Total Dealcoholisation of Wines by Very Low Temperature Vacuum Distillation Technology Called GoLo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Chemicals
2.3. Total Dealcoholisation of Wines Using GoLo Technology
2.4. Sample Analysis and Determination
2.5. Statistical Analysis
3. Results and Discussion
3.1. Analysing the Dealcoholisation Process Using GoLo Technology
3.2. Variable Correlation Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dias, R.; Pérez-Gregorio, R. Phenolic Compounds in Wine. Beverages 2023, 9, 70. [Google Scholar] [CrossRef]
- Mitrović, D.; Sredović Ignjatović, I.; Kozarski, M.; Popović-Đorđević, J. Wine is more than just a beverage: Chemical diversity, health benefits, and immunomodulating potential of wine polyphenols. Food Saf. Health 2024, 2, 196–212. [Google Scholar] [CrossRef]
- Haseeb, S.; Alexander, B.; Santi, R.L.; Liprandi, A.S.; Baranchuk, A. What’s in wine? A clinician’s perspective. Trends Cardiovasc. Med. 2019, 29, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Díaz, L.A.; Fuentes-López, E.; Idalsoaga, F.; Ayares, G.; Corsi, O.; Arnold, J.; Cannistra, M.; Vio, D.; Márquez-Lomas, A.; Ramirez-Cadiz, C.; et al. Association between public health policies on alcohol and worldwide cancer, liver disease and cardiovascular disease outcomes. J. Hepatol. 2024, 80, 409–418. [Google Scholar] [CrossRef]
- Visioli, F.; Panaite, S.-A.; Tomé-Carneiro, J. Wine’s Phenolic Compounds and Health: A Pythagorean View. Molecules 2020, 25, 4105. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.M.; Kaptoge, S.; Butterworth, A.S.; Willeit, P.; Warnakula, S.; Bolton, T.; Paige, E.; Paul, D.S.; Sweeting, M.; Burgess, S.; et al. Risk thresholds for alcohol consumption: Combined analysis of individual-participant data for 599912 current drinkers in 83 prospective studies. Lancet 2018, 391, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Saliba, A.J.; Ovington, L.A.; Moran, C.C. Consumer demand for low-alcohol wine in an Australian sample. Int. J. Wine Res. 2013, 5, 1–8. [Google Scholar] [CrossRef]
- Pickering, G.J. Low- and Reduced-alcohol Wine: A Review. J. Wine Res. 2000, 11, 129–144. [Google Scholar] [CrossRef]
- Sam, F.E.; Ma, T.-Z.; Salifu, R.; Wang, J.; Jiang, Y.-M.; Zhang, B.; Han, S.-Y. Techniques for Dealcoholization of Wines: Their Impact on Wine Phenolic Composition, Volatile Composition, and Sensory Characteristics. Foods 2021, 10, 2498. [Google Scholar] [CrossRef]
- Bucher, T.; Deroover, K.; Stockley, C. Low-Alcohol Wine: A Narrative Review on Consumer Perception and Behaviour. Beverages 2018, 4, 82. [Google Scholar] [CrossRef]
- Afonso, S.M.; Inês, A.; Vilela, A. Bio-Dealcoholization of Wines: Can Yeast Make Lighter Wines? Fermentation 2024, 10, 36. [Google Scholar] [CrossRef]
- Catarino, M.; Mendes, A. Dealcoholizing wine by membrane separation processes. Innov. Food Sci. Emerg. Technol. 2011, 12, 330–337. [Google Scholar] [CrossRef]
- Liguori, L.; Russo, P.; Albanese, D.; Di Matteo, M. Evolution of quality parameters during red wine dealcoholization by osmotic distillation. Food Chem. 2013, 140, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Schulz, F.N.; Farid, H.; Hanf, J.H. The Lower the Better? Discussion on Non-Alcoholic Wine and Its Marketing. Dietetics 2023, 2, 278–288. [Google Scholar] [CrossRef]
- Schmidtke, L.M.; Blackman, J.W.; Agboola, S.O. Production Technologies for Reduced Alcoholic Wines. J. Food Sci. 2012, 77, R25–R41. [Google Scholar] [CrossRef] [PubMed]
- Mangindaan, D.; Khoiruddin, K.; Wenten, I.G. Beverage dealcoholization processes: Past, present, and future. Trends Food Sci. Technol. 2018, 71, 36–45. [Google Scholar] [CrossRef]
- Díaz-Gálvez, I.; Gutiérrez-Gamboa, G.; Plaza, A.; Concha-Meyer, A.A. Effect of Encapsulation Processes by Freeze and Spray Drying on the Antioxidant Properties of Red Wine from cv. Listan Prieto and Syrah. Foods 2022, 11, 3880. [Google Scholar] [CrossRef] [PubMed]
- Pienaar, S.W. Process and Apparatus for the Reduction of Alcohol in Fermented Beverages. U.S. Patent US20150132459A1, 2 February 2016. [Google Scholar]
- Stoleicova, V.S. Comparative analysis of the techniques used to reduce alcohol level in wines. Pomic. Vitic. Şi Vinif. 2015, 56, 37–39. [Google Scholar]
- Vitali Čepo, D.; Pelajić, M.; Vinković Vrček, I.; Krivohlavek, A.; Žuntar, I.; Karoglan, M. Differences in the levels of pesticides, metals, sulphites and ochratoxin A between organically and conventionally produced wines. Food Chem. 2018, 246, 394–403. [Google Scholar] [CrossRef]
- Lisanti, M.T.; Blaiotta, G.; Nioi, C.; Moio, L. Alternative Methods to SO2 for Microbiological Stabilization of Wine. Compr. Rev. Food Sci. Food Saf. 2019, 18, 455–479. [Google Scholar] [CrossRef]
- Huang, L.; Lai, L.; Zhang, X.; Lin, S.; Jin, G.; Li, D. Practical assay for determining residual sulfite of the wine in rapid detection or quantitative analysis. LWT 2023, 189, 115503. [Google Scholar] [CrossRef]
- Fazio, T.; Warner, C.R. A review of sulphites in foods: Analytical methodology and reported findings. Food Addit. Contam. 1990, 7, 433–454. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M.; Garaguso, I. Effect of Sulfites on Antioxidant Activity, Total Polyphenols, and Flavonoid Measurements in White Wine. Foods 2018, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- EC. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 Text with EEA Relevance. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011R1169 (accessed on 10 March 2024).
- EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS). Scientific Opinion on the re-evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite (E 228) as food additives. Efsa J. 2016, 14, 4438. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Analysis of Wine and Must. 2023. Available online: https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis (accessed on 22 January 2024).
- Navarre, C.; Belly, P. L’oenologie, 8th ed.; Tec & Doc Lavoisier: Paris, France, 2017. [Google Scholar]
- Ma, T.; Sam, F.E.; Didi, D.A.; Atuna, R.A.; Amagloh, F.K.; Zhang, B. Contribution of edible flowers on the aroma profile of dealcoholized pinot noir rose wine. LWT 2022, 170, 114034. [Google Scholar] [CrossRef]
- Belisario-Sánchez, Y.; Taboada-Rodríguez, A.; Marín, F.; Iguaz, A.; López-Gómez, A. Aroma Recovery in Wine Dealcoholization by SCC Distillation. Food Bioprocess Technol. 2011, 5, 2529–2539. [Google Scholar] [CrossRef]
- Belisario-Sánchez, Y.Y.; Taboada-Rodríguez, A.; Marín-Iniesta, F.; López-Gómez, A. Dealcoholized Wines by Spinning Cone Column Distillation: Phenolic Compounds and Antioxidant Activity Measured by the 1,1-Diphenyl-2-picrylhydrazyl Method. J. Agric. Food Chem. 2009, 57, 6770–6778. [Google Scholar] [CrossRef]
- Gómez-Plaza, E.; López-Nicolás, J.M.; López-Roca, J.M.; Martínez-Cutillas, A. Dealcoholization of Wine. Behaviour of the Aroma Components during the Process. LWT—Food Sci. Technol. 1999, 32, 384–386. [Google Scholar] [CrossRef]
- Pickering, G.J.; Heatherbell, D.A.; Barnes, M.F. GC-MS Analysis of Reduced-alcohol Müller-Thurgau Wine Produced using Glucose Oxidase-treated Juice. LWT—Food Sci. Technol. 2001, 34, 89–94. [Google Scholar] [CrossRef]
- Nikolaou, A.; Kourkoutas, Y. High-Temperature Semi-Dry and Sweet Low Alcohol Wine-Making Using Immobilized Kefir Culture. Fermentation 2021, 7, 45. [Google Scholar] [CrossRef]
- ISO/IEC-17025; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/obp/ui#iso:std:iso-iec:17025:ed-3:v2:es (accessed on 15 March 2024).
- EC. COMMISSION REGULATION (EC) No 128/2004 of 23 January 2004 Amending Regulation (EEC) No 2676/90 Determining Community Methods for the Analysis of Wines. 2004. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:019:0003:0011:EN:PDF (accessed on 24 January 2024).
- UNE-EN 1988-1:2000; Foodstuffs—Determination of Sulfite—Part 1: Optimized Monier-Williams Method. UNE: Biddeford, ME, USA, 2001. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0023351 (accessed on 24 January 2024).
- AOAC. Official Methods of Analysis. Chapter 47. Monier-Williams AOAC Official Method (Optimized Method) 990.28; NQAC: Dublin, Ireland, 2000; pp. 29–30. [Google Scholar]
- Keizer, R.J.; Jansen, R.S.; Rosing, H.; Thijssen, B.; Beijnen, J.H.; Schellens, J.H.M.; Huitema, A.D.R. Incorporation of concentration data below the limit of quantification in population pharmacokinetic analyses. Pharmacol. Res. Perspect. 2015, 3, e00131. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. Informetrics 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Cadahía, E.; Fernández de Simón, B.; Sanz, M.; Poveda, P.; Colio, J. Chemical and chromatic characteristics of Tempranillo, Cabernet Sauvignon and Merlot wines from DO Navarra aged in Spanish and French oak barrels. Food Chem. 2009, 115, 639–649. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.-P.; Avizcuri, J.-M.; Ferreira, V.; Fernández-Zurbano, P. Insights on the chemical basis of the astringency of Spanish red wines. Food Chem. 2012, 134, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, M.; Escudero, A.; Graña, M.; Cacho, J. Volatile composition and sensory properties of North West Spain white wines. Food Res. Int. 2013, 54, 562–568. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; Ortega-Heras, M.; González-San José, M.L. Multivariate classification of rosé wines from different Spanish protected designations of origin. Anal. Chim. Acta 2002, 458, 187–190. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; Ortega-Heras, M.; González-San José, M.L.; Boger, Z. Comparative study of artificial neural network and multivariate methods to classify Spanish DO rose wines. Talanta 2004, 62, 983–990. [Google Scholar] [CrossRef]
- Castrillo, D.; Blanco, P. Peculiarities of the Organic Wine in Galicia (NW Spain): Sensory Evaluation and Future Considerations. Beverages 2023, 9, 89. [Google Scholar] [CrossRef]
- Margallo, M.; Aldaco, R.; Barceló, A.; Diban, N.; Ortiz, I.; Irabien, A. Life cycle assessment of technologies for partial dealcoholisation of wines. Sustain. Prod. Consum. 2015, 2, 29–39. [Google Scholar] [CrossRef]
- Taboada-Rodríguez, A.; Belisario-Sánchez, Y.Y.; Cava-Roda, R.; Cano, J.A.; López-Gómez, A.; Marín-Iniesta, F. Optimisation of preservatives for dealcoholised red wine using a survival model for spoilage yeasts. Int. J. Food Sci. Technol. 2013, 48, 707–714. [Google Scholar] [CrossRef]
- Galasong, Y.; Sogin, J.H.; Worobo, R.W. Natural glycolipids inhibits certain yeasts and lactic acid bacteria pertinent to the spoilage of shelf stable beverages. Food Control 2023, 146, 109544. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on the re-evaluation of dimethyl dicarbonate (DMDC, E 242) as a food additive. EFSA J. 2015, 13, 4319. [Google Scholar] [CrossRef]
- Giménez-Gómez, P.; Gutiérrez-Capitán, M.; Puig-Pujol, A.; Capdevila, F.; Muñoz, S.; Tobeña, A.; Miró, A.; Jiménez-Jorquera, C. Analysis of free and total sulfur dioxide in wine by using a gas-diffusion analytical system with pH detection. Food Chem. 2017, 228, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Sam, F.E.; Ma, T.; Liang, Y.; Qiang, W.; Atuna, R.A.; Amagloh, F.K.; Morata, A.; Han, S. Comparison between Membrane and Thermal Dealcoholization Methods: Their Impact on the Chemical Parameters, Volatile Composition, and Sensory Characteristics of Wines. Membranes 2021, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.-T.; Stockdale, V.J.; Wollan, D.; Jeffery, D.W.; Wilkinson, K.L. Compositional Consequences of Partial Dealcoholization of Red Wine by Reverse Osmosis-Evaporative Perstraction. Molecules 2019, 24, 1404. [Google Scholar] [CrossRef]
- Longo, R.; Blackman, J.W.; Antalick, G.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. A comparative study of partial dealcoholisation versus early harvest: Effects on wine volatile and sensory profiles. Food Chem. 2018, 261, 21–29. [Google Scholar] [CrossRef]
- Puglisi, C.; Ristic, R.; Saint, J.; Wilkinson, K. Evaluation of Spinning Cone Column Distillation as a Strategy for Remediation of Smoke Taint in Juice and Wine. Molecules 2022, 27, 8096. [Google Scholar] [CrossRef]
- EU. Commission Delegated Regulation (EU) 2019/934 of 12 March 2019 Supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as Regards Wine-Growing Areas where the Alcoholic Strength may Be Increased, Authorised Oenological Practices and Restrictions Applicable to the Production and Conservation of Grapevine Products, the Minimum Percentage of Alcohol for by-Products and Their Disposal, and Publication of OIV Files. 2019. Available online: https://eur-lex.europa.eu/eli/reg_del/2019/934/oj (accessed on 24 January 2024).
Wine | pH | Total Acidity (g/L) | Volatile Acidity (g/L) | Ethanol (% v/v) | Free SO2 (mg/L) | Total SO2 (mg/L) |
---|---|---|---|---|---|---|
White | 3.29 (3.20–3.41) | 4.66 (4.27–5.36) | 0.17 (0.05–0.32) | 10.77 (9.56–11.30) | 23.15 (16.5–29) | 93 (77.5–113.5) |
Rose | 3.22 (3.14–3.32) | 5.10 (4.71–5.55) | 0.18 (0.15–0.25) | 10.92 (10.82–11.61) | 23.0 (12.0–25.0) | 92 (72.0–115.0) |
Red | 3.61 (3.52–3.69) | 4.65 (4.43–4.95) | 0.46 (0.38–0.52) | 12.23 (11.04–13.06) | 22.0 (16.0–28.0) | 65 (52.75–82.25) |
Wine | pH | Total Acidity (g/L) | Volatile Acidity (g/L) | Alcohol (% v/v) | Free SO2 (mg/L) | Total SO2 (mg/L) |
---|---|---|---|---|---|---|
White | 3.18 (3.10–3.30) | 5.05 (4.52–5.89) | 0.17 (0.05–0.35) | <0.1 | <5.0 | 102.0 (84.5–127.5) |
Rose | 3.10 (3.08–3.19) | 5.76 (4.92–5.96) | 0.19 (0.16–0.29) | <0.1 | <5.0 | 87.0 (70.0–118.0) |
Red | 3.44 (3.36–3.51) | 5.25 (4.98–5.57) | 0.49 (0.41–0.55) | <0.1 | <5.0 | 88.0 (74.8–104.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veiga-del-Baño, J.M.; Cuenca-Martínez, J.J.; Oliva, J.; Cámara, M.Á.; Andreo-Martínez, P. Total Dealcoholisation of Wines by Very Low Temperature Vacuum Distillation Technology Called GoLo. Beverages 2024, 10, 32. https://doi.org/10.3390/beverages10020032
Veiga-del-Baño JM, Cuenca-Martínez JJ, Oliva J, Cámara MÁ, Andreo-Martínez P. Total Dealcoholisation of Wines by Very Low Temperature Vacuum Distillation Technology Called GoLo. Beverages. 2024; 10(2):32. https://doi.org/10.3390/beverages10020032
Chicago/Turabian StyleVeiga-del-Baño, José Manuel, Juan José Cuenca-Martínez, José Oliva, Miguel Ángel Cámara, and Pedro Andreo-Martínez. 2024. "Total Dealcoholisation of Wines by Very Low Temperature Vacuum Distillation Technology Called GoLo" Beverages 10, no. 2: 32. https://doi.org/10.3390/beverages10020032
APA StyleVeiga-del-Baño, J. M., Cuenca-Martínez, J. J., Oliva, J., Cámara, M. Á., & Andreo-Martínez, P. (2024). Total Dealcoholisation of Wines by Very Low Temperature Vacuum Distillation Technology Called GoLo. Beverages, 10(2), 32. https://doi.org/10.3390/beverages10020032