A Time-Series Approach for Machine Learning-Based Patient-Specific Quality Assurance of Radiosurgery Plans
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Model Selection
- The original dataset was first divided using a time-series approach, with the most recent 20% of data assigned to the test set. This proportion was selected to represent approximately 6 months of clinical PSQA workload, enabling a realistic assessment of the model’s prospective performance. The remaining 80%—consisting of the oldest data—was further split into training and validation sets using a stratified approach on GPR with an 80-20 ratio. As a result, the training, validation, and test sets contained 1555, 389, and 486 arcs, respectively.
- A randomized search with 5-fold cross-validation was performed to select the optimal combination of hyperparameters using 1000 iterations. The mean absolute error (MAE) was used as the evaluation metric, averaged across the cross-validation folds. Features were rescaled using percentile statistics as follows, which are robust to outliers:To prevent data leakage, this scaling operation was performed independently within each training fold.
- Using the optimal combination of hyperparameters (reported in the Supplementary Material, Table S1), the model was retrained on the whole training set.
- The validation set was used for determining an optimal threshold limit (TL) to assess the classification performance of the model on the test set, which contained the most recent data.
2.3. Model Assessment
2.4. Interpretability
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAPM | American Association of Physicists in Medicine |
AUC | Area under the curve |
DL | Deep learning |
EPID | Electronic portal imaging device |
GPR | Gamma passing rate |
IMRT | Intensity-modulated radiotherapy |
Linac | Linear accelerator |
MAE | Mean absolute error |
ML | Machine learning |
PDP | Partial dependence plot |
PSQA | Patient-specific quality assurance |
ROC | Receiver operating characteristic |
SRS | Stereotactic radiosurgery |
TL | Threshold limit |
TPS | Treatment planning system |
VMAT | Volumetric modulated arc therapy |
References
- Teoh, M.; Clark, C.H.; Wood, K.; Whitaker, S.; Nisbet, A. Volumetric Modulated Arc Therapy: A Review of Current Literature and Clinical Use in Practice. Br. J. Radiol. 2011, 84, 967–996. [Google Scholar] [CrossRef]
- Dunn, L.; Tamborriello, A.; Subramanian, B.; Xu, X.; Ruruku, T.T. Assessing the Sensitivity and Suitability of a Range of Detectors for SIMT PSQA. J. Appl. Clin. Med. Phys. 2024, 25, e14343. [Google Scholar] [CrossRef]
- Xia, Y.; Adamson, J.; Zlateva, Y.; Giles, W. Application of TG-218 Action Limits to SRS and SBRT Pre-Treatment Patient Specific QA. J. Radiosurg SBRT 2020, 7, 135–147. [Google Scholar]
- Low, D.A. Gamma Dose Distribution Evaluation Tool. J. Phys. Conf. Ser. 2010, 250, 012071. [Google Scholar] [CrossRef]
- Miften, M.; Olch, A.; Mihailidis, D.; Moran, J.; Pawlicki, T.; Molineu, A.; Li, H.; Wijesooriya, K.; Shi, J.; Xia, P.; et al. Tolerance Limits and Methodologies for IMRT Measurement-Based Verification QA: Recommendations of AAPM Task Group. No. 218. Med. Phys. 2018, 45, e53–e83. [Google Scholar] [CrossRef]
- McNiven, A.L.; Sharpe, M.B.; Purdie, T.G. A New Metric for Assessing IMRT Modulation Complexity and Plan Deliverability. Med. Phys. 2010, 37, 505–515. [Google Scholar] [CrossRef]
- Masi, L.; Doro, R.; Favuzza, V.; Cipressi, S.; Livi, L. Impact of Plan Parameters on the Dosimetric Accuracy of Volumetric Modulated Arc Therapy. Med. Phys. 2013, 40, 071718. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Wu, H.-G.; Kim, J.H.; Carlson, J.N.K.; Kim, K. The Effect of MLC Speed and Acceleration on the Plan Delivery Accuracy of VMAT. Br. J. Radiol. 2015, 88, 20140698. [Google Scholar] [CrossRef] [PubMed]
- Vieillevigne, L.; Khamphan, C.; Saez, J.; Hernandez, V. On the Need for Tuning the Dosimetric Leaf Gap for Stereotactic Treatment Plans in the Eclipse Treatment Planning System. J. Appl. Clin. Med. Phys. 2019, 20, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Antoine, M.; Ralite, F.; Soustiel, C.; Marsac, T.; Sargos, P.; Cugny, A.; Caron, J. Use of Metrics to Quantify IMRT and VMAT Treatment Plan Complexity: A Systematic Review and Perspectives. Phys. Medica 2019, 64, 98–108. [Google Scholar] [CrossRef]
- Chiavassa, S.; Bessieres, I.; Edouard, M.; Mathot, M.; Moignier, A. Complexity Metrics for IMRT and VMAT Plans: A Review of Current Literature and Applications. Br. J. Radiol. 2019, 92, 20190270. [Google Scholar] [CrossRef]
- Lam, D.; Zhang, X.; Li, H.; Deshan, Y.; Schott, B.; Zhao, T.; Zhang, W.; Mutic, S.; Sun, B. Predicting Gamma Passing Rates for Portal Dosimetry-Based IMRT QA Using Machine Learning. Med. Phys. 2019, 46, 4666–4675. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Zhang, X.; Liu, L.; Li, J.; Chan, M.F.; Sui, J.; Yang, R. Machine Learning for Patient-Specific Quality Assurance of VMAT: Prediction and Classification Accuracy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Hirashima, H.; Ono, T.; Nakamura, M.; Miyabe, Y.; Mukumoto, N.; Iramina, H.; Mizowaki, T. Improvement of Prediction and Classification Performance for Gamma Passing Rate by Using Plan Complexity and Dosiomics Features. Radiother. Oncol. 2020, 153, 250–257. [Google Scholar] [CrossRef]
- Wall, P.D.H.; Fontenot, J.D. Application and Comparison of Machine Learning Models for Predicting Quality Assurance Outcomes in Radiation Therapy Treatment Planning. Inform. Med. Unlocked 2020, 18, 100292. [Google Scholar] [CrossRef]
- Kusunoki, T.; Hatanaka, S.; Hariu, M.; Kusano, Y.; Yoshida, D.; Katoh, H.; Shimbo, M.; Takahashi, T. Evaluation of Prediction and Classification Performances in Different Machine Learning Models for Patient-Specific Quality Assurance of Head-And-Neck VMAT Plans. Med. Phys. 2022, 49, 727–741. [Google Scholar] [CrossRef] [PubMed]
- Lambri, N.; Hernandez, V.; Sáez, J.; Pelizzoli, M.; Parabicoli, S.; Tomatis, S.; Loiacono, D.; Scorsetti, M.; Mancosu, P. Multicentric Evaluation of a Machine Learning Model to Streamline the Radiotherapy Patient Specific Quality Assurance Process. Phys. Medica 2023, 110, 102593. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, Q.; Wang, Z.; Yang, B.; Zhang, W.; Qiu, J. Patient-Specific Quality Assurance Prediction Models Based on Machine Learning for Novel Dual-Layered MLC Linac. Med. Phys. 2023, 50, 1205–1214. [Google Scholar] [CrossRef]
- Tomori, S.; Kadoya, N.; Kajikawa, T.; Kimura, Y.; Narazaki, K.; Ochi, T.; Jingu, K. Systematic Method for a Deep Learning-Based Prediction Model for Gamma Evaluation in Patient-Specific Quality Assurance of Volumetric Modulated Arc Therapy. Med. Phys. 2021, 48, 1003–1018. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Zhang, S.; Zhang, X.; Zhang, Q.; Chan, M.F.; Yang, R.; Sui, J. Multi-Task Autoencoder Based Classification-Regression Model for Patient-Specific VMAT QA. Phys. Med. Biol. 2020, 65, 235023. [Google Scholar] [CrossRef]
- Kimura, Y.; Kadoya, N.; Tomori, S.; Oku, Y.; Jingu, K. Error Detection Using a Convolutional Neural Network with Dose Difference Maps in Patient-Specific Quality Assurance for Volumetric Modulated Arc Therapy. Phys. Medica 2020, 73, 57–64. [Google Scholar] [CrossRef]
- Nicosia, L.; Figlia, V.; Mazzola, R.; Napoli, G.; Giaj-Levra, N.; Ricchetti, F.; Rigo, M.; Lunardi, G.; Tomasini, D.; Bonù, M.L.; et al. Repeated Stereotactic Radiosurgery (SRS) Using a Non-Coplanar Mono-Isocenter (HyperArcTM) Technique versus Upfront Whole-Brain Radiotherapy (WBRT): A Matched-Pair Analysis. Clin. Exp. Metastasis 2020, 37, 77–83. [Google Scholar] [CrossRef]
- Lambri, N.; Dei, D.; Goretti, G.; Crespi, L.; Brioso, R.C.; Pelizzoli, M.; Parabicoli, S.; Bresolin, A.; Gallo, P.; La Fauci, F.; et al. Machine Learning and Lean Six Sigma for Targeted Patient-Specific Quality Assurance of Volumetric Modulated Arc Therapy Plans. Phys. Imaging Radiat. Oncol. 2024, 31, 100617. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, V.; Saez, J.; Pasler, M.; Jurado-Bruggeman, D.; Jornet, N. Comparison of Complexity Metrics for Multi-Institutional Evaluations of Treatment Plans in Radiotherapy. Phys. Imaging Radiat. Oncol. 2018, 5, 37–43. [Google Scholar] [CrossRef]
- Crowe, S.B.; Kairn, T.; Kenny, J.; Knight, R.T.; Hill, B.; Langton, C.M.; Trapp, J.V. Treatment Plan Complexity Metrics for Predicting IMRT Pre-Treatment Quality Assurance Results. Australas. Phys. Eng. Sci. Med. 2014, 37, 475–482. [Google Scholar] [CrossRef]
- Park, J.M.; Park, S.-Y.; Kim, H.; Kim, J.H.; Carlson, J.; Ye, S.-J. Modulation Indices for Volumetric Modulated Arc Therapy. Phys. Med. Biol. 2014, 59, 7315–7340. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Cho, S.H.; Zhang, X.; Hoffman, K.E.; Kudchadker, R.J. Quantification of Beam Complexity in Intensity-Modulated Radiation Therapy Treatment Plans. Med. Phys. 2014, 41, 021716. [Google Scholar] [CrossRef] [PubMed]
- Younge, K.C.; Matuszak, M.M.; Moran, J.M.; McShan, D.L.; Fraass, B.A.; Roberts, D.A. Penalization of Aperture Complexity in Inversely Planned Volumetric Modulated Arc Therapy. Med. Phys. 2012, 39, 7160–7170. [Google Scholar] [CrossRef]
- Chan, M.F.; Witztum, A.; Valdes, G. Integration of AI and Machine Learning in Radiotherapy QA. Front. Artif. Intell. 2020, 3, 577620. [Google Scholar] [CrossRef]
- Osman, A.F.I.; Maalej, N.M. Applications of Machine and Deep Learning to Patient-Specific IMRT/VMAT Quality Assurance. J. Appl. Clin. Med. Phys. 2021, 22, 20–36. [Google Scholar] [CrossRef]
- Ono, T.; Iramina, H.; Hirashima, H.; Adachi, T.; Nakamura, M.; Mizowaki, T. Applications of Artificial Intelligence for Machine- and Patient-Specific Quality Assurance in Radiation Therapy: Current Status and Future Directions. J. Radiat. Res. 2024, 65, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Zhang, J.; Yu, B.; Zheng, H.; Wu, Y.; Lin, Z.; Ning, B.; Yi, J.; Xie, C.; Jin, X. Integrating Plan Complexity and Dosiomics Features with Deep Learning in Patient-Specific Quality Assurance for Volumetric Modulated Arc Therapy. Radiat. Oncol. 2023, 18, 116. [Google Scholar] [CrossRef]
- Noblet, C.; Maunet, M.; Duthy, M.; Coste, F.; Moreau, M. A TPS Integrated Machine Learning Tool for Predicting Patient-Specific Quality Assurance Outcomes in Volumetric-Modulated Arc Therapy. Phys. Medica 2024, 118, 103208. [Google Scholar] [CrossRef]
- Lambri, N.; Zaccone, C.; Bianchi, M.; Bresolin, A.; Dei, D.; Gallo, P.; La Fauci, F.; Lobefalo, F.; Paganini, L.; Pelizzoli, M.; et al. Optimization of Replanning Processes for Volumetric Modulated Arc Therapy Plans at Risk of QA Failure Predicted by a Machine Learning Model. Appl. Sci. 2024, 14, 6103. [Google Scholar] [CrossRef]
- Hurkmans, C.; Bibault, J.-E.; Brock, K.K.; Van Elmpt, W.; Feng, M.; David Fuller, C.; Jereczek-Fossa, B.A.; Korreman, S.; Landry, G.; Madesta, F.; et al. A Joint ESTRO and AAPM Guideline for Development, Clinical Validation and Reporting of Artificial Intelligence Models in Radiation Therapy. Radiother. Oncol. 2024, 197, 110345. [Google Scholar] [CrossRef] [PubMed]
# | Name | Description |
---|---|---|
1 | Area | Field aperture area (mm2) |
2 | MUOverDosePerFraction | Monitor units normalized to the prescribed dose per fraction (MU/Gy) |
3 | MeanMLCSpeed | Mean speed of all in-field leaves (cm/s) |
4 | MLCSpeedModulation | Sum of MLC speed variations divided by total leaf travel (cm/s mm−1) |
5 | MeanRR | Mean dose rate (MU/min) |
6 | RRModulation | Total dose rate variation divided by arc length (MU/min deg−1) |
7 | MeanGS | Mean gantry speed (deg/s) |
8 | GSModulation | Total gantry speed variation divided by arc length (deg/s deg−1) |
9 | Q1 MLCGap | First quartile of MLC gap size distribution (mm) |
10 | Median MLCGap | Median of MLC gap size distribution (mm) |
11 | SAS10 [25] | Small aperture score: the fraction of MLC gap sizes < 10 mm |
12 | MeanTGI [9] | Mean tongue and groove index: irregularity in beam aperture shapes |
13 | MCS [6] | Modulation complexity score: a combination of aperture area variability (AAV) and leaf sequence variability (LSV) |
14 | MITotal [26] | Modulation index total: combines MLC dynamics, gantry speed variability, and dose rate variability |
15 | BI [27] | Beam irregularity: measures the non-circularity of the MLC aperture |
16 | BM [27] | Beam modulation: indicates to what extent the beam is delivered through small apertures |
17 | EdgeMetric [28] | Ratio of MLC side length to aperture area (mm−1) |
18 | LT/AL [7] | Average leaf travel distance divided by the arc length (mm/deg) |
Interval (%) | Median GPR (%) | Q1–Q3 (%) | Number of Arcs |
---|---|---|---|
[95, 100] | 99.1 | 97.7–99.8 | 1828 |
[90, 95) | 93.1 | 91.8–94.1 | 400 |
[85, 90) | 88.1 | 86.9–89.1 | 151 |
[80, 85) | 83.1 | 82.1–84.4 | 51 |
Full set | 98.3 | 95.1–99.6 | 2430 |
Metric | Value |
---|---|
Cross-validation MAE | 2.5% ± 0.1% |
Test MAE | 2.6% |
% arcs with AbsErr ≤ 3%, 5%, 10% | 70%, 88%, 98% |
75th, 90th, 95th, and 98th percentile of AbsErr | 3.3%, 5.5%, 7.5%, 10% |
R2 | 0.27 (baseline 0) 1 |
ROC-AUC | 0.85 (baseline 0.50) |
AP | 0.67 (baseline 0.32) 2 |
Sensitivity (97%TL) | 93% |
Specificity (97% TL) | 56% |
Precision (97%TL) | 50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzzi, S.; Mancosu, P.; Bresolin, A.; Gallo, P.; La Fauci, F.; Lobefalo, F.; Paganini, L.; Pelizzoli, M.; Reggiori, G.; Franzese, C.; et al. A Time-Series Approach for Machine Learning-Based Patient-Specific Quality Assurance of Radiosurgery Plans. Bioengineering 2025, 12, 897. https://doi.org/10.3390/bioengineering12080897
Buzzi S, Mancosu P, Bresolin A, Gallo P, La Fauci F, Lobefalo F, Paganini L, Pelizzoli M, Reggiori G, Franzese C, et al. A Time-Series Approach for Machine Learning-Based Patient-Specific Quality Assurance of Radiosurgery Plans. Bioengineering. 2025; 12(8):897. https://doi.org/10.3390/bioengineering12080897
Chicago/Turabian StyleBuzzi, Simone, Pietro Mancosu, Andrea Bresolin, Pasqualina Gallo, Francesco La Fauci, Francesca Lobefalo, Lucia Paganini, Marco Pelizzoli, Giacomo Reggiori, Ciro Franzese, and et al. 2025. "A Time-Series Approach for Machine Learning-Based Patient-Specific Quality Assurance of Radiosurgery Plans" Bioengineering 12, no. 8: 897. https://doi.org/10.3390/bioengineering12080897
APA StyleBuzzi, S., Mancosu, P., Bresolin, A., Gallo, P., La Fauci, F., Lobefalo, F., Paganini, L., Pelizzoli, M., Reggiori, G., Franzese, C., Tomatis, S., Scorsetti, M., Lenardi, C., & Lambri, N. (2025). A Time-Series Approach for Machine Learning-Based Patient-Specific Quality Assurance of Radiosurgery Plans. Bioengineering, 12(8), 897. https://doi.org/10.3390/bioengineering12080897