinal Spatial or Spatiotemporal Data
5.4. Section Conclusion
6. Integrating ANNs and SNNs
6.1. Integration of SNN and CNN
6.2. Integration of SNN and ESN
6.3. Integration of SNN with Neuro-Fuzzy Systems
7. Challenges and Future Directions for SNNs in Neuroimaging
7.1. Current State of SNN for Neuroimaging Analysis
7.2. Barriers to SNN Adoption in Neuroimaging
7.3. Methodological and Computational Challenges
7.4. Ethical and Clinical Implications of Using SNN in Neuroimaging
7.5. Future Directions of Using SNN for Neuroimaging
7.5.1. Predictive Modelling and Early Diagnosis
7.5.2. Personalised Medicine
7.5.3. Brain–Computer Interfaces
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, M.K.; Singh, K.K. A review of publicly available automatic brain segmentation methodologies, machine learning models, recent advancements, and their comparison. Ann. Neurosci. 2021, 28, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Basir, O.; Shantta, K. Deep learning feature extraction for brain tumor characterization and detection. IRA-Int. J. Appl. Sci. 2021, 16, 1–15. [Google Scholar] [CrossRef]
- Luo, G.; Xie, W.; Gao, R.; Zheng, T.; Chen, L.; Sun, H. Unsupervised anomaly detection in brain MRI: Learning abstract distribution from massive healthy brains. Comput. Biol. Med. 2023, 154, 106610. [Google Scholar] [CrossRef]
- Alissa, M.; Lones, M.A.; Cosgrove, J.; Alty, J.E.; Jamieson, S.; Smith, S.L.; Vallejo, M. Parkinson’s disease diagnosis using convolutional neural networks and figure-copying tasks. Neural Comput. Appl. 2022, 34, 1433–1453. [Google Scholar] [CrossRef]
- Singh, N.; Patteshwari, D.; Soni, N.; Kapoor, A. Detection of Alzheimer disease using MRI images and deep networks—A review. In Advances in IoT and Security with Computational Intelligence; Mishra, A., Ed.; Springer: Singapore, 2023; pp. 137–144. [Google Scholar] [CrossRef]
- Pillai, J.A.; Bena, J.; Bekris, L.; Kodur, N.; Kasumov, T.; Leverenz, J.B.; Kashyap, S.R. Metabolic syndrome biomarkers relate to rate of cognitive decline in MCI and dementia stages of Alzheimer’s disease. Alzheimer’s Res. Ther. 2023, 15, 54. [Google Scholar] [CrossRef]
- Calhoun, V.D.; Sui, J. Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2016, 1, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training Recurrent Neural Networks. arXiv 2013, arXiv:1211.5063. [Google Scholar]
- Chou, S.-K.; Hribar, J.; Hanžel, V.; Mohorčič, M.; Fortuna, C. The energy cost of artificial intelligence of things lifecycle. arXiv 2025, arXiv:2408.00540. [Google Scholar]
- Nunes, J.D.; Carvalho, M.; Carneiro, D.; Cardoso, J.S. Spiking neural networks: A survey. IEEE Access 2022, 10, 60738–60764. [Google Scholar] [CrossRef]
- KEDRI. NeuCube—Spiking Neural Network Research Group. KEDRI—Auckland University of Technology. Available online: https://kedri.aut.ac.nz/research-groups/neucube (accessed on 20 February 2024).
- de Vries, A. The growing energy footprint of artificial intelligence. Joule 2023, 7, 2191–2194. [Google Scholar] [CrossRef]
- Kasabov, N.K. Methods of Spiking Neural Networks. In Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence; Springer: Berlin, Germany, 2019. [Google Scholar]
- Shouval, H.Z.; Wang, S.S.-H.; Wittenberg, G.M. Spike timing dependent plasticity: A consequence of more fundamental learning rules. Front. Comput. Neurosci. 2010, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, N.; Kasabov, N. Spike-time encoding as a data compression technique for pattern recognition of temporal data. Inf. Sci. 2017, 406–407, 133–145. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, J.; Wang, L. Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI. Sensors 2022, 22, 7248. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J. Considerations of Biological Plausibility in Deep Learning. Cornell Undergrad. Res. J. 2022, 1, 1. [Google Scholar] [CrossRef]
- Kasabov, N.K. NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 2014, 52, 62–76. [Google Scholar] [CrossRef]
- Kasabov, N.K. Brain-Inspired SNN for Deep Learning in Time-Space and Deep Knowledge Representation. NeuCube. In Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence; Springer: Berlin, Germany, 2019. [Google Scholar]
- Kasabov, N.; Capecci, E. Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inf. Sci. 2015, 294, 565–575. [Google Scholar] [CrossRef]
- Taylor, D.; Scott, N.; Kasabov, N.; Capecci, E.; Tu, E.; Saywell, N.; Chen, Y.; Hu, J.; Hou, Z.-G. Feasibility of NeuCube SNN architecture for detecting motor execution and motor intention for use in BCI applications. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 3221–3225. [Google Scholar] [CrossRef]
- Kasabov, N.K. Brain Disease Diagnosis and Prognosis Based on EEG Data. In Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence; Springer: Berlin, Germany, 2019. [Google Scholar]
- Budhraja, S.; Bhattacharya, B.S.; Durrant, S.; Doborjeh, Z.; Doborjeh, M.; Kasabov, N. Sleep stage classification using NeuCube on SpiNNaker: A preliminary study. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Kumarasinghe, K.; Kasabov, N.; Taylor, D. Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements. Sci. Rep. 2021, 11, 2486. [Google Scholar] [CrossRef]
- Liu, S.; Liu, S.; Cai, W.; Che, H.; Pujol, S.; Kikinis, R.; Feng, D. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 2014, 62, 1132–1140. [Google Scholar] [CrossRef]
- Alzhrani, W.; Doborjeh, M.; Doborjeh, Z.; Kasabov, N. Emotion recognition and understanding using EEG data in a brain-inspired spiking neural network architecture. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–9. [Google Scholar] [CrossRef]
- Zhao, D.; Zeng, Y.; Li, Y. BackEISNN: A deep spiking neural network with adaptive self-feedback and balanced excitatory–inhibitory neurons. Neural Netw. 2022, 154, 68–77. [Google Scholar] [CrossRef]
- Bezugam, S.S.; Shaban, A.; Suri, M. Neuromorphic Recurrent Spiking Neural Networks for EMG Gesture Classification and Low Power Implementation on Loihi. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Ziegler, A.; Vetter, K.; Gossard, T.; Tebbe, J.; Otte, S.; Zell, A. Detection of Fast-Moving Objects with Neuromorphic Hardware. arXiv 2024, arXiv:2403.10677. [Google Scholar]
- Ayuso-Martinez, A.; Casanueva-Morato, D.; Dominguez-Morales, J.P.; Jimenez-Fernandez, A.; Jimenez-Moreno, G. A Low-Cost Real-Time Spiking System for Obstacle Detection based on Ultrasonic Sensors and Rate Coding. arXiv 2024, arXiv:2409.02680. [Google Scholar]
- Eshraghian, J.K.; Ward, M.; Neftci, E.O.; Wang, X.; Lenz, G.; Dwivedi, G.; Bennamoun, M.; Jeong, D.S.; Lu, W.D. Training spiking neural networks using lessons from deep learning. arXiv 2023, arXiv:2109.12894. [Google Scholar] [CrossRef]
- Fang, W.; Chen, Y.; Ding, J.; Yu, Z.; Masquelier, T.; Chen, D.; Huang, L.; Zhou, H.; Li, G.; Tian, Y. SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence. arXiv 2023, arXiv:2310.16620. [Google Scholar] [CrossRef] [PubMed]
- Bekolay, T.; Bergstra, J.; Hunsberger, E.; DeWolf, T.; Stewart, T.C.; Rasmussen, D.; Choo, X.; Voelker, A.R.; Eliasmith, C. Nengo: A Python tool for building large-scale functional brain models. Front. Neuroinform. 2014, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- BindsNET/bindsnet. Python. BindsNET. Available online: https://github.com/BindsNET/bindsnet (accessed on 25 February 2025).
- Davies, M.; Srinivasa, N.; Lin, T.-H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro. 2018, 38, 82–91. [Google Scholar] [CrossRef]
- Intel Corporation. Intel Builds World’s Largest Neuromorphic System to Enable More Sustainable AI. Available online: https://www.intc.com/news-events/press-releases/detail/1691/intel-builds-worlds-largest-neuromorphic-system-to (accessed on 25 February 2025).
- Furber, S.B.; Lester, D.R.; Plana, L.A.; Garside, J.D.; Painkras, E.; Temple, S.; Brown, A.D. Overview of the SpiNNaker system architecture. IEEE Trans. Comput. 2013, 62, 2454–2467. [Google Scholar] [CrossRef]
- Pehle, C.; Billaudelle, S.; Cramer, B.; Kaiser, J.; Schreiber, K.; Stradmann, Y.; Weis, J.; Leibfried, A.; Müller, E.; Schemmel, J. The BrainScaleS-2 accelerated neuromorphic system with hybrid plasticity. arXiv 2022, arXiv:2201.11063. [Google Scholar] [CrossRef]
- IBM Research. IBM Research’s New NorthPole AI Chip. Available online: https://research.ibm.com/blog/northpole-ibm-ai-chip (accessed on 15 February 2025).
- Welcome to Rockpool—Rockpool 2.9.1 Documentation. Available online: https://rockpool.ai/ (accessed on 24 February 2025).
- Lava Software Framework—Lava Documentation. Available online: https://lava-nc.org/ (accessed on 24 February 2025).
- BrainChip. Products—Akida Neural Processor SoC. Available online: https://brainchip.com/akida-neural-processor-soc/ (accessed on 25 February 2025).
- Alzheimer’s Disease Neuroimaging Initiative ADNI Data. Available online: http://adni.loni.usc.edu (accessed on 25 February 2025).
- Tavanaei, A.; Ghodrati, M.; Kheradpisheh, S.R.; Masquelier, T.; Maida, A.S. Deep Learning in Spiking Neural Networks. Neural Netw. 2019, 111, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, M.; Pfeil, T. Deep Learning with Spiking Neurons: Opportunities and Challenges. Front. Neurosci. 2018, 12, 774. [Google Scholar] [CrossRef]
- Saeedinia, S.A.; Jahed-Motlagh, M.R.; Tafakhori, A.; Kasabov, N.K. Diagnostic biomarker discovery from brain EEG data using LSTM, reservoir-SNN, and NeuCube methods in a pilot study comparing epilepsy and migraine. Sci. Rep. 2024, 14, 10667. [Google Scholar] [CrossRef]
- Murli, N.; Kasabov, N.; Handaga, B. Classification of fMRI Data in the NeuCube Evolving Spiking Neural Network Architecture. In Neural Information Processing; Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 421–428. [Google Scholar] [CrossRef]
- Wu, X.; Feng, Y.; Lou, S.; Zheng, H.; Hu, B.; Hong, Z.; Tan, J. Improving NeuCube spiking neural network for EEG-based pattern recognition using transfer learning. Neurocomputing 2023, 529, 222–235. [Google Scholar] [CrossRef]
- Kumarasinghe, K.; Kasabov, N.; Taylor, D. Deep Learning and Deep Knowledge Representation in Spiking Neural Networks for Brain-Computer Interfaces. Neural Netw. 2020, 121, 169–185. [Google Scholar] [CrossRef]
- Kasabov, N.; Bahrami, H.; Doborjeh, M.; Wang, A. Brain Inspired Spatio-Temporal Associative Memories for Neuroimaging Data: EEG and fMRI. Bioengineering 2023, 10, 1341. [Google Scholar] [CrossRef]
- Doborjeh, M.; Doborjeh, Z.; Merkin, A.; Bahrami, H.; Sumich, A.; Krishnamurthi, R.; Medvedev, O.; Crook-Rumsey, M.; Morgan, C.; Kirk, I.; et al. Personalised Predictive Modelling with Spiking Neural Networks of Longitudinal MRI Neuroimaging Cohort and the Case Study on Dementia. Neural Netw. 2021, 144, 522–539. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T.M.; Hutchinson, R.; Niculescu, R.S.; Pereira, F.; Wang, X.; Just, M.; Newman, S. Learning to Decode Cognitive States from Brain Images. Mach. Learn. 2004, 57, 145–175. [Google Scholar] [CrossRef]
- Kasabov, N.K. STAM-SNN: Spatio-Temporal Associative Memory in Brain-Inspired Spiking Neural Networks: Concepts and Perspectives. In Recent Advances in Intelligent Engineering; Kovács, L., Haidegger, T., Szakál, A., Eds.; Topics in Intelligent Engineering and Informatics; Springer: Berlin/Heidelberg, Germany, 2024; Volume 18. [Google Scholar] [CrossRef]
- Kasabov, N.K. Life-long learning and evolving associative memories in brain-inspired spiking neural networks. MOJ Appl. Bionics Biomech. 2024, 8, 56–57. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Pfeil, T. Deep learning with spiking neural networks. Front. Neurosci. 2018, 12, 409. [Google Scholar] [CrossRef]
- Bu, T.; Fang, W.; Ding, J.; Dai, P.; Yu, Z.; Huang, T. Optimal ANN-SNN conversion for high-accuracy and ultra-low-latency spiking neural networks. arXiv 2023, arXiv:2303.04347. [Google Scholar]
- Rueckauer, B.; Lungu, I.-A.; Hu, Y.; Pfeiffer, M.; Liu, S.-C. Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification. Front. Neurosci. 2017, 11, 682. [Google Scholar] [CrossRef]
- Rusev, G.; Yordanov, S.; Nedelcheva, S.; Banderov, A.; Sauter-Starace, F.; Koprinkova-Hristova, P.; Kasabov, N. Decoding Brain Signals in a Neuromorphic Framework for a Personalized Adaptive Control of Human Prosthetics. Biomimetics 2025, 10, 183. [Google Scholar] [CrossRef]
- Abouhassan, I.; Kasabov, N. NeuDen: A Framework for the Integration of Neuromorphic Evolving Spiking Neural Networks with Dynamic Evolving Neuro-Fuzzy Systems for Predictive and Explainable Modelling of Streaming Data. Evol. Syst. Springer-Nat. 2025, 16, 3. [Google Scholar] [CrossRef]
- Turkson, R.E.; Qu, H.; Mawuli, C.B.; Eghan, M.J. Classification of Alzheimer’s Disease Using Deep Convolutional Spiking Neural Network. Neural Process Lett. 2021, 53, 2649–2663. [Google Scholar] [CrossRef]
- Niu, L.-Y.; Wei, Y.; Liu, W.-B.; Long, J.-Y.; Xue, T. Research Progress of spiking neural network in image classification: A review. Appl. Intell. 2023, 53, 19466–19490. [Google Scholar] [CrossRef]
- Sabottke, C.F.; Spieler, B.M. The Effect of Image Resolution on Deep Learning in Radiography. Radiol. Artif. Intell. 2020, 2, e190015. [Google Scholar] [CrossRef]
- Schuman, C.D.; Potok, T.E.; Patton, R.M.; Birdwell, J.D.; Dean, M.E.; Rose, G.S.; Plank, J.S. A survey of neuromorphic computing and neural networks in hardware. arXiv 2017, arXiv:1705.06963. [Google Scholar]
- Roy, Y.; Banville, H.; Albuquerque, I.; Gramfort, A.; Falk, T.H.; Faubert, J. Deep learning-based electroencephalography analysis. J. Neural Eng. 2019, 16, 051001. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, A.; Sapiro, G. Challenges in signal quality for neuroimaging data analysis. NeuroImage 2020, 221, 117164. [Google Scholar] [CrossRef]
- Eke, D.O.; Bernard, A.; Bjaalie, J.G.; Chavarriaga, R.; Hanakawa, T.; Hannan, A.J.; Hill, S.L.; Martone, M.E.; McMahon, A.; Ruebel, O.; et al. International data governance for neuroscience. Neuron 2022, 110, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 2018, 1, 18. [Google Scholar] [CrossRef]
- Davatzikos, C. Machine learning in neuroimaging: Progress and challenges. NeuroImage 2019, 197, 652–656. [Google Scholar] [CrossRef]
FeatFure | SNNs | ANNs |
---|---|---|
Neuron Model | User biologically realistic spiking neurons (e.g., Leaky Integrate-and-Fire) | Simplified activation functions (e.g., ReLU, Sigmoid) |
Information Encoding | Time-based spike trains (temporal coding) | Continuous values |
Energy Efficiency | Highly efficient event-driven computation | Less efficient (always active) |
Hardware Suitability | Optimized for neuromorphic chips (e.g., Loihi, SpiNNaker) | Runs on conventional GPUs, CPUs |
Scalability | Scalable (e.g., Loihi, SpiNNaker) | Scalable but power-intensive |
Training Method | Spike-Timing-Dependent Plasticity Surrogate gradients | Backpropagation (e.g., Stochastic Gradient Descent) |
Temporal Dynamics | Captures precise timing information | Treats time as separate dimension |
Accuracy | Lower on static data excels in temporal/event-based tasks | Higher on traditional (e.g., image, text) tasks |
Applications | Brain-computer interfaces, edge AI, low-power robotics | Computer vision, NLP, general-purpose deep learning |
Feature | snnTorch | SpikingJelly | Nengo DL | NeuCube | BindsNet |
---|---|---|---|---|---|
Neuron Model | LIF, Izhikevich | LIF, Adaptive LIF | LIF, H-H, Adaptive LIF | LIF | LIF, Izhikevich |
Reservoir | No | Yes (custom) | Yes | Yes (3D grid) | No |
Hierarchical (layers) | Yes (PyTorch) | Yes (modular) | Yes | Self-organised trajectories of neuronal clusters | Limited |
Learning Algorithms | STDP, Surrogate Grad | STDP, BPTT | STDP, RL, PES | STDP, Evolving | STDP, BPTT |
Neuromorphic | No | Loihi, Lynxi KA200 | Loihi, SpiNNaker | Lohi, SpiNNaker | Loihi |
Best For | Hybrid ANNs | Large-scale SNNs | Brain modeling | EEG/fMRI analysis | Prototyping |
Type | Method | Application | Ref. |
---|---|---|---|
SNN + deESN | SNN extracts spatio-temporal features CNN classifies or extracts spatial features Hybrid training (back propagation + STDP) | Neuroimaging analysis Brain Computer Interfaces | [46] |
SNN + ESN | 3D SNN (personalized), processes ECoG ESN classifies for motor control | Prosthetic control for paralysis | [58] |
SNN + NeuroFuzzy | 3D SNN extracts feature vectors, classified in a neuro-fuzzy model | Adaptive prosthetics | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Palencia, O.; Fernandez, J.; Shim, V.; Kasabov, N.K.; Wang, A.; the Alzheimer’s Disease Neuroimaging Initiative. Spiking Neural Networks for Multimodal Neuroimaging: A Comprehensive Review of Current Trends and the NeuCube Brain-Inspired Architecture. Bioengineering 2025, 12, 628. https://doi.org/10.3390/bioengineering12060628
Garcia-Palencia O, Fernandez J, Shim V, Kasabov NK, Wang A, the Alzheimer’s Disease Neuroimaging Initiative. Spiking Neural Networks for Multimodal Neuroimaging: A Comprehensive Review of Current Trends and the NeuCube Brain-Inspired Architecture. Bioengineering. 2025; 12(6):628. https://doi.org/10.3390/bioengineering12060628
Chicago/Turabian StyleGarcia-Palencia, Omar, Justin Fernandez, Vickie Shim, Nicola Kirilov Kasabov, Alan Wang, and the Alzheimer’s Disease Neuroimaging Initiative. 2025. "Spiking Neural Networks for Multimodal Neuroimaging: A Comprehensive Review of Current Trends and the NeuCube Brain-Inspired Architecture" Bioengineering 12, no. 6: 628. https://doi.org/10.3390/bioengineering12060628
APA StyleGarcia-Palencia, O., Fernandez, J., Shim, V., Kasabov, N. K., Wang, A., & the Alzheimer’s Disease Neuroimaging Initiative. (2025). Spiking Neural Networks for Multimodal Neuroimaging: A Comprehensive Review of Current Trends and the NeuCube Brain-Inspired Architecture. Bioengineering, 12(6), 628. https://doi.org/10.3390/bioengineering12060628