Effects of Physiological Loading from Patient-Derived Activities of Daily Living on the Wear of Metal-on-Polymer Total Hip Replacements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wear Test
2.2. Profiles
2.3. Frictional Torque Acquisition
3. Results
3.1. Frictional Torque Profiles
3.2. Wear of ISO vs. Jogging
3.3. Stair Negotiation
4. Discussion
4.1. FBS vs. BCS
4.2. Stairs
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HoH | Hard-on-Hard |
HoS | Hard-on-Soft |
MoP | Metal-on-Polymer |
CoP | Ceramic-on-Polymer |
MoM | Metal-on-Metal |
CoC | Ceramic-on-Ceramic |
THA | Total Hip Arthroplasty |
THR | Total Hip Replacement |
FBS | Foetal Bovine Serum |
BCS | Bovine Calf Serum |
ACS | Alpha Calf Serum |
HCF | Hip Contact Force |
ISO | ISO 14242 Gait Profile |
References
- W-Dahl, A.; Kärrholm, J.; Rogmark, C.; Nåtman, J.; Bülow, E.; Ighani Arani, P.; Mohaddes, M.; Rolfson, O. The Swedish Arthroplasty Register Annual Report 2023; Swedish Arthroplasty Register: Gothenburg, Sweden, 2023. [Google Scholar]
- Evans, J.T.; Evans, J.P.; Walker, R.W.; Blom, A.W.; Whitehouse, M.R.; Sayers, A. How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet 2019, 393, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Medley, J.B. Can physical joint simulators be used to anticipate clinical wear problems of new joint replacement implants prior to market release? Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2016, 230, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, L.E.; Culliford, D.; Monk, A.P.; Glyn-Jones, S.; Prieto-Alhambra, D.; Judge, A.; Cooper, C.; Carr, A.J.; Arden, N.K.; Beard, D.J.; et al. The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: A population-based cohort study. Lancet 2017, 389, 1424–1430. [Google Scholar] [CrossRef] [PubMed]
- Prokopetz, J.J.; Losina, E.; Bliss, R.L.; Wright, J.; Baron, J.A.; Katz, J.N. Risk factors for revision of primary total hip arthroplasty: A systematic review. BMC Musculoskelet. Disord. 2012, 13, 251. [Google Scholar] [CrossRef]
- Gademan, M.G.J.; Van Steenbergen, L.N.; Cannegieter, S.C.; Nelissen, R.G.H.H.; Marang-Van De Mheen, P.J. Population-based 10-year cumulative revision risks after hip and knee arthroplasty for osteoarthritis to inform patients in clinical practice: A competing risk analysis from the Dutch Arthroplasty Register. Acta Orthop. 2021, 92, 280–284. [Google Scholar] [CrossRef]
- Fawsitt, C.G.; Thom, H.H.; Hunt, L.P.; Nemes, S.; Blom, A.W.; Welton, N.J.; Hollingworth, W.; López-López, J.A.; Beswick, A.D.; Burston, A.; et al. Choice of Prosthetic Implant Combinations in Total Hip Replacement: Cost-Effectiveness Analysis Using UK and Swedish Hip Joint Registries Data. Value Health 2019, 22, 303–312. [Google Scholar] [CrossRef]
- Lunn, D.E.; Redmond, A.C.; Chapman, G.J.; Lund, M.E.; Ferguson, S.J.; De Pieri, E. Hip contact force pathways in total hip replacement differ between patients and activities of daily living. J. Biomech. 2024, 176, 112309. [Google Scholar] [CrossRef]
- BS ISO, 14242–1:2014; Implants for Surgery—Wear of Total Hip-Joint Prostheses—Part 1: LOADING and Displacement Parameters for Wear-Testing Machines and Corresponding Environmental Conditions for Test. ISO: Geneva, Switzerland, 2014.
- Li, J.; Redmond, A.C.; Jin, Z.; Fisher, J.; Stone, M.H.; Stewart, T.D. Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: Implications for preclinical testing. Clin. Biomech. 2014, 29, 747–751. [Google Scholar] [CrossRef]
- Zietz, C.; Fabry, C.; Reinders, J.; Dammer, R.; Kretzer, J.P.; Bader, R.; Sonntag, R. Wear testing of total hip replacements under severe conditions. Expert Rev. Med. Devices 2015, 12, 393–410. [Google Scholar] [CrossRef]
- Partridge, S. Wear and Rim Damage of UHMWPE Acetabular Cups in Total Hip Replacement. Ph.D. Thesis, University of Leeds, Leeds, UK, 2016. [Google Scholar]
- Hart, A.J.; Sabah, S.A.; Henckel, J.; Lloyd, G.; Skinner, J.A. Lessons learnt from metal-on-metal hip arthroplasties will lead to safer innovation for all medical devices. HIP Int. 2015, 25, 347–354. [Google Scholar] [CrossRef]
- Al-Hajjar, M.; Leslie, I.J.; Tipper, J.; Williams, S.; Fisher, J.; Jennings, L.M. Effect of cup inclination angle during microseparation and rim loading on the wear of BIOLOX® delta ceramic-on-ceramic total hip replacement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 95B, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J. A stratified approach to pre-clinical tribological evaluation of joint replacements representing a wider range of clinical conditions advancing beyond the current standard. Faraday Discuss. 2012, 156, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Mattei, L.; Tomasi, M.; Artoni, A.; Ciulli, E.; Di Puccio, F. Combination of musculoskeletal and wear models to investigate the effect of daily living activities on wear of hip prostheses. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 2675–2687. [Google Scholar] [CrossRef]
- Moissenet, F.; Beauseroy, V.; Gasparutto, X.; Armand, S.; Hannouche, D.; Dumas, R. Estimation of two wear factors for total hip arthroplasty: A simulation study based on musculoskeletal modelling. Clin. Biomech. 2023, 107, 106035. [Google Scholar] [CrossRef]
- Park, S.H.; Lu, Z.; Hastings, R.S.; Campbell, P.A.; Ebramzadeh, E. Five Hundred Fifty-five Retrieved Metal-on-metal Hip Replacements of a Single Design Show a Wide Range of Wear, Surface Features, and Histopathologic Reactions. In Clinical Orthopaedics and Related Research; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2018; Volume 476, pp. 261–278. [Google Scholar]
- López-López, J.A.; Humphriss, R.L.; Beswick, A.D.; Thom, H.H.Z.; Hunt, L.P.; Burston, A.; Fawsitt, C.G.; Hollingworth, W.; Higgins, J.P.T.; Welton, N.J.; et al. Choice of implant combinations in total hip replacement. BMJ 2017, 359, j4651. [Google Scholar] [CrossRef]
- Davis, E.T.; Pagkalos, J.; Kopjar, B. Effect of Bearing Surface on Survival of Cementless and Hybrid Total Hip Arthroplasty Study of Data in the National Joint Registry for England, Wales, Northern Ireland and the Isle of Man. JBJS Open Access 2020, 5, E0075. [Google Scholar] [CrossRef]
- ISO 14242-4:2018; Implants for Surgery—Wear of Total Hip-Joint Prostheses. Part 4: Testing Hip Prostheses Under Variations in Component Positioning Which Results in Direct Edge Loading. ISO: Geneva, Switzerland, 2018.
- Dennis, D.A.; Komistek, R.D.; Northcut, E.J.; Ochoa, J.A.; Ritchie, A. “In vivo” determination of hip joint separation and the forces generated due to impact loading conditions. J. Biomech. 2001, 34, 623–629. [Google Scholar] [CrossRef]
- Birman, M.V.; Noble, P.C.; Conditt, M.A.; Li, S.; Mathis, K.B. Cracking and impingement in ultra-high-molecular-weight polyethylene acetabular liners. J. Arthroplast. 2005, 20, 87–92. [Google Scholar] [CrossRef]
- Tower, S.S.; Currier, J.H.; Currier, B.H.; Lyford, K.A.; Van Citters, D.W.; Mayor, M.B. Rim cracking of the cross-linked longevity polyethylene acetabular liner after total hip arthroplasty. J. Bone Jt. Surg. 2007, 89, 2212–2217. [Google Scholar] [CrossRef]
- Schroder, D.T.; Kelly, N.H.; Wright, T.M.; Parks, M.L. Retrieved highly crosslinked UHMWPE acetabular liners have similar wear damage as conventional UHMWPE. In Clinical Orthopaedics and Related Research; Springer: New York, NY, USA, 2011; Volume 469, pp. 387–394. [Google Scholar]
- Furmanski, J.; Anderson, M.; Bal, S.; Greenwald, A.S.; Halley, D.; Penenberg, B.; Ries, M.; Pruitt, L. Clinical fracture of cross-linked UHMWPE acetabular liners. Biomaterials 2009, 30, 5572–5582. [Google Scholar] [CrossRef]
- Williams, S.; Butterreld, M.; Stewart, T.; Ingham, E.; Stone, M.; Fisher, J. Wear and deformation of ceramic-on-polyethylene total hip replacements with joint laxity and swing phase microseparation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2003, 217, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Li, J.; Wang, L.; Jin, Z.; Wilcox, R.; Fisher, J. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions. J. Biomech. 2014, 47, 3303–3309. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.; Tipper, J.L.; Al-Hajjar, M.; Isaac, G.H.; Fisher, J.; Williams, S. Evaluation of a new methodology to simulate damage and wear of polyethylene hip replacements subjected to edge loading in hip simulator testing. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Halma, J.J.; Señaris, J.; Delfosse, D.; Lerf, R.; Oberbach, T.; van Gaalen, S.M.; de Gast, A. Edge loading does not increase wear rates of ceramic-on-ceramic and metal-on-polyethylene articulations. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 1627–1638. [Google Scholar] [CrossRef]
- O’Dwyer Lancaster-Jones, O.; Williams, S.; Jennings, L.M.; Thompson, J.; Isaac, G.H.; Fisher, J.; Al-Hajjar, M. An in vitro simulation model to assess the severity of edge loading and wear, due to variations in component positioning in hip joint replacements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1897–1906. [Google Scholar] [CrossRef]
- de Villiers, D.; Collins, S. Wear of large diameter ceramic-on-ceramic hip bearings under standard and microseparation conditions. Biotribology 2020, 21, 100117. [Google Scholar] [CrossRef]
- Leslie, I.J.; Williams, S.; Isaac, G.; Ingham, E.; Fisher, J. High cup angle and microseparation increase the wear of hip surface replacements. In Clinical Orthopaedics and Related Research; Springer: New York, NY, USA, 2009; Volume 467, pp. 2259–2265. [Google Scholar]
- Saikko, V.; Ahlroos, T.; Revitzer, H.; Ryti, O.; Kuosmanen, P. The effect of acetabular cup position on wear of a large-diameter metal-on-metal prosthesis studied with a hip joint simulator. Tribol. Int. 2013, 60, 70–76. [Google Scholar] [CrossRef]
- Williams, S.; Leslie, I.; Isaac, G.; Jin, Z.; Ingham, E.; Fisher, J. Tribology and wear of metal-on-metal hip prostheses: Influence of cup angle and head position. J. Bone Jt. Surg. Am. Vol. 2008, 90 (Suppl. S3), 111–117. [Google Scholar] [CrossRef]
- Lunn, D.E.; De Pieri, E.; Chapman, G.J.; Lund, M.E.; Redmond, A.C.; Ferguson, S.J. Current Preclinical Testing of New Hip Arthroplasty Technologies Does Not Reflect Real-World Loadings: Capturing Patient-Specific and Activity-Related Variation in Hip Contact Forces. J. Arthroplast. 2020, 35, 877–885. [Google Scholar] [CrossRef]
- Al-Hajjar, M.; Jennings, L.M.; Begand, S.; Oberbach, T.; Delfosse, D.; Fisher, J. Wear of novel ceramic-on-ceramic bearings under adverse and clinically relevant hip simulator conditions. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 101, 1456–1462. [Google Scholar] [CrossRef]
- Beyond Compliance. Available online: https://www.beyondcompliance.org.uk/ (accessed on 12 January 2024).
- Reed, M.; Achakri, H.; Bridgens, J.; Brittain, R.; Howard, P.; Wilkinson, M.; Wilton, Y. NJR Statistical Analysis, Support and Associated Services. 2024. Available online: https://reports.njrcentre.org.uk/Portals/0/PDFdownloads/NJR%2021st%20Annual%20Report%202024.pdf (accessed on 14 May 2025).
- BS ISO, 14242–2:2016; Implants for Surgery—Wear of Total Hip-Joint Prostheses—Part 2: Methods of Measurement. ISO: Geneva, Switzerland, 2016.
- Saikko, V. Effect of lubricant protein concentration on the wear of ultra-high molecular weight polyethylene sliding against a CoCr counterface. J. Tribol. 2003, 125, 638–642. [Google Scholar] [CrossRef]
- ASTM F2025-06(2018); Standard Practice for Gravimetric Measurement of Polymeric Components for Wear Assessment. ASTM International: West Conshohocken, PA, USA, 2018.
- Bergmann, G.; Bender, A.; Dymke, J.; Duda, G.; Damm, P. Standardized loads acting in hip implants. PLoS ONE 2016, 11, e0155612. [Google Scholar] [CrossRef] [PubMed]
- Morlock, M.; Nassutt, R.; Bluhm, A.; Vollmer, M. Quantification of hip joint resting periods during daily activities: Could they play a role for the failure of total hip prostheses due to the increase in static friction? Trans. Orthop. Res. Soc. 2000, 25, 497. [Google Scholar]
- Pryce, G.; Beadling, A.R.; De Villiers, D.; Collins, S.; Bryant, M. Assessment of Friction of Ceramic-on-Ceramic Hip Resurfacing Arthroplasty. In Proceedings of the International Society for Technology in Arthroplasty Annual Congress, New York, NY, USA, 27–30 September 2023. [Google Scholar]
- Haider, H.; Weisenburger, J.N.; Garvin, K.L. Simultaneous measurement of friction and wear in hip simulators. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2016, 230, 373–388. [Google Scholar] [CrossRef]
- Bergmann, G. Hip98, Loading of the Hip Joint, Compact Disc; Freie Universität: Berlin, Germany, 2001; ISBN 3-9807848-0-0. Available online: www.OrthoLoad.com (accessed on 21 February 2024).
- Bergmann, G.; Graichen, F.; Rohlmann, A. Hip joint loading during walking and running, measured in two patients. J. Biomech. 1993, 26, 969–990. [Google Scholar] [CrossRef]
- Bergmann, G.; Graichen, F.; Rohlmann, A.; Bender, A.; Heinlein, B.; Duda, G.; Heller, M.; Morlock, M. Realistic loads for testing hip implants. Bio-Med. Mater. Eng. 2010, 20, 65–75. [Google Scholar] [CrossRef]
- Fabry, C.; Herrmann, S.; Kaehler, M.; Klinkenberg, E.D.; Woernle, C.; Bader, R. Generation of physiological parameter sets for hip joint motions and loads during daily life activities for application in wear simulators of the artificial hip joint. Med. Eng. Phys. 2013, 35, 131–139. [Google Scholar] [CrossRef]
- D’Isidoro, F.; Brockmann, C.; Friesenbichler, B.; Zumbrunn, T.; Leunig, M.; Ferguson, S.J. Moving fluoroscopy-based analysis of THA kinematics during unrestricted activities of daily living. Front. Bioeng. Biotechnol. 2023, 11, 1095845. [Google Scholar] [CrossRef]
- Zietz, C.; Fabry, C.; Baum, F.; Bader, R.; Kluess, D. The Divergence of Wear Propagation and Stress at Steep Acetabular Cup Positions Using Ceramic Heads and Sequentially Cross-Linked Polyethylene Liners. J. Arthroplast. 2015, 30, 1458–1463. [Google Scholar] [CrossRef]
- Layton, R.B.; Messenger, N.; Stewart, T.D. Analysis of hip joint cross-shear under variable activities using a novel virtual joint model within Visual3D. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 1197–1204. [Google Scholar] [CrossRef]
- Morlock, M.; Schneider, E.; Bluhm, A.; Vollmer, M.; Bergmann, G.; Müller, V.; Honl, M. Duration and frequency of every day activities in total hip patients. J. Biomech. 2001, 34, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Nassutt, R.; Wimmer, M.A.; Schneider, E.; Morlock, M.M. The Influence of Resting Periods on friction in the artificial hip. Clin. Orthop. Relat. Res. 2003, 407, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, M.A.; Artelt, D.; Kunze, J.; Morlock, M.M.; Schneider, E.; Nassutt, R. Friction and wear properties of metal/metal hip joints: Application of a novel testing and analysis method. Mater. Werkst. 2001, 32, 891–896. [Google Scholar] [CrossRef]
- Simon, S.R.; Paul, I.L.; Rose, R.M.; Radin, E.L. “Stiction friction” of total hip prostheses and its relationship to loosening. J. Bone Jt. Surg. Ser. A 1975, 57, 226–230. [Google Scholar] [CrossRef]
- Hadley, M.; Hardaker, C.; Isaac, G.; Fisher, J. Wear of different materials for total hip replacement under adverse stop-dwell-start in vitro wear simulation conditions. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2018, 232, 1261–1270. [Google Scholar] [CrossRef]
- Clayton, J.; Lecture, M.; Dowson, D. New joints for the Millennium: Wear control in total replacement hip joints. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2001, 215, 335–358. [Google Scholar]
- Affatato, S. Towards wear testing of high demanding daily activities on total hip replacement: Preliminary results. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 260. [Google Scholar] [CrossRef]
- Bowsher, J.G.; Shelton, J.C. A hip simulator study of the influence of patient activity level on the wear of crosslinked polyethylene under smooth and roughened femoral conditions. Wear 2001, 250, 167–179. [Google Scholar] [CrossRef]
- Viitala, R.; Saikko, V. Effect of random variation of input and various daily activities on wear in a hip joint simulator. J. Biomech. 2020, 106, 109831. [Google Scholar] [CrossRef]
- Good, V.D.; Clarke, I.C.; Gustafson, G.A.; Downs, B.; Anissian, L.; Sorensen, K. Wear of ultra-high molecular weight polyethylene and polytetrafluoroethylene in a hip simulator: A dose-response study of protein concentration. Acta Orthop. Scand. 2000, 71, 365–369. [Google Scholar] [CrossRef]
- Brown, S.S.; Clarke, I.C. A review of lubrication conditions for wear simulation in artificial hip replacements. Tribol. Trans. 2006, 49, 72–78. [Google Scholar] [CrossRef]
- Yao, J.Q.; Laurent, M.P.; Johnson, T.S.; Blanchard, C.R.; Crowninshield, R.D. The influences of lubricant and material on polymer/CoCr sliding friction. Wear 2003, 255, 780–784. [Google Scholar] [CrossRef]
- Saari, H.; Santavirta, S.; Nordström, D.; Paavolainen, P.; Konttinen, Y.T. Hyaluronate in total hip replacement. J. Rheumatol. 1993, 20, 87–90. [Google Scholar] [PubMed]
- Decker, B.; Mckenzie, B.F.; Mcguckin, W.F.; Slocumb, C.H. Comparative Distribution of Proteins and Glycoproteins of Serum and Synovial Fluid. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1959, 2, 162–177. [Google Scholar] [CrossRef]
- Saikko, V.; Morad, O.; Viitala, R. Effect of type and temperature of serum lubricant on VEXLPE wear and friction. Wear 2021, 470–471, 203613. [Google Scholar] [CrossRef]
- Wang, A.; Essner, A.; Schmidig, G. The Effects of Lubricant Composition on in Vitro Wear Testing of Polymeric Acetabular Components. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 68, 45–52. [Google Scholar] [CrossRef]
- Kaddick, C.; Wimmer, M.A. Hip simulator wear testing according to the newly introduced standard ISO 14242. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2001, 215, 429–442. [Google Scholar] [CrossRef]
- Harsha, A.P.; Joyce, T.J. Challenges associated with using bovine serum in wear testing orthopaedic biopolymers. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2011, 225, 948–958. [Google Scholar] [CrossRef]
- Bergmann, G.; Deuretzbacher, G.; Heller, M.; Graichen, F.; Rohlmann, A.; Strauss, J.; Duda, G. Hip contact forces and gait patterns from routine activities. J. Biomech. 2001, 34, 859–871. [Google Scholar] [CrossRef]
- Nithyaprakash, R.; Shankar, S.; Uddin, M.S. Computational wear assessment of hard on hard hip implants subject to physically demanding tasks. Med. Biol. Eng. Comput. 2018, 56, 899–910. [Google Scholar] [CrossRef]
- Srivastava, G.; Christian, N.; Higgs, C.F. A predictive framework of the tribological impact of physical activities on metal-on-plastic hip implants. Biotribology 2021, 25, 100156. [Google Scholar] [CrossRef]
- Lunn, D.E.; Chapman, G.J.; Redmond, A.C. Hip kinematics and kinetics in total hip replacement patients stratified by age and functional capacity. J. Biomech. 2019, 87, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Protopapadaki, A.; Drechsler, W.I.; Cramp, M.C.; Coutts, F.J.; Scott, O.M. Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals. Clin. Biomech. 2007, 22, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Pakhaliuk, V.; Poliakov, A. Simulation of wear in a spherical joint with a polymeric component of the total hip replacement considering activities of daily living. Facta Univ. Ser. Mech. Eng. 2018, 16, 51–63. [Google Scholar] [CrossRef]
- Yoshida, H.; Faust, A.; Wilckens, J.; Kitagawa, M.; Fetto, J.; Chao, E.Y.S. Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living. J. Biomech. 2006, 39, 1996–2004. [Google Scholar] [CrossRef]
- Xu, R.; Sheng, W.; Zhou, F.; Persson, B.N.J. Rubber Wear: History, Mechanisms, and Perspectives. arXiv 2025, arXiv:2503.19494. [Google Scholar]
- Toh, S.M.S.; Ashkanfar, A.; English, R.; Rothwell, G.; Langton, D.J.; Joyce, T.J. How does bicycling affect the longevity of Total Hip Arthroplasty? A finite element wear analysis. J. Mech. Behav. Biomed. Mater. 2023, 139, 105673. [Google Scholar] [CrossRef]
- Toh, S.M.S.; Ashkanfar, A.; English, R.; Rothwell, G. Computational method for bearing surface wear prediction in total hip replacements. J. Mech. Behav. Biomed. Mater. 2021, 119, 104507. [Google Scholar] [CrossRef]
- Feyzi, M.; Fallahnezhad, K.; Taylor, M.; Hashemi, R. The mechanics of head-neck taper junctions: What do we know from finite element analysis? J. Mech. Behav. Biomed. Mater. 2021, 116, 104338. [Google Scholar] [CrossRef]
- Feyzi, M.; Fallahnezhad, K.; Taylor, M.; Hashemi, R. A review on the finite element simulation of fretting wear and corrosion in the taper junction of hip replacement implants. Comput. Biol. Med. 2021, 130, 104196. [Google Scholar] [CrossRef]
- Saikko, V. VEXLPE friction studied with a multidirectional hip joint simulator using contact temperature control. Tribol. Int. 2023, 187, 108707. [Google Scholar] [CrossRef]
- Saikko, V. Wear and friction of thin, large-diameter acetabular liners made from highly cross-linked, vitamin-E-stabilized UHMWPE against CoCr femoral heads. Wear 2019, 432–433, 202948. [Google Scholar] [CrossRef]
- Nečas, D.; Usami, H.; Niimi, T.; Sawae, Y.; Křupka, I.; Hartl, M. Running-in friction of hip joint replacements can be significantly reduced: The effect of surface-textured acetabular cup. Friction 2020, 8, 1137–1152. [Google Scholar] [CrossRef]
- Sonntag, R.; Braun, S.; Al-Salehi, L.; Reinders, J.; Mueller, U.; Kretzer, J.P. Three-dimensional friction measurement during hip simulation. PLoS ONE 2017, 12, e0184043. [Google Scholar] [CrossRef]
Phase 1 | Phase 2 | Phase 3 | |||
---|---|---|---|---|---|
1 Mc | 2 Mc | 3 Mc | 4 Mc | 5 Mc | |
ISO 14242-1 | ISO 14242-1 | Jog | Jog and Dwell | Stair Descent | Stair Ascent |
Profile | Frequency (Hz) | Cycle Time (s) |
---|---|---|
ISO | 1 | 1 |
Jog | 1.4 | 0.727 |
Jog and Dwell | 1.4 | 0.727 |
Stair Descent | 0.694–0.556 | 1.44–1.80 |
Stair Ascent | 0.629 | 1.59 |
Axial Load (N) | FE ° | AA ° | IE ° | |||||
---|---|---|---|---|---|---|---|---|
Max | Min | Extension | Flexion | Abduction | Adduction | Internal Rotation | External Rotation | |
ISO | 3000 | 300 | 25 | −18 | 7 | −4 | 2 | −10 |
Jogging | 3901 | 18 | 38.42 | 0.97 | 5.92 | −12.39 | 7.16 | −13.61 |
Stair Descent | 2735 | 164 | 30.63 | 10.45 | 6.18 | −5.67 | 11.52 | 4.58 |
Stair Ascent | 2538 | 77 | 51.61 | −2.14 | 3.10 | −4.07 | 15.58 | −0.82 |
Phase 1 | Phase 2 | Phase 3 | |||||
---|---|---|---|---|---|---|---|
1 Mc | 2 Mc | 3 Mc | 4 Mc | 5 Mc | |||
Profile | ISO 14242-1 | ISO 14242-1 | Jog | Jog and Dwell | Stair Descent | Stair Ascent | |
Wear rate | 16.7 (±3.71) | 15.2 (±0.55) | 28.7 (±0.87) | 27.9 (±5.05) | 8.6 (±0.43) | 4.2 (±0.31) | |
J&D Max | J&D Min | ||||||
Avg Max Torque (Nm) | 7.85 ± 0.35 | 10.88 ± 0.62 | 10.71 ± 0.29 | 10.20 ± 0.34 | 8.55 ± 0.12 | 5.56 ± 0.59 |
Profile | ISO | Jog | Stair Descent | Stair Ascent |
---|---|---|---|---|
% of cycle to heel strike | 10% | 14% | 10% | 17% |
Time to heel strike (s) | 0.1 | 0.1 | 0.14 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clegg, B.A.; Perry, S.; De Pieri, E.; Redmond, A.C.; Ferguson, S.J.; Lunn, D.E.; Hall, R.M.; Bryant, M.G.; Emami, N.; Beadling, A.R. Effects of Physiological Loading from Patient-Derived Activities of Daily Living on the Wear of Metal-on-Polymer Total Hip Replacements. Bioengineering 2025, 12, 663. https://doi.org/10.3390/bioengineering12060663
Clegg BA, Perry S, De Pieri E, Redmond AC, Ferguson SJ, Lunn DE, Hall RM, Bryant MG, Emami N, Beadling AR. Effects of Physiological Loading from Patient-Derived Activities of Daily Living on the Wear of Metal-on-Polymer Total Hip Replacements. Bioengineering. 2025; 12(6):663. https://doi.org/10.3390/bioengineering12060663
Chicago/Turabian StyleClegg, Benjamin A., Samuel Perry, Enrico De Pieri, Anthony C. Redmond, Stephen J. Ferguson, David E. Lunn, Richard M. Hall, Michael G. Bryant, Nazanin Emami, and Andrew R. Beadling. 2025. "Effects of Physiological Loading from Patient-Derived Activities of Daily Living on the Wear of Metal-on-Polymer Total Hip Replacements" Bioengineering 12, no. 6: 663. https://doi.org/10.3390/bioengineering12060663
APA StyleClegg, B. A., Perry, S., De Pieri, E., Redmond, A. C., Ferguson, S. J., Lunn, D. E., Hall, R. M., Bryant, M. G., Emami, N., & Beadling, A. R. (2025). Effects of Physiological Loading from Patient-Derived Activities of Daily Living on the Wear of Metal-on-Polymer Total Hip Replacements. Bioengineering, 12(6), 663. https://doi.org/10.3390/bioengineering12060663