Development and Validation of a Virtual Version of the Box and Block Test to Assess Manual Dexterity at Home for Adults with Stroke and Children with Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Sample Size
2.3. Participants
2.4. Data Collection Protocol
2.5. Materials
- Box and Block Test
- Virtual Versions of the Box and Block Test (Table 1)
Version | Number of Zones | Type of Separator | Number of Blocks Used | Practice Trial | Error Rate (%) |
---|---|---|---|---|---|
vBBT—6 zones | 6 (4 × 4 cm) | High wall (13.5 cm) or low bar (2 cm) | 6 | 24 blocks | Not reported |
vBBT—4 zones | 4 (14 × 14 cm) | Low bar only (2 cm) | 4 | 16 blocks | 1.32 |
vBBT—Free zone | None | Low bar only (2 cm) | 4 | 16 blocks | 7.84 |
2.5.1. Study Phase 1
2.5.2. Study Phase 2
- Tower of London
2.5.3. Study Phase 3
- ABILHAND Questionnaires
2.6. Statistical Analysis
2.6.1. Study Phase 1
2.6.2. Study Phase 2
2.6.3. Study Phase 3
3. Results
3.1. Participants
3.2. Study Phase 1
3.3. Study Phase 2
3.4. Study Phase 3
4. Discussion
4.1. Clinical Interest in vBBT
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BBT | Box and Block Test |
CIMT | Constraint-Induced Movement Therapy |
CP | Cerebral Palsy |
GMFCS | Gross Motor Function Classification System |
HABIT | Hand–Arm Bimanual Intensive Therapy |
HABIT-ILE | Hand–Arm Bimanual Intensive Therapy Including Lower Extremities |
ICC | Intraclass Correlation Coefficient |
LAH | Less-Affected Hand |
MACS | Manual Ability Classification System |
MAH | More-Affected Hand |
MoCA | Montreal Cognitive Assessment |
mRS | Modified Rankin Scale |
ToL | Tower of London |
vBBT | Virtual Box and Block Test |
References
- Steinmetz, J.D.; Seeher, K.M.; Schiess, N.; Nichols, E.; Cao, B.; Servili, C.; Cavallera, V.; Cousin, E.; Hagins, H.; Moberg, M.E.; et al. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 344–381. [Google Scholar] [CrossRef]
- Graham, H.K.; Rosenbaum, P.; Paneth, N.; Dan, B.; Lin, J.-P.; Damiano, D.L.; Becher, J.G.; Gaebler-Spira, D.; Colver, A.; Reddihough, D.S.; et al. Cerebral palsy. Nat. Rev. Dis. Primers 2016, 2, 15082. [Google Scholar] [CrossRef] [PubMed]
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Choi, M.; Jeoung, B. Effectiveness of Rehabilitation Exercise in Improving Physical Function of Stroke Patients: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 12739. [Google Scholar] [CrossRef]
- Gerardin, E.; Regnier, M.; Dricot, L.; Lambert, J.; van Ravestyn, C.; De Coene, B.; Bihin, B.; Lindberg, P.; Vandermeeren, Y. Dexterity in the Acute Phase of Stroke: Impairments and Neural Substrates. Neurorehabilit. Neural Repair. 2024, 38, 229–239. [Google Scholar] [CrossRef]
- van Ravestyn, C.; Gerardin, E.; Térémetz, M.; Hamdoun, S.; Baron, J.-C.; Calvet, D.; Vandermeeren, Y.; Turc, G.; Maier, M.A.; Rosso, C.; et al. Post-Stroke Impairments of Manual Dexterity and Finger Proprioception: Their Contribution to Upper Limb Activity Capacity. Neurorehabilit. Neural Repair. 2024, 38, 373–385. [Google Scholar] [CrossRef]
- Golubović, Š.; Slavković, S. Manual ability and manual dexterity in children with cerebral palsy. Hippokratia 2014, 18, 310–314. [Google Scholar]
- Sobinov, A.R.; Bensmaia, S.J. The neural mechanisms of manual dexterity. Nat. Rev. Neurosci. 2021, 22, 741–757. [Google Scholar] [CrossRef] [PubMed]
- Demartino, A.M.; Rodrigues, L.C.; Gomes, R.P.; Michaelsen, S.M. Dexterity Is Associated with Use of the Paretic Upper Extremity in Community-Dwelling Individuals with Stroke. J. Neurol. Phys. Ther. 2021, 45, 292–300. [Google Scholar] [CrossRef]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef]
- Arner, M.; Eliasson, A.-C.; Nicklasson, S.; Sommerstein, K.; Hägglund, G. Hand Function in Cerebral Palsy. Report of 367 Children in a Population-Based Longitudinal Health Care Program. J. Hand Surg. 2008, 33, 1337–1347. [Google Scholar] [CrossRef] [PubMed]
- Novak, I.; Morgan, C.; Fahey, M.; Finch-Edmondson, M.; Galea, C.; Hines, A.; Langdon, K.; Mc Namara, M.; Paton, M.C.; Popat, H.; et al. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr. Neurol. Neurosci. Rep. 2020, 20, 3. [Google Scholar] [CrossRef]
- Kwakkel, G.; Veerbeek, J.M.; van Wegen, E.E.H.; Wolf, S.L. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015, 14, 224–234. [Google Scholar] [CrossRef]
- Bleyenheuft, Y.; Gordon, A.M. Hand-arm bimanual intensive therapy including lower extremities (HABIT-ILE) for children with cerebral palsy. Phys. Occup. Ther. Pediatr. 2014, 34, 390–403. [Google Scholar] [CrossRef]
- Corbetta, D.; Sirtori, V.; Castellini, G.; Moja, L.; Gatti, R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst. Rev. 2015, CD004433. [Google Scholar] [CrossRef]
- Barzel, A.; Ketels, G.; Stark, A.; Tetzlaff, B.; Daubmann, A.; Wegscheider, K.; van den Bussche, H.; Scherer, M. Home-based constraint-induced movement therapy for patients with upper limb dysfunction after stroke (HOMECIMT): A cluster-randomised, controlled trial. Lancet Neurol. 2015, 14, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Durand, E.; Plante, P.; Pelletier, A.-A.; Rondeau, J.; Simard, F.; Voisin, J. At-home and in-group delivery of constraint-induced movement therapy in children with hemiparesis: A systematic review. Ann. Phys. Rehabil. Med. 2018, 61, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Rosselli, Z.; Ducoffre, E.; Somville, M.; Arnould, C.; Bleyenheuft, Y.; Saussez, G. Implémentation d’HABIT-ILE à domicile pour les enfants atteints de paralysie cérébrale bilatérale: Protocole d’un étude randomisée contrôlée. Kinésithérapie La Revue 2023, 23, 71. [Google Scholar] [CrossRef]
- Somville, M.; Rosselli, Z.; Ducoffre, E.; Arnould, C.; Saussez, G.; Bleyenheuft, Y. Implémentation d’HABIT-ILE à domicile pour les adultes atteints d’un accident vasculaire cérébral chronique: Protocole d’une étude randomisée contrôlée. Kinésithérapie La Revue 2023, 23, 72. [Google Scholar] [CrossRef]
- Ogourtsova, T.; Boychuck, Z.; O’Donnell, M.; Ahmed, S.; Osman, G.; Majnemer, A. Telerehabilitation for Children and Youth with Developmental Disabilities and Their Families: A Systematic Review. Phys. Occup. Ther. Pediatr. 2023, 43, 129–175. [Google Scholar] [CrossRef]
- Chen, J.; Jin, W.; Zhang, X.-X.; Xu, W.; Liu, X.-N.; Ren, C.-C. Telerehabilitation Approaches for Stroke Patients: Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Stroke Cerebrovasc. Dis. 2015, 24, 2660–2668. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Volland, G.; Kashman, N.; Weber, K. Adult norms for the Box and Block Test of manual dexterity. Am. J. Occup. Ther. 1985, 39, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Desrosiers, J.; Bravo, G.; Hébert, R.; Dutil, E.; Mercier, L. Validation of the Box and Block Test as a measure of dexterity of elderly people: Reliability, validity, and norms studies. Arch. Phys. Med. Rehabil. 1994, 75, 751–755. [Google Scholar] [CrossRef]
- Shallice, T. Specific impairments of planning. Philosophical transactions of the Royal Society of London. Ser. B Biol. Sci. 1982, 298, 199–209. [Google Scholar]
- Arnould, C.; Penta, M.; Renders, A.; Thonnard, J.-L. ABILHAND-Kids: A measure of manual ability in children with cerebral palsy. Neurology 2004, 63, 1045–1052. [Google Scholar] [CrossRef]
- Bleyenheuft, Y.; Gordon, A.M.; Rameckers, E.; Thonnard, J.-L.; Arnould, C. Measuring changes of manual ability with ABILHAND-Kids following intensive training for children with unilateral cerebral palsy. Dev. Med. Child Neurol. 2017, 59, 505–511. [Google Scholar] [CrossRef]
- Penta, M.; Tesio, L.; Arnould, C.; Zancan, A.; Thonnard, J.-L. The ABILHAND questionnaire as a measure of manual ability in chronic stroke patients: Rasch-based validation and relationship to upper limb impairment. Stroke 2001, 32, 1627–1634. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Everard, G.; Burton, Q.; Van de Sype, V.; Ntabuhashe Bibentyo, T.; Auvinet, E.; Edwards, M.G.; Sebiyo Batcho, C.; Lejeune, T. Extended reality to assess post-stroke manual dexterity: Contrasts between the classic box and block test, immersive virtual reality with controllers, with hand-tracking, and mixed-reality tests. J. Neuroeng. Rehabil. 2024, 21, 36. [Google Scholar] [CrossRef]
- Darbutas, T.; Juodžbalienė, V.; Skurvydas, A.; Kriščiūnas, A. Dependence of reaction time and movement speed on task complexity and age. Medicina 2013, 49, 18–22. [Google Scholar] [CrossRef]
- Phillips, L.H.; Wynn, V.E.; McPherson, S.; Gilhooly, K.J. Mental planning and the Tower of London task. Q. J. Exp. Psychol. A 2001, 54, 579–597. [Google Scholar] [CrossRef]
- Simone, A.; Rota, V.; Tesio, L.; Perucca, L. Generic ABILHAND questionnaire can measure manual ability across a variety of motor impairments. Int. J. Rehabil. Res. 2011, 34, 131–140. [Google Scholar] [CrossRef]
- Arnould, C.; Penta, M.; Thonnard, J.L. Hand impairments and their relationship with manual ability in children with cerebral palsy. J. Rehabil. Med. 2007, 39, 708–714. [Google Scholar] [CrossRef]
- Arnould, C.; Bleyenheuft, Y.; Thonnard, J.L. Hand functioning in children with cerebral palsy. Front. Neurol. 2014, 5, 48. [Google Scholar] [CrossRef] [PubMed]
- Everard, G.; Otmane-Tolba, Y.; Rosselli, Z.; Pellissier, T.; Ajana, K.; Dehem, S.; Auvinet, E.; Edwards, M.G.; Lebleu, J.; Lejeune, T. Concurrent validity of an immersive virtual reality version of the Box and Block Test to assess manual dexterity among patients with stroke. J. Neuroeng. Rehabil. 2022, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Liu, X.; Tang, M.; Huo, H.; Chen, D.; Wu, Z.; An, R.; Fan, Y. A haptic-feedback virtual reality system to improve the Box and Block Test (BBT) for upper extremity motor function assessment. Virtual Real. 2022, 27, 1199–1219. [Google Scholar] [CrossRef]
- Oña, E.D.; Jardón, A.; Cuesta-Gómez, A.; Sánchez-Herrera-Baeza, P.; Cano-de-la-Cuerda, R.; Balaguer, C. Validity of a Fully-Immersive VR-Based Version of the Box and Blocks Test for Upper Limb Function Assessment in Parkinson’s Disease. Sensors 2020, 20, 2773. [Google Scholar] [CrossRef]
- Cho, S.; Kim, W.-S.; Paik, N.-J.; Bang, H. Upper-Limb Function Assessment Using VBBTs for Stroke Patients. IEEE Comput. Graph. Appl. 2016, 36, 70–78. [Google Scholar] [CrossRef]
- Gieser, S.N.; Gentry, C.; LePage, J.; Makedon, F. Comparing Objective and Subjective Metrics Between Physical and Virtual Tasks. In Virtual, Augmented and Mixed Reality; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Alvarez-Rodríguez, M.; López-Dolado, E.; Salas-Monedero, M.; Lozano-Berrio, V.; Ceruelo-Abajo, S.; Gil-Agudo, A.; de los Reyes-Guzmán, A. Concurrent Validity of a Virtual Version of Box and Block Test for Patients with Neurological Disorders. World J. Neurosci. 2020, 10, 79–89. [Google Scholar] [CrossRef]
- Mollà-Casanova, S.; Llorens, R.; Borrego, A.; Salinas-Martínez, B.; Serra-Añó, P. Validity, reliability, and sensitivity to motor impairment severity of a multi-touch app designed to assess hand mobility, coordination, and function after stroke. J. Neuroeng. Rehabil. 2021, 18, 70. [Google Scholar] [CrossRef]
- Murias, K.; Kwok, K.; Gil Castillejo, A.; Liu, I.; Iaria, G. The effects of video game use on performance in a virtual navigation task. Comput. Hum. Behav. 2016, 58, 398–406. [Google Scholar] [CrossRef]
- Murata, A.; Fadiga, L.; Fogassi, L.; Gallese, V.; Raos, V.; Rizzolatti, G. Object representation in the ventral premotor cortex (area F5) of the monkey. J. Neurophysiol. 1997, 78, 2226–2230. [Google Scholar] [CrossRef] [PubMed]
- Davare, M.; Andres, M.; Cosnard, G.; Thonnard, J.-L.; Olivier, E. Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J. Neurosci. 2006, 26, 2260–2268. [Google Scholar] [CrossRef] [PubMed]
- Cooper, N.; Milella, F.; Pinto, C.; Cant, I.; White, M.; Meyer, G. The effects of substitute multisensory feedback on task performance and the sense of presence in a virtual reality environment. PLoS ONE 2018, 13, e0191846. [Google Scholar] [CrossRef] [PubMed]
n | Age Mean (Range) | Gender (F/M) | Laterality/LAH (R/L) | |
---|---|---|---|---|
Phase 1. Hardware definition (with or without separating wall) | ||||
Healthy participants | 100 | 23.25 (18–60) | 67/33 | 94/6 |
Phase 2. Software definition (6 zones, 4 zones, free zone) | ||||
Healthy participants | 105 | 21.3 (18–43) | 63/42 | 82/23 |
Phase 3. Validation in clinical populations (concurrent validity) | ||||
Children with bilateral CP | 37 | 9.6 (5–18) | 13/24 | 20/17 |
Adults with stroke | 37 | 61.7 (31–80) | 17/20 | 22/15 |
Median [Q1–Q3] | Friedman’s ANOVA | ICC with BBT | Correlations | |||||
---|---|---|---|---|---|---|---|---|
p-Value | Holm–Sidak Post-Hoc (Difference with BBT) | p-Value | Intraclass Correlation [95% CI] | p-Value | r | |||
Phase 1. Hardware definition (with or without separating wall) (n = 100) | ||||||||
BBT | 70.5 [66–75] | <0.001 ** | - | - | - | - | - | |
vBBT-6 zones | 67 [63–71] | <0.001 ** | <0.001 ** | 0.31 [0.13; 0.48] | - | - | ||
vBBT-6 zones with wall | 51 [48–56] | <0.001 ** | <0.001 ** | 0.48 [0.31; 0.62] | - | - | ||
Phase 2. Software definition (6 zones, 4 zones, free zone) (n = 105) | ||||||||
with Tower of London (planning time) 1 | ||||||||
BBT | 74 [66.5–80] | <0.001 ** | - | - | - | 0.272 | −0.12 | |
vBBT-6 zones | 62 [56–69] | <0.001 ** | <0.001 ** | 0.25 [0.06; 0.42] | 0.007 * | −0.28 | ||
vBBT-4 zones | 90 [81–96] | <0.001 ** | <0.001 ** | 0.58 [0.44; 0.70] | 0.126 | −0.16 | ||
vBBT-free zone | 99 [90.5–108] | <0.001 ** | <0.001 ** | 0.48 [0.32; 0.62] | 0.317 | −0.11 | ||
Phase 3. Validation in clinical populations (concurrent validity): children with bilateral CP (n = 37) and adults with stroke (n = 37) | ||||||||
with ABILHAND questionnaires | ||||||||
BCP | BBT LAH | 21 [13.5–28.5] | - | - | - | - | <0.001 ** | 0.72 1 |
BBT MAH | 15 [5.5–24] | - | - | - | - | <0.001 ** | 0.81 1 | |
vBBT-4 zones LAH | 24 [16–36] | - | - | <0.001 ** | 0.93 [0.87; 0.96] | <0.001 ** | 0.71 1 | |
vBBT-4 zones MAH | 20 [7.5–26.5] | - | - | <0.001 ** | 0.94 [0.89; 0.97] | <0.001 ** | 0.76 1 | |
Stroke | BBT LAH | 52 [39–64.5] | - | - | - | - | 0.115 | 0.27 2 |
BBT MAH | 1 [0–32] | - | - | - | - | <0.001 ** | 0.77 1 | |
vBBT-4 zones LAH | 64 [43.5–72.5] | - | - | <0.001 ** | 0.85 [0.73; 0.92] | 0.069 | 0.31 2 | |
vBBT-4 zones MAH | 3 [0–37.5] | - | - | <0.001 ** | 0.97 [0.94; 0.98] | <0.001 ** | 0.79 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosselli, Z.; Somville, M.; Ducoffre, E.; Arnould, C.; Saussez, G.; Bleyenheuft, Y. Development and Validation of a Virtual Version of the Box and Block Test to Assess Manual Dexterity at Home for Adults with Stroke and Children with Cerebral Palsy. Bioengineering 2025, 12, 662. https://doi.org/10.3390/bioengineering12060662
Rosselli Z, Somville M, Ducoffre E, Arnould C, Saussez G, Bleyenheuft Y. Development and Validation of a Virtual Version of the Box and Block Test to Assess Manual Dexterity at Home for Adults with Stroke and Children with Cerebral Palsy. Bioengineering. 2025; 12(6):662. https://doi.org/10.3390/bioengineering12060662
Chicago/Turabian StyleRosselli, Zélie, Merlin Somville, Edouard Ducoffre, Carlyne Arnould, Geoffroy Saussez, and Yannick Bleyenheuft. 2025. "Development and Validation of a Virtual Version of the Box and Block Test to Assess Manual Dexterity at Home for Adults with Stroke and Children with Cerebral Palsy" Bioengineering 12, no. 6: 662. https://doi.org/10.3390/bioengineering12060662
APA StyleRosselli, Z., Somville, M., Ducoffre, E., Arnould, C., Saussez, G., & Bleyenheuft, Y. (2025). Development and Validation of a Virtual Version of the Box and Block Test to Assess Manual Dexterity at Home for Adults with Stroke and Children with Cerebral Palsy. Bioengineering, 12(6), 662. https://doi.org/10.3390/bioengineering12060662