Stromal Collagen Arrangement Correlates with Stiffness of the Canine Cornea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Canine Eyes
2.2. Human Corneal Buttons
2.3. Second-Harmonic Generation Imaging
2.4. Atomic Force Microscopy
2.4.1. Sample Preparation
2.4.2. AFM
2.5. Statistical Analysis
3. Results
3.1. Second-Harmonic Generation Imaging of Canine Corneal Stroma
3.2. Atomic Force Microscopy of Canine and Human Corneal Stroma
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Depalle, B.; Qin, Z.; Shefelbine, S.J.; Buehler, M.J. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content. J. Bone Miner. Res. 2016, 31, 380–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meek, K.M.; Boote, C. The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma. Prog. Retin. Eye Res. 2009, 28, 369–392. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Giese, G.; Bille, J. Second harmonic generation imaging of collagen fibrils in cornea and sclera. Opt. Express 2005, 13, 5791–5797. [Google Scholar] [CrossRef] [PubMed]
- Komai, Y.; Ushiki, T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest. Ophthalmol. Vis. Sci. 1991, 32, 2244–2258. [Google Scholar] [PubMed]
- Jester, J.V.; Winkler, M.; Jester, B.E.; Nien, C.; Chai, D.; Brown, D.J. Evaluating corneal collagen organization using high-resolution nonlinear optical macroscopy. Eye Contact Lens. 2010, 36, 260–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkler, M.; Chai, D.; Kriling, S.; Nien, C.J.; Brown, D.J.; Jester, B.; Juhasz, T.; Jester, J.V. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. Invest. Ophthalmol. Vis. Sci. 2011, 52, 8818–8827. [Google Scholar] [CrossRef] [PubMed]
- Winkler, M.; Shoa, G.; Tran, S.T.; Xie, Y.; Thomasy, S.; Raghunathan, V.K.; Murphy, C.; Brown, D.J.; Jester, J.V. A Comparative Study of Vertebrate Corneal Structure: The Evolution of a Refractive Lens. Invest. Ophthalmol. Vis. Sci. 2015, 56, 2764–2772. [Google Scholar] [CrossRef] [PubMed]
- Thomasy, S.M.; Raghunathan, V.K.; Winkler, M.; Reilly, C.M.; Sadeli, A.R.; Russell, P.; Jester, J.V.; Murphy, C.J. Elastic modulus and collagen organization of the rabbit cornea: Epithelium to endothelium. Acta. Biomater. 2014, 10, 785–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Ghezzi, C.E.; Gomes, R.; Pollard, R.E.; Funderburgh, J.L.; Kaplan, D.L. In vitro 3D corneal tissue model with epithelium, stroma, and innervation. Biomaterials 2017, 112, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roeder, B.A.; Kokini, K.; Sturgis, J.E.; Robinson, J.P.; Voytik-Harbin, S.L. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 2002, 124, 214–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsheikh, A.; Wang, D.; Brown, M.; Rama, P.; Campanelli, M.; Pye, D. Assessment of corneal biomechanical properties and their variation with age. Curr. Eye Res. 2007, 32, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.T.; Raghunathan, V.K.; Thomasy, S.M.; Murphy, C.J.; Russell, P. Robust and artifact-free mounting of tissue samples for atomic force microscopy. Biotechniques 2014, 56, 40–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKee, C.T.; Last, J.A.; Russell, P.; Murphy, C.J. Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Eng. Part B Rev. 2011, 17, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohlhaas, M.; Spoerl, E.; Schilde, T.; Unger, G.; Wittig, C.; Pillunat, L.E. Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light. J. Cataract Refract. Surg. 2006, 32, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, M.; Lombardo, G.; Carbone, G.; De Santo, M.P.; Barberi, R.; Serrao, S. Biomechanics of the anterior human corneal tissue investigated with atomic force microscopy. Invest. Ophthalmol. Vis. Sci. 2012, 53, 1050–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Last, J.A.; Thomasy, S.M.; Croasdale, C.R.; Russell, P.; Murphy, C.J. Compliance profile of the human cornea as measured by atomic force microscopy. Micron 2012, 43, 1293–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Anterior Stroma | Posterior Stroma |
---|---|---|
Rabbit [8] | 1.1 ± 0.6 | 0.4 ± 0.2 |
Canine | 1.3 ± 1.0 | 0.5 ± 0.3 |
Human | 16.2 ± 2.5 | 2.5 ± 1.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonard, B.C.; Cosert, K.; Winkler, M.; Marangakis, A.; Thomasy, S.M.; Murphy, C.J.; Jester, J.V.; Raghunathan, V.K. Stromal Collagen Arrangement Correlates with Stiffness of the Canine Cornea. Bioengineering 2020, 7, 4. https://doi.org/10.3390/bioengineering7010004
Leonard BC, Cosert K, Winkler M, Marangakis A, Thomasy SM, Murphy CJ, Jester JV, Raghunathan VK. Stromal Collagen Arrangement Correlates with Stiffness of the Canine Cornea. Bioengineering. 2020; 7(1):4. https://doi.org/10.3390/bioengineering7010004
Chicago/Turabian StyleLeonard, Brian C., Krista Cosert, Moritz Winkler, Ariana Marangakis, Sara M. Thomasy, Christopher J. Murphy, James V. Jester, and Vijay Krishna Raghunathan. 2020. "Stromal Collagen Arrangement Correlates with Stiffness of the Canine Cornea" Bioengineering 7, no. 1: 4. https://doi.org/10.3390/bioengineering7010004
APA StyleLeonard, B. C., Cosert, K., Winkler, M., Marangakis, A., Thomasy, S. M., Murphy, C. J., Jester, J. V., & Raghunathan, V. K. (2020). Stromal Collagen Arrangement Correlates with Stiffness of the Canine Cornea. Bioengineering, 7(1), 4. https://doi.org/10.3390/bioengineering7010004