Investigation of Xinomavro Red Wine Aging with Various Wood Chips Using Pulsed Electric Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Wood Chips
2.3. Vinification Process
2.4. Wine Sample
2.5. PEF Apparatus and Treatment
2.6. Sensory Evaluation
2.7. Total Polyphenol Content (TPC) Analysis
2.8. Color Analysis
2.9. Volatile Compounds (VCs) Analysis by HS-SPME/GC-MS
2.10. Statistical Analysis
3. Results and Discussion
3.1. Sensory Evaluation
3.2. Polyphenol Enrichment
3.3. Color Analysis
3.4. VCs Analysis
3.5. Principal Component Analysis (PCA) and Multivariate Correlation Analysis (MCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IOV. Statistical Report on World Vitiviniculture. The International Organisation of Vine and Wine. Available online: https://www.oiv.int/sites/default/files/documents/OIV_State_of_the_world_Vine_and_Wine_sector_in_2022_2.pdf (accessed on 5 November 2023).
- Vecchio, R.; Decordi, G.; Grésillon, L.; Gugenberger, C.; Mahéo, M.; Jourjon, F. European Consumers’ Perception of Moderate Wine Consumption on Health. Wine Econ. Policy 2017, 6, 14–22. [Google Scholar] [CrossRef]
- Artero, A.; Artero, A.; Tarín, J.J.; Cano, A. The Impact of Moderate Wine Consumption on Health. Maturitas 2015, 80, 3–13. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and Grape Polyphenols—A Chemical Perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Poulsen, M.M.; Jørgensen, J.O.L.; Jessen, N.; Richelsen, B.; Pedersen, S.B. Resveratrol in Metabolic Health: An Overview of the Current Evidence and Perspectives. Ann. N. Y. Acad. Sci. 2013, 1290, 74–82. [Google Scholar] [CrossRef]
- Jackson, D.I.; Lombard, P.B. Environmental and Management Practices Affecting Grape Composition and Wine Quality—A Review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar] [CrossRef]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine Aroma Compounds in Grapes: A Critical Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Correia, A.C.; González-SanJosé, M.L.; Ortega-Heras, M.; Jordão, A.M. Preliminary Study of the Effect of Short Maceration with Cherry and Oak Wood Chips on the Volatile Composition of Different Craft Beers. Beverages 2023, 9, 79. [Google Scholar] [CrossRef]
- Tao, Y.; García, J.F.; Sun, D.-W. Advances in Wine Aging Technologies for Enhancing Wine Quality and Accelerating Wine Aging Process. Crit. Rev. Food Sci. Nutr. 2014, 54, 817–835. [Google Scholar] [CrossRef]
- Carpena, M.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Wine Aging Technology: Fundamental Role of Wood Barrels. Foods 2020, 9, 1160. [Google Scholar] [CrossRef]
- Collins, T.S.; Miles, J.L.; Boulton, R.B.; Ebeler, S.E. Targeted Volatile Composition of Oak Wood Samples Taken during Toasting at a Commercial Cooperage. Tetrahedron 2015, 71, 2971–2982. [Google Scholar] [CrossRef]
- Tsapou, E.A.; Ntourtoglou, G.; Drosou, F.; Tataridis, P.; Dourtoglou, T.; Lalas, S.; Dourtoglou, V. In Situ Creation of the Natural Phenolic Aromas of Beer: A Pulsed Electric Field Applied to Wort-Enriched Flax Seeds. Front. Bioeng. Biotechnol. 2020, 8, 583617. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Wang, J.N.; Jiang, Y.; Ma, X.M.; Ma, F.L.; Ma, X.L.; Zhang, Y.; Tang, L.H.; Wang, W.X.; Ma, G.M.; et al. Identification of Oak-Barrel and Stainless Steel Tanks with Oak Chips Aged Wines in Ningxia Based on Three-Dimensional Fluorescence Spectroscopy Combined with Chemometrics. Molecules 2023, 28, 3688. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Review of Quality Factors on Wine Ageing in Oak Barrels. Trends Food Sci. Technol. 2006, 17, 438–447. [Google Scholar] [CrossRef]
- Jordão, A.M.; Cosme, F. The Application of Wood Species in Enology: Chemical Wood Composition and Effect on Wine Quality. Appl. Sci. 2022, 12, 3179. [Google Scholar] [CrossRef]
- Dumitriu, G.D.; Teodosiu, C.; Gabur, I.; Cotea, V.V.; Peinado, R.A.; de Lerma, N.L. Evaluation of Aroma Compounds in the Process of Wine Ageing with Oak Chips. Foods 2019, 8, 662. [Google Scholar] [CrossRef] [PubMed]
- Knorr, D.; Angersbach, A. Impact of High-Intensity Electric Field Pulses on Plant Membrane Permeabilization. Trends Food Sci. Technol. 1998, 9, 185–191. [Google Scholar] [CrossRef]
- Ade-Omowaye, B.I.O.; Angersbach, A.; Taiwo, K.A.; Knorr, D. Use of Pulsed Electric Field Pre-Treatment to Improve Dehydration Characteristics of Plant Based Foods. Trends Food Sci. Technol. 2001, 12, 285–295. [Google Scholar] [CrossRef]
- Barba, F.J.; Parniakov, O.; Pereira, S.A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J.A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D.; et al. Current Applications and New Opportunities for the Use of Pulsed Electric Fields in Food Science and Industry. Food Res. Int. 2015, 77, 773–798. [Google Scholar] [CrossRef]
- Janositz, A.; Knorr, D. Microscopic Visualization of Pulsed Electric Field Induced Changes on Plant Cellular Level. Innov. Food Sci. Emerg. Technol. 2010, 11, 592–597. [Google Scholar] [CrossRef]
- Zhang, B.; Zeng, X.A.; Sun, D.W.; Yu, S.J.; Yang, M.F.; Ma, S. Effect of Electric Field Treatments on Brandy Aging in Oak Barrels. Food Bioprocess Technol. 2013, 6, 1635–1643. [Google Scholar] [CrossRef]
- Hernández-Carapia, M.Á.; Verde-Calvo, J.R.; Escalona-Buendía, H.B.; Peña-Álvarez, A. Effect of Maturation with American Oak Chips on the Volatile and Sensory Profile of a Cabernet Sauvignon Rosé Wine and Its Comparison with Commercial Wines. Beverages 2023, 9, 72. [Google Scholar] [CrossRef]
- Delsart, C.; Ghidossi, R.; Poupot, C.; Cholet, C.; Grimi, N.; Vorobiev, E.; Milisic, V.; Mietton Peuchot, M. Enhanced Extraction of Phenolic Compounds from Merlot Grapes by Pulsed Electric Field Treatment. Am. J. Enol. Vitic. 2012, 63, 205–211. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, T.; Zhang, Y.; Zhang, A.; Gai, L.; Niu, D. Potential Applications of Pulsed Electric Field in the Fermented Wine Industry. Front. Nutr. 2022, 9, 1048632. [Google Scholar] [CrossRef] [PubMed]
- Toulaki, A.K.; Bozinou, E.; Athanasiadis, V.; Chatzimitakos, T.; Mantanis, G.I.; Dourtoglou, V.G.; Lalas, S.I. Accelerating Xinomavro Red Wine Flavor Aging Using a Pulsed Electric Field and Various Wood Chips. Appl. Sci. 2023, 13, 12844. [Google Scholar] [CrossRef]
- Koussissi, E.; Paterson, A.; Piggott, J.R. Sensory Flavour Discrimination of Greek Dry Red Wines. J. Sci. Food Agric. 2003, 83, 797–808. [Google Scholar] [CrossRef]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Fyllas, N.M.; Theocharis, S.; Jones, G.V. Greek Wine Quality Assessment and Relationships with Climate: Trends, Future Projections and Uncertainties. Water 2022, 14, 573. [Google Scholar] [CrossRef]
- ISO 3591:1977; Sensory Analysis—Apparatus—Wine-Tasting Glass. ISO: Geneva, Switzerland, 1977.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2007.
- European Society for Opinion and Market Research. Available online: https://esomar.org/ (accessed on 13 January 2024).
- Vicaş, S.I.; Bandici, L.; Teuşdea, A.C.; Turcin, V.; Popa, D.; Bandici, G.E. The Bioactive Compounds, Antioxidant Capacity, and Color Intensity in Must and Wines Derived from Grapes Processed by Pulsed Electric Field. CyTA-J. Food 2017, 15, 553–562. [Google Scholar] [CrossRef]
- Martínez-Pérez, M.P.; Bautista-Ortín, A.B.; Pérez-Porras, P.; Jurado, R.; Gómez-Plaza, E. A New Approach to the Reduction of Alcohol Content in Red Wines: The Use of High-Power Ultrasounds. Foods 2020, 9, 726. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, Volume 2: The Chemistry of Wine Stabilization and Treatments; John Wiley & Sons: New York, NY, USA, 2021; ISBN 978-1-119-58776-7. [Google Scholar]
- Hjelmeland, A.K.; King, E.S.; Ebeler, S.E.; Heymann, H. Characterizing the Chemical and Sensory Profiles of United States Cabernet Sauvignon Wines and Blends. Am. J. Enol. Vitic. 2013, 64, 169–179. [Google Scholar] [CrossRef]
- Tavares, M.; Jordão, A.M.; Ricardo-da-Silva, J.M. Impact of Cherry, Acacia and Oak Chips on Red Wine Phenolic Parameters and Sensory Profile. OENO One 2017, 51, 329. [Google Scholar] [CrossRef]
- Comuzzo, P.; Voce, S.; Grazioli, C.; Tubaro, F.; Marconi, M.; Zanella, G.; Querzè, M. Pulsed Electric Field Processing of Red Grapes (Cv. Rondinella): Modifications of Phenolic Fraction and Effects on Wine Evolution. Foods 2020, 9, 414. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Enhancing Hydroxycinnamic Acids and Flavan-3-Ol Contents by Pulsed Electric Fields without Affecting Quality Attributes of Apple. Food Res. Int. 2019, 121, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, K.A.G.; Hamid, N.; Oey, I.; Pook, C.; Gutierrez-Maddox, N.; Ma, Q.; Ying Leong, S.; Lu, J. Red Cherries (Prunus avium Var. Stella) Processed by Pulsed Electric Field—Physical, Chemical and Microbiological Analyses. Food Chem. 2018, 240, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Gordillo, B.; Cejudo-Bastante, M.J.; Rodríguez-Pulido, F.J.; González-Miret, M.L.; Heredia, F.J. Application of the Differential Colorimetry and Polyphenolic Profile to the Evaluation of the Chromatic Quality of Tempranillo Red Wines Elaborated in Warm Climate. Influence of the Presence of Oak Wood Chips during Fermentation. Food Chem. 2013, 141, 2184–2190. [Google Scholar] [CrossRef] [PubMed]
- Chinnici, F.; Natali, N.; Sonni, F.; Bellachioma, A.; Riponi, C. Comparative Changes in Color Features and Pigment Composition of Red Wines Aged in Oak and Cherry Wood Casks. J. Agric. Food Chem. 2011, 59, 6575–6582. [Google Scholar] [CrossRef] [PubMed]
- Teusdea, A.C.; Bandici, L.; Kordiaka, R.; Bandici, G.E.; Vicas, S.I. The Effect of Different Pulsed Electric Field Treatments on Producing High Quality Red Wines. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 540–547. [Google Scholar] [CrossRef]
- Puértolas, E.; Saldaña, G.; Álvarez, I.; Raso, J. Effect of Pulsed Electric Field Processing of Red Grapes on Wine Chromatic and Phenolic Characteristics during Aging in Oak Barrels. J. Agric. Food Chem. 2010, 58, 2351–2357. [Google Scholar] [CrossRef]
- Ricci, A.; Parpinello, G.P.; Banfi, B.A.; Olivi, F.; Versari, A. Preliminary Study of the Effects of Pulsed Electric Field (PEF) Treatments in Wines Obtained from Early-Harvested Sangiovese Grapes. Beverages 2020, 6, 34. [Google Scholar] [CrossRef]
- Gallego, L.; Del Alamo, M.; Nevares, I.; Fernández, J.; de Simón, B.F.; Cadahía, E. Phenolic Compounds and Sensorial Characterization of Wines Aged with Alternative to Barrel Products Made of Spanish Oak Wood (Quercus pyrenaica Willd.). Food Sci. Technol. Int. 2012, 18, 151–165. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z. Volatile Compounds of Young Wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay Varieties Grown in the Loess Plateau Region of China. Molecules 2010, 15, 9184–9196. [Google Scholar] [CrossRef]
- Fang, Y.; Qian, M. Aroma Compounds in Oregon Pinot Noir Wine Determined by Aroma Extract Dilution Analysis (AEDA). Flavour Fragr. J. 2005, 20, 22–29. [Google Scholar] [CrossRef]
- Sooklim, C.; Samakkarn, W.; Thongmee, A.; Duangphakdee, O.; Soontorngun, N. Enhanced Aroma and Flavour Profile of Fermented Tetragonula pagdeni Schwarz Honey by a Novel Yeast T. Delbrueckii GT-ROSE1 with Superior Fermentability. Food Biosci. 2022, 50, 102001. [Google Scholar] [CrossRef]
- Goulioti, E.; Jeffery, D.W.; Kanapitsas, A.; Lola, D.; Papadopoulos, G.; Bauer, A.; Kotseridis, Y. Chemical and Sensory Characterization of Xinomavro Red Wine Using Grapes from Protected Designations of Northern Greece. Molecules 2023, 28, 5016. [Google Scholar] [CrossRef] [PubMed]
- Comuzzo, P.; Marconi, M.; Zanella, G.; Querzè, M. Pulsed Electric Field Processing of White Grapes (Cv. Garganega): Effects on Wine Composition and Volatile Compounds. Food Chem. 2018, 264, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Xi, Z.; Luo, M.; Zhang, Z. Comparison on Aroma Compounds in Cabernet Sauvignon and Merlot Wines from Four Wine Grape-Growing Regions in China. Food Res. Int. 2013, 51, 482–489. [Google Scholar] [CrossRef]
- Escudero, A.; Campo, E.; Fariña, L.; Cacho, J.; Ferreira, V. Analytical Characterization of the Aroma of Five Premium Red Wines. Insights into the Role of Odor Families and the Concept of Fruitiness of Wines. J. Agric. Food Chem. 2007, 55, 4501–4510. [Google Scholar] [CrossRef]
- Falcao, L.D.; Lytra, G.; Darriet, P.; Barbe, J.-C. Identification of Ethyl 2-Hydroxy-4-Methylpentanoate in Red Wines, a Compound Involved in Blackberry Aroma. Food Chem. 2012, 132, 230–236. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative Determination of the Odorants of Young Red Wines from Different Grape Varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Pittari, E.; Moio, L.; Piombino, P. Interactions between Polyphenols and Volatile Compounds in Wine: A Literature Review on Physicochemical and Sensory Insights. Appl. Sci. 2021, 11, 1157. [Google Scholar] [CrossRef]
Parameter | Amyndeo | Naoussa | Goumenissa | Velventos |
---|---|---|---|---|
Alcohol content (% v/v) | 13.8 ± 0.77 a | 14.1 ± 0.38 a | 12.8 ± 0.83 a | 13 ± 0.87 a |
Density (g/mL) | 0.99 ± 0.07 a | 0.99 ± 0.07 a | 0.99 ± 0.07 a | 0.99 ± 0.04 a |
Reducing sugars (g/L) | 0.4 ± 0.03 c | 1.4 ± 0.05 a | 1.0 ± 0.05 b | 1.0 ± 0.07 b |
Volatile acidity (g/L acetic acid) | 0.54 ± 0.03 a | 0.5 ± 0.03 a | 0.38 ± 0.02 b | 0.53 ± 0.04 a |
Total acidity (g/L tartaric acid) | 6.5 ± 0.4 a | 5.1 ± 0.31 b | 7.0 ± 0.32 a | 4.8 ± 0.13 b |
pH | 3.31 ± 0.2 a,b | 3.66 ± 0.25 a,b | 3.17 ± 0.18 b | 3.79 ± 0.27 a |
Malic acid (g/L) | 0.1 ± 0 c | 0.3 ± 0.01 b | 0.5 ± 0.02 a | 0.3 ± 0.01 b |
Lactic acid (g/L) | 1.4 ± 0.05 b | 1.4 ± 0.05 b | 1.3 ± 0.06 b | 1.8 ± 0.09 a |
Wood Chip | Xinomavro of Amyndeo | Xinomavro of Naoussa | Xinomavro of Goumenissa | Xinomavro of Velventos |
---|---|---|---|---|
Control (no wood) | Aromas of sun-dried tomatoes, olives, and cloves; slightly high acidity with well-defined tannins | Medium aroma intensity with scents of tomato and olive; soft tannins and good balance | Intense aromatic potential, soft and velvety mouthfeel | Rich aromatic potential, oily mouthfeel with a pleasant final taste |
PEF Control (no wood) | Reduction in aroma intensity, aggressive acidity, sharper tannins | More flabby nose, but also sharper in the mouth; loses its balance | Medium aromatic intensity, harder mouthfeel with a drier final taste | Medium aromatic intensity, wild mouthfeel with an intense and aggressive final taste |
Peach | Low aromatic intensity, fruity with peach notes predominating; tannic mouth with a dry aftertaste and aggressive acidity | More fruity nose, but slightly mismatched to the character of the wine variety; tannic mouth with minor imbalances | Medium aromatic intensity, wild and aggressive in the mouth | Low aromatic intensity with dominant peach notes; tannic mouth with a bitter aftertaste |
PEF Peach | Medium aromatic intensity, fruity with dominant peach notes; less tannic on the palate with a dry aftertaste, but also less aggressive acidity | Fruity on the nose, slightly more intense; more rounded mouth, more complete | Sweety nose with a strong presence of small red fruits, velvety mouth | Complex but unbalanced nose, round soft mouth |
Cherry | Sweet nose with red fruit notes; very aggressive in the mouth with wild tannins and a dry ending | Varietal character tied with faint notes of cherry; mouth a little tannic and slightly unbalanced | Green nose, with notes of olives and unripe tomatoes; wild, unripe mouth with noticeable acidity | Grassy nose, some unripe cherry and pepper notes; mouth wild and aggressive |
PEF Cherry | Sweet, complex nose with cherry notes; less aggressive in the mouth, more peppery, slightly dry ending | Intense notes of cherry on the nose, sweetness; round, velvety mouthfeel with a spicy aftertaste | Cherry jam, olive, and ripe tomato, beautiful acidity, balanced, velvety with a full-bodied aftertaste | Ripe red fruits, varied aromas, with a balanced fruity mouthfeel and long aftertaste |
Apricot | Bland nose, strong acidity, imbalance in the mouth; tannic with a dry aftertaste | Closed nose, fruity; round mouth with slightly dry ending | Intense wood characteristics on the nose, dry mouth with intense acidity | Uneven nose, imbalance in the mouth; tannic with a dry aftertaste |
PEF Apricot | More aggressive nose, fruity; fuller in the mouth, more oily but with a dry ending | Fruity nose with moderate aromatic intensity; better balance in the mouth, more oily | Complex nose, peppery, the acidity settles down but gives quite a dry ending | Sweet nose of red fruits and ripe tomatoes; round and oily in the mouth |
Apple | Medium intensity nose with sweetness; balanced and softer in the mouth | Complexity on the nose, a bit unbalanced with dry tannins and a short ending | Atonic nose, quite hard in the mouth with a strong taste of wood | Medium aromatic intensity, crisp acidity with a dry ending |
PEF Apple | Intense aromatic potential, sweeter mouthfeel, more balanced and fattier; calm acidity and a softer ending | More intense aromatic potential, fruity, soft tannins, full mouthfeel, beautiful ending | Sweet nose reminiscent of jams; mouth soft, balanced, and velvety | Sweet complex nose with aromas of forest fruits, soft oily mouth |
Acacia | Grassy nose, wild mouth, unbalanced | Grassy nose, unripe, unbalanced | Grassy nose, unripe, unbalanced | Grassy nose, unripe, unbalanced |
PEF Acacia | Grassy nose, softer mouth, unbalanced | Grassy nose, softer mouth, unbalanced | Imbalance in the nose, hardness in the mouth, but much more pleasant aftertaste | Unripe nose, hard dry mouth |
Oak (high vanilla) | Medium aromatic intensity with the barrel showing faintly in the background; quite tannic and moderately oily on the palate | Medium aromatic intensity; quite tannic and hard on the palate | Medium aromatic intensity; quite tannic and hard on the palate | Medium aromatic intensity, spicy nose; wild tannins with unbalanced acidity |
PEF Oak (high vanilla) | Spicy nose with spices and vanilla making their presence felt; full balanced mouth | Peppered nose, soft, balanced round mouth | Complex sweet nose with vanilla notes making their presence felt; fat mouth with a beautiful ending | Aromas of vanilla and smoke in the background and pepper and olive on the back; velvety, soft, oily |
Treatment | TPC (mg GAE/L) | L* | C* | ho | ΔE |
---|---|---|---|---|---|
Wine model solution | |||||
Control | 1.0 ± 0.2 e | 66.7 ± 0.6 a,b | 4.3 ± 0 e | 95.3 ± 0 c | |
PEF No Wood | 0.9 ± 0.2 e | 67.3 ± 0.8 a | 4.3 ± 0 e | 95.3 ± 0 c | 0.6 ± 0.2 b |
Peach | 2.4 ± 0.1 d,e | 68 ± 0.3 a | 4.3 ± 0 e | 95.3 ± 0 c | |
PEF Peach | 2.2 ± 0.3 e | 67.1 ± 1.1 a | 4.3 ± 0 e | 95.3 ± 0 c | 1.0 ± 0.3 a,b |
Cherry | 5.1 ± 0.3 c | 66.7 ± 0.6 a,b | 5.6 ± 0.6 c,d | 102.4 ± 1.2 a | |
PEF Cherry | 4.8 ± 1.2 c,d | 67.5 ± 1.6 a | 5.9 ± 0 c,d | 93.9 ± 0 c,d | 1.9 ± 0.7 a |
Apricot | 8.4 ± 0.5 b | 66.3 ± 0 a,b | 6.3 ± 0.6 c | 93.6 ± 0.3 d | |
PEF Apricot | 8.4 ± 0.4 b | 66.7 ± 1.1 a,b | 6.3 ± 0.6 c | 93.6 ± 0.3 d | 0.8 ± 0.6 a,b |
Apple | 2.6 ± 0.1 c,d,e | 66.3 ± 1.1 a,b | 5.6 ± 0.6 c,d | 102.4 ± 1.2 a | |
PEF Apple | 2.6 ± 0.1 d,e | 66.9 ± 0.8 a | 5.2 ± 0 d,e | 103.2 ± 0 a | 0.8 ± 0.5 a,b |
Acacia | 8.6 ± 0.9 b | 66.7 ± 0 a,b | 7.9 ± 0.5 b | 98.7 ± 0.5 b | |
PEF Acacia | 7.8 ± 1.5 b | 66.7 ± 0.6 a,b | 7.6 ± 0 b | 99.1 ± 0 b | 0.6 ± 0.3 a,b |
Oak (high vanilla) | 22.9 ± 2.1 a | 63.7 ± 0.8 c | 12.2 ± 0 a | 91.9 ± 0 e | |
PEF Oak (high vanilla) | 22.6 ± 0.4 a | 64.3 ± 0.6 b,c | 12.6 ± 0.5 a | 91.8 ± 0.1 e | 0.7 ± 0.5 a,b |
Xinomavro of Amyndeo | |||||
Control | 3310 ± 79 c,d | 19 ± 0.3 a | 4.5 ± 0.1 a,b | 249.2 ± 7.4 b | |
PEF No Wood | 3306 ± 122 c,d | 17.6 ± 0 a,b | 3.7 ± 0 b | 288.9 ± 0 a | 3.2 ± 0.6 a |
Peach | 3294 ± 107 d | 17.5 ± 0.2 a,b | 4.1 ± 0.5 a,b | 252.7 ± 2.4 b | |
PEF Peach | 3334 ± 36 b,c,d | 17.3 ± 0 b | 3.9 ± 0.6 a,b | 264.1 ± 0.9 a,b | 0.8 ± 0 b |
Cherry | 3563 ± 119 a,b,c | 17.3 ± 0 b | 4.6 ± 0.1 a,b | 254.7 ± 0.5 b | |
PEF Cherry | 3572 ± 107 a,b,c | 17.3 ± 0.5 b | 4.9 ± 0.8 a | 256.6 ± 11.4 a,b | 1.0 ± 0.2 b |
Apricot | 3612 ± 87 a | 17.1 ± 0.3 b | 4.8 ± 0.5 a | 264.4 ± 14.2 a,b | |
PEF Apricot | 3576 ± 119 a,b,c | 17.7 ± 0.1 a,b | 3.7 ± 0 b | 251.1 ± 0 b | 1.7 ± 1 a,b |
Apple | 3587 ± 63 a,b | 17.7 ± 0.5 a,b | 3.7 ± 0 b | 251.1 ± 0 b | |
PEF Apple | 3532 ± 39 a,b,c | 17.9 ± 0.8 a,b | 4.2 ± 0.2 a,b | 252.5 ± 17.3 b | 1.3 ± 0 a,b |
Acacia | 3463 ± 55 a,b,c,d | 18.3 ± 1.3 a,b | 4 ± 0 a,b | 240.3 ± 0 b | |
PEF Acacia | 3598 ± 67 a,b | 17.5 ± 0.2 a,b | 4.4 ± 0.1 a,b | 264.9 ± 14.8 a,b | 2.1 ± 1.3 a,b |
Oak (high vanilla) | 3385 ± 104 a,b,c,d | 17.4 ± 0.1 a,b | 4.4 ± 0.1 a,b | 248.5 ± 22.9 b | |
PEF Oak (high vanilla) | 3326 ± 122 b,c,d | 17.7 ± 1.1 a,b | 4.9 ± 0.3 a | 255.3 ± 14.5 b | 2.4 ± 0.7 a,b |
Xinomavro of Naoussa | |||||
Control | 2642 ± 58 a | 26.3 ± 0 a,b | 23.9 ± 1.5 a,b | 9.5 ± 2 a,b | |
PEF No Wood | 2551 ± 23 a,b | 27.1 ± 0 a | 24 ± 1.7 a | 11.3 ± 0.6 a | 1.3 ± 0.7 b |
Peach | 2571 ± 24 a,b | 26.5 ± 0.3 a,b | 19.7 ± 2.9 a,b,c,d | 5.5 ± 2.3 c,d | |
PEF Peach | 2558 ± 23 a,b | 26.3 ± 0 a,b | 15.3 ± 0 d | 4.5 ± 0 d | 4.4 ± 1 a |
Cherry | 2592 ± 35 a,b | 25.7 ± 0.8 b,c | 22.5 ± 2.2 a,b,c | 6.9 ± 0.7 b,c,d | |
PEF Cherry | 2555 ± 21 a,b | 25.5 ± 0 b,c,d | 19.8 ± 0.6 a,b,c,d | 7.8 ± 0.2 b,c | 2.9 ± 0.5 a,b |
Apricot | 2541 ± 50 a,b | 25 ± 0.7 c,d | 20.2 ± 2.2 a,b,c,d | 7.7 ± 0.9 b,c | |
PEF Apricot | 2517 ± 59 b | 24.9 ± 0.3 c,d | 18.6 ± 1.2 a,b,c,d | 7.2 ± 1.1 b,c,d | 1.9 ± 0.8 b |
Apple | 2525 ± 12 b | 25.3 ± 0.3 b,c,d | 19.3 ± 0 a,b,c,d | 4.8 ± 1.7 c,d | |
PEF Apple | 2558 ± 47 a,b | 24.5 ± 0.4 d | 19.8 ± 3.9 a,b,c,d | 6.8 ± 0.1 b,c,d | 3.1 ± 1 a,b |
Acacia | 2538 ± 37 a,b | 24.7 ± 0.6 c,d | 17.3 ± 2.8 c,d | 5.2 ± 1 c,d | |
PEF Acacia | 2593 ± 20 a,b | 24.9 ± 0.3 c,d | 19.3 ± 3.4 a,b,c,d | 4.7 ± 0.9 c,d | 4.5 ± 1.1 a |
Oak (high vanilla) | 2637 ± 9 a | 24.7 ± 0.6 c,d | 17.7 ± 0 b,c,d | 6.5 ± 0 b,c,d | |
PEF Oak (high vanilla) | 2595 ± 29 a,b | 24.9 ± 0.3 c,d | 19.1 ± 0.3 a,b,c,d | 6 ± 0.1 c,d | 1.4 ± 0.2 b |
Xinomavro of Goumenissa | |||||
Control | 2106 ± 49 c,d | 23.5 ± 0 a | 11.8 ± 0.6 b,c,d | 1.9 ± 0.1 c,d | |
PEF No Wood | 2128 ± 78 b,c,d | 23 ± 1.3 a | 15.3 ± 1.1 a | 1.5 ± 0.1 e | 3.7 ± 0.7 a |
Peach | 1994 ± 53 d | 22.2 ± 0.3 a | 15.3 ± 0.1 a | 1.5 ± 0 e | |
PEF Peach | 2215 ± 53 a,b,c | 23.1 ± 0.6 a | 12.9 ± 0 b,c | 1.8 ± 0 d,e | 2.6 ± 0.2 a,b |
Cherry | 2070 ± 45 c,d | 23.5 ± 0 a | 12.1 ± 0.1 b,c,d | 1.9 ± 0 c,d,e | |
PEF Cherry | 2218 ± 60 a,b,c | 23.3 ± 0.3 a | 12.6 ± 0.5 b,c | 1.8 ± 0.1 c,d,e | 0.5 ± 0.4 c |
Apricot | 2307 ± 104 a,b | 23.5 ± 0 a | 10.6 ± 1.1 d,e | 2.2 ± 0.2 b,c | |
PEF Apricot | 2134 ± 13 b,c,d | 23.5 ± 0 a | 12.6 ± 0.5 b,c | 1.8 ± 0.1 c,d,e | 2 ± 0.6 b,c |
Apple | 2158 ± 60 a,b,c,d | 23.5 ± 0 a | 12.6 ± 0.5 b,c | 1.8 ± 0.1 c,d,e | |
PEF Apple | 2205 ± 59 a,b,c | 23 ± 0.8 a | 11.9 ± 0.6 b,c,d | 5.8 ± 0.3 a | 1.3 ± 0.3 b,c |
Acacia | 2335 ± 88 a | 23.3 ± 0.3 a | 11.4 ± 1.1 b,c,d | 2 ± 0.2 c,d | |
PEF Acacia | 2192 ± 81 a,b,c | 23.3 ± 0.3 a | 11 ± 0.6 c,d,e | 2.1 ± 0.1 b,c,d | 0.4 ± 0.6 c |
Oak (high vanilla) | 2202 ± 43 a,b,c | 22.9 ± 0.3 a | 9.4 ± 0.6 e | 2.4 ± 0.1 b | |
PEF Oak (high vanilla) | 2253 ± 27 a,b,c | 22 ± 1.1 a | 13.1 ± 0.2 b | 1.8 ± 0 d,e | 3.8 ± 0.9 a |
Xinomavro of Velventos | |||||
Control | 3060 ± 147 a | 22.6 ± 0.2 a | 6.5 ± 1.1 a,b,c,d | 212 ± 5.8 a | |
PEF No Wood | 3060 ± 47 a | 22.6 ± 0.2 a | 5.1 ± 0 d | 212.1 ± 0 a | 1.5 ± 1 a |
Peach | 3038 ± 37 a | 21.8 ± 0.3 a,b | 7.1 ± 0.3 a,b | 213.4 ± 3.8 a | |
PEF Peach | 3055 ± 23 a | 22 ± 0 a,b | 5.6 ± 0.8 b,c,d | 213.3 ± 1.7 a | 1.5 ± 0.5 a |
Cherry | 3000 ± 39 a | 21.8 ± 0.3 a,b | 5.6 ± 0.8 b,c,d | 213.3 ± 1.7 a | |
PEF Cherry | 2941 ± 20 a | 21.8 ± 0.3 a,b | 5.1 ± 0.6 c,d | 212 ± 10 a | 1.3 ± 0.6 a |
Apricot | 2903 ± 20 a | 21.4 ± 0.3 b | 7.6 ± 0.5 a | 214.4 ± 2.4 a | |
PEF Apricot | 2882 ± 89 a | 21.6 ± 0.6 a,b | 6.9 ± 0 a,b | 210.7 ± 0 a | 1.2 ± 0 a |
Apple | 2909 ± 57 a | 21.4 ± 0.3 b | 6.8 ± 1 a,b,c | 216.3 ± 12.3 a | |
PEF Apple | 2884 ± 114 a | 21.2 ± 0.6 b | 6.8 ± 0.1 a,b,c,d | 215.4 ± 6.7 a | 1.9 ± 0.1 a |
Acacia | 2903 ± 125 a | 21.6 ± 0 a,b | 6.4 ± 0.4 a,b,c,d | 222.6 ± 3.4 a | |
PEF Acacia | 2872 ± 62 a | 21 ± 0.3 b | 7 ± 0.2 a,b | 217.8 ± 10.1 a | 1.5 ± 0.5 a |
Oak (high vanilla) | 2908 ± 43 a | 21.6 ± 0.6 a,b | 5.7 ± 0.2 b,c,d | 213.5 ± 8 a | |
PEF Oak (high vanilla) | 2981 ± 42 a | 21.2 ± 0.6 b | 6.4 ± 0.3 a,b,c,d | 217.3 ± 4 a | 1.4 ± 0.8 a |
Wine Model Solution (μg/L) | ||||||
---|---|---|---|---|---|---|
Treatment | Furfural | 3-Furaldehyde | Benzaldehyde | 2-Ethylhexanol | Linalool | ∑ Major VCs |
Control | nd * | nd | nd | nd | nd | na ** |
PEF No Wood | nd | nd | nd | nd | nd | na |
Peach | nd | nd | nd | nd | nd | na |
PEF Peach | nd | nd | nd | nd | nd | na |
Cherry | nd | nd | 8.25 ± 0.62 b | nd | nd | 8.25 ± 0.62 g |
PEF Cherry | nd | nd | 10.68 ± 0.4 a | nd | nd | 10.68 ± 0.4 g (29.5%) |
Apricot | nd | nd | nd | 45.14 ± 1.35 b | 65.25 ± 4.7 c | 110.39 ± 6.73 c,d |
PEF Apricot | nd | nd | nd | 54.77 ± 3.01 a | 122.16 ± 8.8 a | 176.93 ± 10.33 b (60.3%) |
Apple | nd | nd | nd | nd | 61.37 ± 4.42 c | 61.37 ± 4.42 f |
PEF Apple | nd | nd | nd | nd | 125.27 ± 8.02 a | 125.27 ± 8.02 c (104.1%) |
Acacia | nd | nd | nd | 18.14 ± 1.23 d | 67.97 ± 2.99 c | 86.11 ± 3.72 e |
PEF Acacia | nd | nd | nd | 22.55 ± 1.11 d | 69.52 ± 3.89 c | 92.07 ± 5.04 d,e (6.9%) |
Oak (high vanilla) | 34.25 ± 1.51 b | 8.73 ± 0.31 b | nd | 38.89 ± 1.05 c | 96.44 ± 5.98 b | 178.31 ± 10.44 b |
PEF Oak (high vanilla) | 44.31 ± 2.35 a | 83.52 ± 5.35 a | nd | 46.46 ± 1.53 b | 109.65 ± 5.37 a,b | 283.94 ± 16.41 a (59.2%) |
Xinomavro of Amyndeo (mg/L) | ||||||
Treatment | Ethyl 2-hydroxy propanoate | Ethyl hexanoate | 2-Phenyl ethanol | Diethyl butanedioate | Ethyl octanoate | ∑ major VCs |
Control | 2.01 ± 0.07 c | 2.5 ± 0.08 e,f | 10.51 ± 0.48 d | 10.46 ± 0.37 e | 4.17 ± 0.2 e,f,g | 29.65 ± 1.17 c |
PEF No Wood | 2.05 ± 0.14 b,c | 2.53 ± 0.11 d,e,f | 10.8 ± 0.71 d | 10.65 ± 0.49 e | 4.2 ± 0.12 d,e,f,g | 30.24 ± 1.5 c [2.0%] (2.0%) |
Peach | 2.13 ± 0.14 a,b,c | 2.43 ± 0.17 f | 12.08 ± 0.36 c,d | 11.39 ± 0.34 d,e | 3.75 ± 0.11 g | 31.79 ± 1.02 c [7.2%] |
PEF Peach | 2.23 ± 0.12 a,b,c | 2.49 ± 0.16 f | 16.26 ± 0.39 a | 14.49 ± 0.84 a,b | 3.89 ± 0.17 f,g | 39.36 ± 1.69 a,b [32.8%] (23.8%) |
Cherry | 2.42 ± 0.05 a | 2.44 ± 0.16 f | 10.85 ± 0.6 d | 11.02 ± 0.44 e | 4.09 ± 0.14 e,f,g | 30.82 ± 1.46 c [4.0%] |
PEF Cherry | 2.37 ± 0.09 a,b | 2.78 ± 0.15 b,c,d,e,f | 13.82 ± 0.3 b,c | 13.01 ± 0.38 b,c | 4.64 ± 0.32 b,c,d,e | 36.61 ± 1.22 b [23.5%] (18.8%) |
Apricot | 2.21 ± 0.12 a,b,c | 3.19 ± 0.09 a | 13.34 ± 0.33 b,c | 12.72 ± 0.37 c,d | 5.46 ± 0.23 a | 36.92 ± 1.11 b [24.5%] |
PEF Apricot | 2.31 ± 0.16 a,b,c | 3.09 ± 0.07 a,b | 16.92 ± 1.27 a | 15.14 ± 0.41 a | 5.15 ± 0.11 a,b | 42.61 ± 2 a [43.7%] (15.4%) |
Apple | 2.19 ± 0.07 a,b,c | 2.91 ± 0.12 a,b,c,d | 12.84 ± 0.49 b,c | 13.9 ± 0.36 a,b,c | 4.65 ± 0.13 b,c,d,e | 36.48 ± 1.18 b [23.1%] |
PEF Apple | 2.24 ± 0.14 a,b,c | 2.95 ± 0.11 a,b,c | 12.83 ± 0.35 b,c | 13.76 ± 0.48 a,b,c | 4.79 ± 0.3 b,c,d | 36.57 ± 1.33 b [23.4%] (0.2%) |
Acacia | 2.44 ± 0.06 a | 2.66 ± 0.07 c,d,e,f | 13.9 ± 0.36 b | 13.73 ± 0.92 a,b,c | 4.83 ± 0.3 b,c | 37.56 ± 1.82 b [26.7%] |
PEF Acacia | 2.4 ± 0.05 a | 2.82 ± 0.08 a,b,c,d,e,f | 14.47 ± 0.43 b | 14.01 ± 0.36 a,b,c | 4.36 ± 0.23 c,d,e,f,g | 38.06 ± 1.28 b [28.4%] (1.3%) |
Oak (high vanilla) | 2.04 ± 0.12 b,c | 2.88 ± 0.12 a,b,c,d,e | 10.71 ± 0.78 d | 11.2 ± 0.35 e | 4.45 ± 0.17 c,d,e,f | 31.28 ± 1.52 c [5.5%] |
PEF Oak (high vanilla) | 2.02 ± 0.04 c | 3 ± 0.22 a,b,c | 10.52 ± 0.7 d | 11.38 ± 0.48 d,e | 4.51 ± 0.09 c,d,e | 31.44 ± 1.64 c [6.0%] (0.5%) |
Xinomavro of Naoussa (mg/L) | ||||||
Treatment | 3-Methylbutyl ethanoate | Ethyl hexanoate | 2-Phenyl ethanol | Diethyl butanedioate | Ethyl octanoate | ∑ major VCs |
Control | 1.5 ± 0.03 f | 2.54 ± 0.18 c,d,e,f | 4.17 ± 0.27 f | 3.87 ± 0.22 b,c,d | 5.02 ± 0.37 c | 17.09 ± 1.15 e |
PEF No Wood | 1.54 ± 0.07 e,f | 2.62 ± 0.15 c,d,e,f | 4.28 ± 0.27 e,f | 3.94 ± 0.22 a,b,c,d | 5.15 ± 0.38 c | 17.53 ± 1.07 d,e [2.6%] (2.6%) |
Peach | 1.84 ± 0.05 c,d,e | 2.31 ± 0.1 f | 5.52 ± 0.12 c,d | 3.57 ± 0.13 d,e | 5.18 ± 0.24 c | 18.43 ± 0.71 b,c,d,e [7.8%] |
PEF Peach | 2.23 ± 0.09 a,b | 2.6 ± 0.19 c,d,e,f | 5.79 ± 0.31 b,c,d | 3.99 ± 0.17 a,b,c,d | 5.71 ± 0.21 b,c | 20.32 ± 0.94 a,b,c,d [18.9%] (10.3%) |
Cherry | 1.66 ± 0.08 d,e,f | 2.87 ± 0.08 a,b,c | 5.07 ± 0.15 d,e | 4.17 ± 0.25 a,b,c,d | 6.39 ± 0.26 a,b | 20.15 ± 0.77 a,b,c,d [18.0%] |
PEF Cherry | 2.2 ± 0.13 a,b | 3.18 ± 0.2 a | 5.77 ± 0.3 b,c,d | 4.02 ± 0.22 a,b,c,d | 6.79 ± 0.24 a | 21.97 ± 1.11 a [28.6%] (9.0%) |
Apricot | 1.85 ± 0.11 c,d,e | 2.37 ± 0.07 e,f | 6.1 ± 0.29 b,c | 4.51 ± 0.21 a | 5.09 ± 0.22 c | 19.92 ± 0.92 a,b,c,d,e [16.6%] |
PEF Apricot | 2.03 ± 0.15 b,c | 2.8 ± 0.07 a,b,c,d,e | 6.45 ± 0.47 a,b | 4.27 ± 0.2 a,b,c | 5.2 ± 0.1 c | 20.76 ± 0.93 a,b [21.5%] (4.2%) |
Apple | 2.15 ± 0.09 b,c | 2.84 ± 0.13 a,b,c,d | 4.02 ± 0.19 f | 3.01 ± 0.07 e | 5.8 ± 0.38 b,c | 17.82 ± 0.92 c,d,e [4.3%] |
PEF Apple | 2.09 ± 0.05 b,c | 2.58 ± 0.11 c,d,e,f | 7.11 ± 0.21 a | 4.41 ± 0.13 a,b | 5.79 ± 0.41 b,c | 21.99 ± 0.99 a [28.7%] (23.4%) |
Acacia | 1.96 ± 0.06 b,c,d | 2.71 ± 0.15 b,c,d,e,f | 5.44 ± 0.18 c,d | 3.68 ± 0.25 c,d | 5.77 ± 0.2 b,c | 19.56 ± 0.82 a,b,c,d,e [14.5%] |
PEF Acacia | 1.93 ± 0.12 b,c,d | 2.42 ± 0.09 d,e,f | 7.08 ± 0.47 a | 4.26 ± 0.31 a,b,c | 6.13 ± 0.44 a,b | 21.82 ± 1.4 a [27.7%] (11.5%) |
Oak (high vanilla) | 2.21 ± 0.11 a,b | 2.69 ± 0.17 c,d,e,f | 5.4 ± 0.16 c,d | 3.62 ± 0.18 d | 6.49 ± 0.15 a,b | 20.42 ± 0.78 a,b,c [19.5%] |
PEF Oak (high vanilla) | 2.51 ± 0.1 a | 3.13 ± 0.22 a,b | 5.66 ± 0.12 b,c,d | 4.11 ± 0.14 a,b,c,d | 6.43 ± 0.13 a,b | 21.85 ± 0.73 a [27.9%] (7.0%) |
Xinomavro of Goumenissa (mg/L) | ||||||
Treatment | 3-Methylbutyl ethanoate | Ethyl hexanoate | 2-Phenyl ethanol | Diethyl butanedioate | Ethyl octanoate | ∑ major VCs |
Control | 1.44 ± 0.11 a,b | 3.21 ± 0.18 d | 7.09 ± 0.43 e | 3.68 ± 0.12 e | 5.97 ± 0.42 c | 21.39 ± 1.25 c |
PEF No Wood | 1.44 ± 0.09 a,b | 3.35 ± 0.22 c,d | 7.31 ± 0.21 d,e | 3.89 ± 0.25 d,e | 5.95 ± 0.14 c | 21.93 ± 0.92 b,c [2.5%] (2.5%) |
Peach | 1.57 ± 0.05 a,b | 3.12 ± 0.06 d | 9.55 ± 0.56 a,b | 3.92 ± 0.19 d,e | 5.84 ± 0.18 c | 23.99 ± 1.05 a,b,c [12.2%] |
PEF Peach | 1.59 ± 0.06 a,b | 4.09 ± 0.09 a | 9.7 ± 0.54 a,b | 4.14 ± 0.16 c,d,e | 6.22 ± 0.37 b,c | 25.75 ± 1.21 a [20.4%] (7.3%) |
Cherry | 1.61 ± 0.06 a,b | 3.95 ± 0.11 a,b | 7.66 ± 0.37 d,e | 4.02 ± 0.15 d,e | 7.22 ± 0.4 a | 24.46 ± 1.1 a,b,c [14.3%] |
PEF Cherry | 1.66 ± 0.07 a | 4.14 ± 0.1 a | 7.73 ± 0.18 d,e | 4.05 ± 0.19 d,e | 7.38 ± 0.38 a | 24.96 ± 0.91 a,b [16.7%] (2.1%) |
Apricot | 1.61 ± 0.09 a,b | 4.19 ± 0.24 a | 6.8 ± 0.14 e | 3.67 ± 0.26 e | 7.23 ± 0.39 a | 23.5 ± 1.13 a,b,c [9.9%] |
PEF Apricot | 1.58 ± 0.03 a,b | 4.13 ± 0.29 a | 7.15 ± 0.45 e | 3.86 ± 0.11 d,e | 6.99 ± 0.37 a,b | 23.72 ± 1.25 a,b,c [10.9%] (0.9%) |
Apple | 1.47 ± 0.05 a,b | 3.43 ± 0.12 c,d | 8.28 ± 0.18 c,d | 4.2 ± 0.19 c,d,e | 5.9 ± 0.19 c | 23.28 ± 0.73 a,b,c [8.8%] |
PEF Apple | 1.46 ± 0.06 a,b | 3.26 ± 0.12 d | 10.19 ± 0.2 a | 5.09 ± 0.23 a | 6.16 ± 0.41 b,c | 26.16 ± 1.03 a [22.3%] (12.4%) |
Acacia | 1.41 ± 0.03 b | 3.79 ± 0.28 a,b,c | 7.36 ± 0.17 d,e | 3.9 ± 0.21 d,e | 6.99 ± 0.2 a,b | 23.44 ± 0.89 a,b,c [9.6%] |
PEF Acacia | 1.44 ± 0.08 b | 3.46 ± 0.2 b,c,d | 8.99 ± 0.4 b,c | 4.42 ± 0.24 b,c,d | 5.83 ± 0.27 c | 24.14 ± 1.2 a,b,c [12.8%] (3.0%) |
Oak (high vanilla) | 1.45 ± 0.08 a,b | 3.14 ± 0.08 d | 9.26 ± 0.22 a,b,c | 4.82 ± 0.1 a,b | 5.86 ± 0.25 c | 24.53 ± 0.73 a,b,c [14.7%] |
PEF Oak (high vanilla) | 1.46 ± 0.1 a,b | 3.1 ± 0.12 d | 9.55 ± 0.54 a,b | 4.67 ± 0.31 a,b,c | 5.83 ± 0.13 c | 24.62 ± 1.21 a,b [15.1%] (0.3%) |
Xinomavro of Velventos (mg/L) | ||||||
Treatment | 3-Methylbutyl ethanoate | Ethyl hexanoate | 2-Phenyl ethanol | Diethyl butanedioate | Ethyl octanoate | ∑ major VCs |
Control | 1.34 ± 0.03 c,d,e | 1.22 ± 0.07 c,d | 5.62 ± 0.35 e | 1.03 ± 0.06 e | 3.66 ± 0.23 g | 12.87 ± 0.74 f |
PEF No Wood | 1.42 ± 0.1 b,c,d,e | 1.24 ± 0.05 c,d | 5.6 ± 0.21 e | 0.95 ± 0.06 e | 3.93 ± 0.12 e,f,g | 13.14 ± 0.55 f [2.0%] (2.0%) |
Peach | 1.61 ± 0.11 a,b | 1.39 ± 0.09 b,c | 9.05 ± 0.59 b,c | 1.54 ± 0.08 b | 4.69 ± 0.17 b,c | 18.28 ± 1.03 b,c,d [42.0%] |
PEF Peach | 1.47 ± 0.05 b,c,d,e | 1.47 ± 0.04 b,c | 9.16 ± 0.21 b,c | 1.44 ± 0.08 b,c,d | 4.91 ± 0.13 b | 18.45 ± 0.52 b,c,d [43.3%] (0.9%) |
Cherry | 1.51 ± 0.05 a,b,c,d,e | 1.27 ± 0.06 c,d | 9.45 ± 0.37 b,c | 1.48 ± 0.09 b,c,d | 4.59 ± 0.31 b,c,d | 18.29 ± 0.89 b,c,d [42.1%] |
PEF Cherry | 1.58 ± 0.07 a,b | 1.76 ± 0.09 a | 9.94 ± 0.45 b | 1.53 ± 0.09 b,c | 5.52 ± 0.16 a | 20.32 ± 0.86 a,b [57.9%] (11.1%) |
Apricot | 1.49 ± 0.07 a,b,c,d,e | 1.45 ± 0.07 b,c | 9.28 ± 0.28 b,c | 1.57 ± 0.1 b | 3.92 ± 0.2 e,f,g | 17.7 ± 0.72 c,d [37.5%] |
PEF Apricot | 1.65 ± 0.11 a,b | 1.36 ± 0.09 c,d | 11.75 ± 0.26 a | 1.87 ± 0.05 a | 4.24 ± 0.17 c,d,e,f | 20.87 ± 0.69 a [62.1%] (17.9%) |
Apple | 1.31 ± 0.08 e | 1.46 ± 0.11 b,c | 7.08 ± 0.18 d | 1.04 ± 0.04 e | 3.96 ± 0.28 e,f,g | 14.86 ± 0.69 e,f [15.4%] |
PEF Apple | 1.57 ± 0.09 a,b,c | 1.63 ± 0.07 a,b | 8.61 ± 0.28 c | 1.3 ± 0.09 d | 4.19 ± 0.24 c,d,e,f,g | 17.31 ± 0.76 d [34.5%] (16.5%) |
Acacia | 1.56 ± 0.08 a,b,c,d | 1.43 ± 0.1 b,c | 9.51 ± 0.29 b,c | 1.56 ± 0.07 b | 3.78 ± 0.14 e,f,g | 17.84 ± 0.68 c,d [38.6%] |
PEF Acacia | 1.51 ± 0.06 a,b,c,d,e | 1.34 ± 0.07 c,d | 11.34 ± 0.61 a | 1.78 ± 0.04 a | 3.7 ± 0.13 f,g | 19.66 ± 0.91 a,b,c [52.7%] (10.2%) |
Oak (high vanilla) | 1.33 ± 0.08 d,e | 1.11 ± 0.08 d | 8.65 ± 0.49 c | 1.32 ± 0.04 c,d | 4.01 ± 0.14 d,e,f,g | 16.42 ± 0.83 d,e [27.5%] |
PEF Oak (high vanilla) | 1.72 ± 0.08 a | 1.74 ± 0.13 a | 8.87 ± 0.35 b,c | 1.33 ± 0.04 c,d | 4.29 ± 0.16 c,d,e | 17.95 ± 0.76 c,d [39.4%] (9.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toulaki, A.K.; Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Bozinou, E.; Roufas, K.; Mantanis, G.I.; Dourtoglou, V.G.; Lalas, S.I. Investigation of Xinomavro Red Wine Aging with Various Wood Chips Using Pulsed Electric Field. Beverages 2024, 10, 13. https://doi.org/10.3390/beverages10010013
Toulaki AK, Athanasiadis V, Chatzimitakos T, Kalompatsios D, Bozinou E, Roufas K, Mantanis GI, Dourtoglou VG, Lalas SI. Investigation of Xinomavro Red Wine Aging with Various Wood Chips Using Pulsed Electric Field. Beverages. 2024; 10(1):13. https://doi.org/10.3390/beverages10010013
Chicago/Turabian StyleToulaki, Artemis K., Vassilis Athanasiadis, Theodoros Chatzimitakos, Dimitrios Kalompatsios, Eleni Bozinou, Kosmas Roufas, George I. Mantanis, Vassilis G. Dourtoglou, and Stavros I. Lalas. 2024. "Investigation of Xinomavro Red Wine Aging with Various Wood Chips Using Pulsed Electric Field" Beverages 10, no. 1: 13. https://doi.org/10.3390/beverages10010013
APA StyleToulaki, A. K., Athanasiadis, V., Chatzimitakos, T., Kalompatsios, D., Bozinou, E., Roufas, K., Mantanis, G. I., Dourtoglou, V. G., & Lalas, S. I. (2024). Investigation of Xinomavro Red Wine Aging with Various Wood Chips Using Pulsed Electric Field. Beverages, 10(1), 13. https://doi.org/10.3390/beverages10010013