Production and Optimisation of Fermented Pumpkin-Based Mature Coconut Water Kefir Beverage Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals and Reagents
2.3. Preparation of Fermentation Substrates
2.3.1. Preparation of Pumpkin Puree
2.3.2. Preparation of Mature Coconut Water
2.4. Activation of Water Kefir Grains
2.5. Preparation of PWKC
2.6. Experimental Design
2.7. Microbiological Safety Analyses
2.8. Measurement of Responses
2.8.1. Fermentation Time
2.8.2. Overall Acceptability
2.8.3. Water Kefir Grain Biomass Growth Rate
2.8.4. Lactic Acid Content
2.8.5. Viability of Presumptive Lactobacillus
2.9. Characterisation of Optimised Fermented Pumpkin-Based Mature Coconut Water Kefir (PWKCopt)
2.9.1. Chemical Composition
2.9.2. Physicochemical Properties
Total Soluble Solids
Viscosity
pH Value
Colour
2.9.3. Antioxidative Contents and Activities
Total Carotenoid Content
Total Phenolic Content (TPC)
Total Flavonoid Content (TFC)
Ferric Reducing Antioxidant Power (FRAP)
DPPH Radical Scavenging Ability (RSA)
2.9.4. Chromatographic Analysis
2.9.5. Viability of Presumptive Lactobacillus, LAB, AAB, and Yeast
2.9.6. Hedonic Test
2.10. Identification of Isolate
2.11. Statistical Analysis
3. Results and Discussion
3.1. RSM Model Fitting
3.2. Effect of Independent Variables on Dependent Variables of RSM Model
3.2.1. Fermentation Time (TpH4.5)
3.2.2. Overall Acceptability (OA)
3.2.3. Water Kefir Grains Biomass Growth Rate
3.2.4. Lactic Acid Content
3.2.5. Lactobacillus Count
3.3. Optimisation
3.4. Microbiological Safety Analyses
3.5. Characterisation of the Optimised Pumpkin-Based Mature Coconut Water Kefir Brew (PWKCopt)
3.5.1. Chemical Composition
3.5.2. Physicochemical Properties
3.5.3. Antioxidative Contents and Activities
3.5.4. Sugar Content
3.5.5. Organic Acids Content
3.5.6. Ethanol Content (EC)
3.5.7. Viability of Presumptive Lactic Acid Bacteria (LAB), Lactobacillus, Acetic Acid Bacteria (AAB) and Yeast
3.5.8. Sensory Evaluation
3.5.9. Shelf-Life Study
3.6. Identification of Selected Isolate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO/WHO. FAO/WHO Joint Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food (30 April 2002 and 1 May 2002); Scientific Research Publishing: London, ON, Canada, 2002. [Google Scholar]
- Tom, R. The Rising Tide of Non-Animal Proteins. Euromonitor International. 2022. Available online: https://www.euromonitor.com/article/the-rising-tide-of-non-animal-proteins (accessed on 28 March 2024).
- Lynch, K.M.; Wilkinson, S.; Daenen, L.; Arendt, E.K. An update on water kefir. Int. J. Food Microbiol. 2021, 345, 109128. [Google Scholar] [CrossRef] [PubMed]
- Lutz, L. Recherches Biologiques Sur la Constitution du Tibi. Bull. Soc. Mycol. Fr. 1899, 15, 68–72. [Google Scholar]
- Egea, M.B.; Santos, D.C.d.; Oliveira Filho, J.G.d.; Ores, J.d.C.; Takeuchi, K.P.; Lemes, A.C. A review of non-dairy kefir products: Their characteristics and potential human health benefits. Crit. Rev. Food Sci. Nutr. 2022, 62, 1536–1552. [Google Scholar] [CrossRef] [PubMed]
- Pendón, M.D.; Bengoa, A.A.; Iraporda, C.; Medrano, M.; Garrote, G.L.; Abraham, A.G. Water kefir: Factors affecting grain growth and health-promoting properties of the fermented beverage. J. Appl. Microbiol. 2021, 133, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Darvishzadeh, P.; Orsat, V.; Martinez, J.L. Process optimization for development of a novel water kefir drink with high antioxidant activity and potential probiotic properties from Russian olive fruit (Elaeagnus angustifolia). Food Bioprocess Technol. 2021, 14, 248–260. [Google Scholar] [CrossRef]
- Rodrigues, K.L.; Caputo, L.R.G.; Carvalho, J.C.T.; Evangelista, J.; Schneedorf, J.M. Antimicrobial and healing activity of kefir and kefiran extract. Int. J. Antimicrob. 2005, 25, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Fiorda, F.A.; de Melo Pereira, G.V.; Thomaz-Soccol, V.; Medeiros, A.P.; Rakshit, S.K.; Soccol, C.R. Development of kefir-based probiotic beverages with DNA protection and antioxidant activities using soybean hydrolyzed extract, colostrum and honey. LWT 2016, 68, 690–697. [Google Scholar] [CrossRef]
- Cai, Y.; Sounderrajan, A.; Serventi, L. Water kefir: A review of its microbiological profile, antioxidant potential and sensory quality. Acta Sci. Nutr. Health 2020, 4, 10–17. [Google Scholar] [CrossRef]
- Ninčević Grassino, A.; Rimac Brnčić, S.; Badanjak Sabolović, M.; Šic Žlabur, J.; Marović, R.; Brnčić, M. Carotenoid content and profiles of pumpkin products and by-products. Molecules 2023, 28, 858. [Google Scholar] [CrossRef]
- Aggarwal, S.; Mohite, A.; Sharma, N. The maturity and ripeness phenomenon with regard to the physiology of fruits and vegetables: A review. Bull. Transilv. Univ. Brasov. Ser. II For. Wood Ind. Agric. Food Eng. 2018, 11, 77–88. [Google Scholar]
- The Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). 2024. Available online: https://www.fao.org/faostat/en/#home (accessed on 28 March 2024).
- Kamarubahrin, A.F.; Haris, A.B.; Daud, S.N.B.M.; Kefeli, Z.B.; Ahmad, N.B.; Muhamed, N.A.B.; Shukor, S.B.A. The potential of pumpkin (Cucurbita moschata Duschene) as commercial crop in Malaysia. Pertanika J. Sch. Res. Rev. 2018, 4, 1–10. [Google Scholar]
- Szydłowska, A.; Kołożyn-Krajewska, D. Development of potentially probiotic and synbiotic pumpkin frozen desserts. CyTA-J. Food 2019, 17, 251–259. [Google Scholar] [CrossRef]
- Lokuge, G.M.; Vidanarachchi, J.; Thavarajah, P.; Siva, N.; Thavarajah, D.; Liyanage, R.; Balasooriya, N.; Alwis, J. Prebiotic carbohydrate profile and in vivo prebiotic effect of pumpkin (Cucurbita maxima) grown in Sri Lanka. J. Natl. Sci. Found. Sri Lanka 2018, 46, 477–485. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Kim, Y.; Kim, J.-S.; Jeong, Y.; Park, H.M.; Kim, J.W.; Kim, J.-E.; Kim, H.; Paek, N.-S.; Kang, C.-H. Evaluating the cryoprotective encapsulation of the lactic acid bacteria in simulated gastrointestinal conditions. Biotechnol. Bioproc. Eng. 2020, 25, 287–292. [Google Scholar] [CrossRef]
- Dimitrovski, D.; Dimitrovska-Vetadjoka, M.; Hristov, H.; Doneva-Shapceska, D. Developing probiotic pumpkin juice by fermentation with commercial probiotic strain Lactobacillus casei 431. J. Food Process. Preserv. 2021, 45, e15245. [Google Scholar] [CrossRef]
- Kiharason, J.W.; Isutsa, D.K. Shelf-life of pumpkin fruit slices, flour and blended products. Int. J. Food Sci. Biotechnol. 2019, 4, 14. [Google Scholar]
- Kumari, N.; Sindhu, S.C.; Rani, V.; Kumari, A.; Kumari, V. Fermentation Improves Mineral Bioavailability of Pumpkin Seed Flour. Ann. Biol. 2021, 37, 252–255. [Google Scholar]
- Roger, T.; Ezo’o Ezo’o, J.; Essia Ngang, J.J. mprovement of sanitary quality of the digue by use of lactic starters. Am. J. Microbiol. Res. 2022, 10, 6–16. [Google Scholar] [CrossRef]
- Ahmad, R.K.; Sulaiman, S.A.; Yusup, S.; Dol, S.S.; Inayat, M.; Umar, H.A. Exploring the potential of coconut shell biomass for charcoal production. Ain Shams Eng. J. 2022, 13, 101499. [Google Scholar] [CrossRef]
- Xu, S.; Ma, Z.; Chen, Y.; Li, J.; Jiang, H.; Qu, T.; Zhang, W.; Li, C.; Liu, S. Characterization of the flavor and nutritional value of coconut water vinegar based on metabolomics. Food Chem. 2022, 369, 130872. [Google Scholar] [CrossRef]
- Kumar, M.; Saini, S.S.; Agrawal, P.K.; Roy, P.; Sircar, D. Nutritional and metabolomics characterization of the coconut water at different nut developmental stages. J. Food Compos. Anal. 2021, 96, 103738. [Google Scholar] [CrossRef]
- Chauhan, O.; Archana, B.; Singh, A.; Raju, P.; Bawa, A. A refreshing beverage from mature coconut water blended with lemon juice. J. Food Sci. Technol. 2014, 51, 3355–3361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, X.; Chen, W.; Chen, P.; Jin, X.; Chen, W.; Chen, H. Organic acid content, antioxidant capacity, and fermentation kinetics of matured coconut (Cocos nucifera) water fermented by Saccharomyces cerevisiae D254. Int. J. Food Eng. 2018, 14, 20170331. [Google Scholar] [CrossRef]
- Kantachote, D.; Ratanaburee, A.; Hayisama-ae, W.; Sukhoom, A.; Nunkaew, T. The use of potential probiotic Lactobacillus plantarum DW12 for producing a novel functional beverage from mature coconut water. J. Funct. Foods 2017, 32, 401–408. [Google Scholar] [CrossRef]
- Preetha, P.P.; Devi, V.G.; Rajamohan, T. Mature coconut water exhibits antidiabetic and antithrombotic potential via L-arginine-nitric oxide pathway in alloxan induced diabetic rats. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Skryplonek, K.; Dmytrów, I.; Mituniewicz-Małek, A. Probiotic fermented beverages based on acid whey. J. Dairy Sci. 2019, 102, 7773–7780. [Google Scholar] [CrossRef]
- Laureys, D.; Aerts, M.; Vandamme, P.; De Vuyst, L. The buffer capacity and calcium concentration of water influence the microbial species diversity, grain growth, and metabolite production during water kefir fermentation. Front. Microbiol. 2019, 10, 2876. [Google Scholar] [CrossRef] [PubMed]
- Guzel-Seydim, Z.B.; Gökırmaklı, Ç.; Greene, A.K. A comparison of milk kefir and water kefir: Physical, chemical, microbiological and functional properties. Trends Food Sci. Technol. 2021, 113, 42–53. [Google Scholar] [CrossRef]
- Kazou, M.; Grafakou, A.; Tsakalidou, E.; Georgalaki, M. Zooming into the microbiota of home-made and industrial kefir produced in Greece using classical microbiological and amplicon-based metagenomics analyses. Front. Microbiol. 2021, 12, 64. [Google Scholar] [CrossRef]
- Prasad, B.N.; Sivamani, S. Fate of acidity and alcohol during fermentation of Salalah and Sri Lanka coconut water. Eur. J. Eng. Technol. 2021, 9, 1–9. [Google Scholar]
- Gómez-Aldapa, C.A.; Rangel-Vargas, E.; Bautista-De León, H.; Castro-Rosas, J. Presence of non-O157 Shiga toxin-producing Escherichia coli, enterotoxigenic E. coli, enteropathogenic E. coli and Salmonella in fresh beetroot (Beta vulgaris L.) juice from public markets in Mexico. J. Sci. Food Agric. 2014, 94, 2705–2711. [Google Scholar] [CrossRef] [PubMed]
- Cassani, L.; Tomadoni, B.; Moreira, M.d.R.; Ponce, A.; Agüero, M.V. Optimization of inulin: Oligofructose proportion and non-thermal processing to enhance microbiological and sensory properties of fiber-enriched strawberry juice. LWT 2017, 80, 446–455. [Google Scholar] [CrossRef]
- Hecer, C.; Ulusoy, B.; Kaynarca, D. Effect of different fermentation conditions on composition of kefir microbiota. Int. Food Res. J. 2019, 26, 401–409. [Google Scholar]
- dos Santos Filho, A.L.; Freitas, H.V.; Rodrigues, S.; Abreu, V.K.G.; de Oliveira Lemos, T.; Gomes, W.F.; Narain, N.; Pereira, A.L.F. Production and stability of probiotic cocoa juice with sucralose as sugar substitute during refrigerated storage. LWT 2019, 99, 371–378. [Google Scholar] [CrossRef]
- ISO 11136:2014; Sensory Analysis-Methodology-General Guidance for Conducting Hedonic Tests with Consumers in a Controlled Area. International Organization for Standardization (ISO): Geneva, Switzerland, 2014.
- Pop, C.R.; Salanţă, L.; Rotar, A.M.; Semeniuc, C.A.; Socaciu, C.; Sindic, M. Influence of extraction conditions on characteristics of microbial polysaccharide kefiran isolated from kefir grains biomass. J. Food Nutr. Res. 2016, 55, 121–130. [Google Scholar]
- Giri, S.S.; Sukumaran, V.; Sen, S.S.; Park, S.C. Use of a potential probiotic, Lactobacillus casei L4, in the preparation of fermented coconut water beverage. Front. Microbiol. 2018, 9, 1976. [Google Scholar] [CrossRef] [PubMed]
- Laureys, D.; Van Jean, A.; Dumont, J.; De Vuyst, L. Investigation of the instability and low water kefir grain growth during an industrial water kefir fermentation process. Appl. Microbiol. Biotechnol. 2017, 101, 2811–2819. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Hlangwani, E.; Doorsamy, W.; Adebiyi, J.A.; Fajimi, L.I.; Adebo, O.A. A modeling method for the development of a bioprocess to optimally produce umqombothi (a South African traditional beer). Sci. Rep. 2021, 11, 20626. [Google Scholar] [CrossRef]
- Barkallah, M.; Dammak, M.; Louati, I.; Hentati, F.; Hadrich, B.; Mechichi, T.; Ayadi, M.A.; Fendri, I.; Attia, H.; Abdelkafi, S. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT 2017, 84, 323–330. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Lei, H. Phenolics profile, antioxidant activity and flavor volatiles of pear juice: Influence of lactic acid fermentation using three Lactobacillus strains in monoculture and binary mixture. Foods 2021, 11, 11. [Google Scholar] [CrossRef]
- Hentati, F.; Barkallah, M.; Ben Atitallah, A.; Dammak, M.; Louati, I.; Pierre, G.; Fendri, I.; Attia, H.; Michaud, P.; Abdelkafi, S. Quality characteristics and functional and antioxidant capacities of algae-fortified fish burgers prepared from common barbel (Barbus barbus). Biomed Res. Int. 2019, 2019, 2907542. [Google Scholar] [CrossRef]
- Filip, M.; Vlassa, M.; Coman, V.; Halmagyi, A. Simultaneous determination of glucose, fructose, sucrose and sorbitol in the leaf and fruit peel of different apple cultivars by the HPLC–RI optimized method. Food Chem. 2016, 199, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Bonello, F.; Cravero, M.C.; Asproudi, A.; Lottero, M.R.; Piras, F.; Damasco, G.; Demelas, L.; Petrozziello, M.; Lovicu, G. Exploring the aromatic complexity of Sardinian red wines obtained from minor and rare varieties. Eur. Food Res. Technol. 2021, 247, 133–156. [Google Scholar] [CrossRef]
- Gamba, R.R.; Caro, C.A.; Martínez, O.L.; Moretti, A.F.; Giannuzzi, L.; De Antoni, G.L.; Peláez, A.L. Antifungal effect of kefir fermented milk and shelf life improvement of corn arepas. Int. J. Food Microbiol. 2016, 235, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Grujović, M.Ž.; Mladenović, K.G.; Semedo-Lemsaddek, T.; Laranjo, M.; Stefanović, O.D.; Kocić-Tanackov, S.D. Advantages and disadvantages of non-starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1537–1567. [Google Scholar] [CrossRef]
- M’hir, S.; Mejri, A.; Atrous, H.; Ayed, L. Optimization of parameters using response surface methodology to develop a novel kefir-like functional beverage from cheese whey enriched with myrtle juice. J. Chem. 2021, 2021, 2984470. [Google Scholar] [CrossRef]
- Acevedo-Martínez, E.; Gutiérrez-Cortés, C.; García-Mahecha, M.; Díaz-Moreno, C. Evaluation of viability of probiotic bacteria in mango (Mangifera indica L. Cv.“Tommy Atkins”) beverage. Dyna 2018, 85, 84–92. [Google Scholar] [CrossRef]
- Fawzi, N.Y.; Abdelghani, D.Y.; Abdel-azim, M.A.; Shokier, C.G.; Youssef, M.W.; El-Rab, M.K.G.; Gad, A.I.; Abou-Taleb, K.A. The ability of probiotic lactic acid bacteria to ferment Egyptian broken rice milk and produce rice-based yoghurt. Ann. Agric. Sci. 2022, 67, 107–118. [Google Scholar] [CrossRef]
- Bengoa, A.A.; Llamas, M.G.; Iraporda, C.; Dueñas, M.T.; Abraham, A.G.; Garrote, G.L. Impact of growth temperature on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from kefir grains. Food Microbiol. 2018, 69, 212–218. [Google Scholar] [CrossRef]
- Laureys, D.; Aerts, M.; Vandamme, P.; De Vuyst, L. Oxygen and diverse nutrients influence the water kefir fermentation process. Food Microbiol. 2018, 73, 351–361. [Google Scholar] [CrossRef]
- M’hir, S.; Rtibi, K.; Mejri, A.; Ziadi, M.; Aloui, H.; Hamdi, M.; Ayed, L. Development of a novel whey date beverage fermented with kefir grains using response surface methodology. J. Chem. 2019, 2019, 1218058. [Google Scholar] [CrossRef]
- Viana, R.O.; Magalhães-Guedes, K.T.; Braga, R.A.; Dias, D.R.; Schwan, R.F. Fermentation process for production of apple-based kefir vinegar: Microbiological, chemical and sensory analysis. Braz. J. Microbiol. 2017, 48, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Mota-Gutierrez, J.; Botta, C.; Ferrocino, I.; Giordano, M.; Bertolino, M.; Dolci, P.; Cannoni, M.; Cocolin, L. Dynamics and biodiversity of bacterial and yeast communities during fermentation of cocoa beans. Appl. Environ. Microbiol. 2018, 84, e01164-18. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Balthazar, C.F.; Scudino, H.; Pimentel, T.C.; Esmerino, E.A.; Ashokkumar, M.; Freitas, M.Q.; Cruz, A.G. High-intensity ultrasound: A novel technology for the development of probiotic and prebiotic dairy products. Ultrason. Sonochem. 2019, 57, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Rosdiana, R.K.; Fitrilia, T. Proximate composition and organoleptic properties of pumpkin (Cucurbita moschata)-based complementary foods with several types of nuts. Indones. J. Appl. Res. 2022, 3, 23–31. [Google Scholar]
- Segura-Badilla, O.; Lazcano-Hernández, M.; Kammar-García, A.; Vera-López, O.; Aguilar-Alonso, P.; Ramírez-Calixto, J.; Navarro-Cruz, A.R. Use of coconut water (Cocus nucifera L.) for the development of a symbiotic functional drink. Heliyon 2020, 6, e03653. [Google Scholar] [CrossRef] [PubMed]
- Teijeiro, M.; Pérez, P.F.; De Antoni, G.L.; Golowczyc, M.A. Suitability of kefir powder production using spray drying. Food Res. Int. 2018, 112, 169–174. [Google Scholar] [CrossRef]
- Pop, C.; Apostu, S.; Salanţă, L.; Rotar, A.M.; Sindic, M.; Mabon, N.; Socaciu, C. Influence of different growth conditions on the kefir grains production used in the kefiran synthesis. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2014, 71, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Guzel-Seydim, Z.; Kok-Tas, T.; Ertekin-Filiz, B.; Seydim, A. Effect of different growth conditions on biomass increase in kefir grains. J. Dairy Sci. 2011, 94, 1239–1242. [Google Scholar] [CrossRef]
- Bueno, R.S.; Ressutte, J.B.; Hata, N.N.; Henrique-Bana, F.C.; Guergoletto, K.B.; de Oliveira, A.G.; Spinosa, W.A. Quality and shelf life assessment of a new beverage produced from water kefir grains and red pitaya. LWT 2021, 140, 110770. [Google Scholar] [CrossRef]
- Altuntas, S.; Hapoglu, H. Kefir-Type Drinks from Whey Non-Alcoholic Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 185–226. [Google Scholar]
- Gut, A.M.; Vasiljevic, T.; Yeager, T.; Donkor, O.N. Kefir characteristics and antibacterial properties-potential applications in control of enteric bacterial infection. Int. Dairy J. 2021, 118, 105021. [Google Scholar] [CrossRef]
- Laureys, D.; De Vuyst, L. Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation. Appl. Environ. Microbiol. 2014, 80, 2564–2572. [Google Scholar] [CrossRef]
- Alves, V.; Scapini, T.; Camargo, A.F.; Bonatto, C.; Stefanski, F.S.; de Jesus, E.P.; Diniz, L.G.T.; Bertan, L.C.; Maldonado, R.R.; Treichel, H. Development of fermented beverage with water kefir in water-soluble coconut extract (Cocos nucifera L.) with inulin addition. LWT 2021, 145, 111364. [Google Scholar] [CrossRef]
- Xu, Z.; Lu, Z.; Soteyome, T.; Ye, Y.; Huang, T.; Liu, J.; Harro, J.M.; Kjellerup, B.V.; Peters, B.M. Polymicrobial interaction between Lactobacillus and Saccharomyces cerevisiae: Coexistence-relevant mechanisms. Crit. Rev. Microbiol. 2021, 47, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Laureys, D.; Leroy, F.; Vandamme, P.; De Vuyst, L. Backslopping time, rinsing of the grains during backslopping, and incubation temperature influence the water kefir fermentation process. Front. Microbiol. 2022, 1487, 871550. [Google Scholar] [CrossRef] [PubMed]
- Slattery, C.; Cotter, P.D.; W. O’Toole, P. Analysis of health benefits conferred by Lactobacillus species from kefir. Nutrients 2019, 11, 1252. [Google Scholar] [CrossRef]
- Ozcelik, F.; Akan, E.; Kinik, O. Use of Cornelian cherry, hawthorn, red plum, roseship and pomegranate juices in the production of water kefir beverages. Food Biosci. 2021, 42, 101219. [Google Scholar] [CrossRef]
- Dadkhah, S.; Pourahmad, R.; Assadi, M.M.; Moghimi, A. Kefir production from soymilk. Ann. Biol. Res. 2011, 2, 293–299. [Google Scholar]
- Premjit, Y.; Mitra, J. Optimization of electrospray-assisted microencapsulation of probiotics (Leuconostoc lactis) in soy protein isolate-oil particles using Box-Behnken experimental design. Food Bioprocess Technol. 2021, 14, 1712–1729. [Google Scholar] [CrossRef]
- Paredes, J.L.; Escudero-Gilete, M.L.; Vicario, I.M. A new functional kefir fermented beverage obtained from fruit and vegetable juice: Development and characterization. LWT 2022, 154, 112728. [Google Scholar] [CrossRef]
- de Oliveira, A.F.; Silva, I.S.; Ferreira, A.M.; Velázquez-Moyado, J.A.; Bezerra, R.M.; Carvalho, J.C.T.; Ferreira, I.M.; Florentino, A.C. Mercury tolerance of Penicillium sp. isolated from kefir grains. Ciênc. Nat. 2018, 40, e73. [Google Scholar] [CrossRef]
- US Department of Agriculture (USDA). Pumpkin, Raw. 2018. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/168448/nutrients (accessed on 28 March 2024).
- Othaman, M.A.; Sharifudin, S.A.; Mansor, A.; Kahar, A.; Long, K. Coconut water vinegar: New alternative with improved processing technique. J. Eng. Sci. Technol. 2014, 9, 293–302. [Google Scholar]
- Pinto, L.C.; de Oliveira, T.P.; de Souza, R.; Santos, N.B.F.; Santos, L.F.P.; de Assis Santos, A.; dos Santos, T.X.; Santos, C.T.; de Jesus Nunes, C.; Costa, I.B. Probiotic kefir-fermented beverage-based Colocasia esculenta L.: Development, characterization, and microbiological stability during chilled storage. J. Food Process. Preserv. 2021, 45, e15113. [Google Scholar] [CrossRef]
- EC (European Commission). Commission Regulation (EC) No 1924/2006 of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: http://data.europa.eu/eli/reg/2006/1924/oj (accessed on 28 March 2024).
- García-Parra, J.; González-Cebrino, F.; Ramírez, R. Volatile compounds of a pumpkin (Cucurbita moschata) purée processed by high pressure thermal processing. J. Sci. Food Agric. 2020, 100, 4449–4456. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.-C.; Easa, A.M. The evolution of physicochemical and microbiological properties of green and mature coconut water (Cocos nucifera) under different storage conditions. J. Food Meas. Charact. 2021, 15, 3523–3530. [Google Scholar] [CrossRef]
- Aly, E.; Darwish, A.A.; Tawfek, M. Quality characteristics of sweet whey-based fruits beverages fermented with Lactobacillus plantarum. Egypt. J. Food Sci. 2019, 47, 141–254. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A. The profile of carotenoids and other bioactive molecules in various pumpkin fruits (Cucurbita maxima Duchesne) cultivars. Molecules 2019, 24, 3212. [Google Scholar] [CrossRef]
- Enneb, S.; Drine, S.; Bagues, M.; Triki, T.; Boussora, F.; Guasmi, F.; Nagaz, K.; Ferchichi, A. Phytochemical profiles and nutritional composition of squash (Cucurbita moschata D.) from Tunisia. S. Afr. J. Bot. 2020, 130, 165–171. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Bioactive coconut protein concentrate films incorporated with antioxidant extract of mature coconut water. Food Hydrocoll. 2018, 79, 243–252. [Google Scholar] [CrossRef]
- Tu, C.; Azi, F.; Huang, J.; Xu, X.; Xing, G.; Dong, M. Quality and metagenomic evaluation of a novel functional beverage produced from soy whey using water kefir grains. LWT 2019, 113, 108258. [Google Scholar] [CrossRef]
- abadi Sherahi, M.H.; Shahidi, F.; Yazdi, F.T.; Hashemi, S.M.B. Effect of Lactobacillus plantarum on olive and olive oil quality during fermentation process. LWT 2018, 89, 572–580. [Google Scholar] [CrossRef]
- Laureys, D.; Leroy, F.; Hauffman, T.; Raes, M.; Aerts, M.; Vandamme, P.; De Vuyst, L. The type and concentration of inoculum and substrate as well as the presence of oxygen impact the water kefir fermentation process. Front. Microbiol. 2021, 12, 628599. [Google Scholar] [CrossRef] [PubMed]
- Limareva, N.; Donchenko, L.; Malaknov, V.; Semenova, E. Functional beverages containing pectin from different raw material. IOP Conf. Ser. Earth Environ. Sci. 2019, 337, 012013. [Google Scholar] [CrossRef]
- Zhou, C.-L.; Mi, L.; Hu, X.-Y.; Zhu, B.-H. Evaluation of three pumpkin species: Correlation with physicochemical, antioxidant properties and classification using SPME-GC–MS and E-nose methods. J. Food Sci. Technol. 2017, 54, 3118–3131. [Google Scholar] [CrossRef]
- Li, S.; Tao, Y.; Li, D.; Wen, G.; Zhou, J.; Manickam, S.; Han, Y.; Chai, W.S. Fermentation of blueberry juices using autochthonous lactic acid bacteria isolated from fruit environment: Fermentation characteristics and evolution of phenolic profiles. Chemosphere 2021, 276, 130090. [Google Scholar] [CrossRef] [PubMed]
- Fiorda, F.A.; de Melo Pereira, G.V.; Thomaz-Soccol, V.; Rakshit, S.K.; Pagnoncelli, M.G.B.; de Souza Vandenberghe, L.P.; Soccol, C.R. Microbiological, biochemical, and functional aspects of sugary kefir fermentation-A review. Food Microbiol. 2017, 66, 86–95. [Google Scholar] [CrossRef]
- Jamaludin, M.A.; Amin, A.; Othman, R.; Fadzlillah, N.A.; Kartika, B. Technical review on vinegar fermentation process and physiochemical properties of vinegar product based on Shariah and scientific perspectives. In Proceedings of the 3rd International Halal Conference (INHAC 2016), Selangor, Malaysia, 21–22 November 2016; pp. 491–499. [Google Scholar]
- Codex Alimentarius, FAO/WHO. Standard for Fermented Milks; CODEX STAN 243-2003; Codex Alimentarius Commission: Rome, Italy, 2011. [Google Scholar]
- Gámbaro, A.; McSweeney, M.B. Sensory methods applied to the development of probiotic and prebiotic foods. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2020; pp. 295–337. [Google Scholar]
- Puttarat, N.; Thangrongthong, S.; Kasemwong, K.; Kerdsup, P.; Taweechotipatr, M. Spray-drying microencapsulation using whey protein isolate and nano-crystalline starch for enhancing the survivability and stability of Lactobacillus reuteri TF-7. Food Sci. Biotechnol. 2021, 30, 245–256. [Google Scholar] [CrossRef] [PubMed]
- de Souza, T.S.; Kawaguti, H.Y. Cellulases, hemicellulases, and pectinases: Applications in the food and beverage industry. Food Bioprocess Technol. 2021, 14, 1446–1477. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhang, L.; Shen, M.; Xu, T.; Zhan, W.; Jin, H.; Zhang, Y.; Wang, W. Extraction and purification of pumpkin polysaccharides and their hypoglycemic effect. Int. J. Biol. Macromol. 2017, 98, 182–187. [Google Scholar] [CrossRef]
- Genevois, C.; Pieniazek, F.; Messina, V.; Flores, S.; de Escalada Pla, M. Bioconversion of pumpkin by-products in novel supplements supporting Lactobacillus casei. LWT 2019, 105, 23–29. [Google Scholar] [CrossRef]
- Alirezalu, K.; Inácio, R.S.; Hesari, J.; Remize, F.; Nemati, Z.; Saraiva, J.A.; Barba, F.J.; Sant’Ana, A.S.; Lorenzo, J.M. Nutritional, chemical, syneresis, sensory properties, and shelf life of Iranian traditional yoghurts during storage. LWT 2019, 114, 108417. [Google Scholar] [CrossRef]
Run | X1 (% w/v) | X2 (% w/v) | X3 (°C) | TpH4.5 (h) | OA (Score) | Biomass Growth Rate (% G) | Lactic Acid (% v/v) | Lactobacillus Count (Log CFU/mL) |
---|---|---|---|---|---|---|---|---|
1 | 20.00 (1) | 0.00 (1) | 27.00 (0) | 6.36 | 2.09 | 45.00 | 0.80 | 7.54 |
2 | 30.00 (1) | 0.00 (1) | 27.00 (0) | 6.15 | 2.02 | 40.00 | 0.62 | 6.01 |
3 | 20.00 (1) | 10.00 (1) | 27.00 (0) | 4.56 | 3.98 | 30.00 | 0.64 | 6.23 |
4 | 30.00 (1) | 10.00 (1) | 27.00 (0) | 3.64 | 5.89 | 22.00 | 0.65 | 4.32 |
5 | 20.00 (1) | 5.00 (0) | 22.00 (1) | 6.00 | 2.64 | 42.00 | 0.73 | 6.82 |
6 | 30.00 (1) | 5.00 (0) | 22.00 (1) | 5.45 | 2.83 | 38.00 | 0.64 | 5.95 |
7 | 20.00 (1) | 5.00 (0) | 32.00 (1) | 3.00 | 4.98 | 15.00 | 0.54 | 3.82 |
8 | 30.00 (1) | 5.00 (0) | 32.00 (1) | 2.25 | 6.50 | 10.00 | 0.32 | 2.08 |
9 | 25.00 (0) | 0.00 (1) | 22.00 (1) | 8.08 | 0.74 | 55.00 | 0.82 | 8.04 |
10 | 25.00 (0) | 10.00 (1) | 22.00 (1) | 4.76 | 2.07 | 31.00 | 0.65 | 6.03 |
11 | 25.00 (0) | 0.00 (1) | 32.00 (1) | 3.64 | 2.25 | 20.00 | 0.40 | 3.08 |
12 | 25.00 (0) | 10.00 (1) | 32.00 (1) | 3.00 | 6.26 | 15.00 | 0.45 | 3.82 |
13 | 25.00 (0) | 5.00 (0) | 27.00 (0) | 4.07 | 4.46 | 25.00 | 0.40 | 4.01 |
14 | 25.00 (0) | 5.00 (0) | 27.00 (0) | 4.00 | 4.46 | 25.00 | 0.45 | 3.26 |
15 | 25.00 (0) | 5.00 (0) | 27.00 (0) | 4.00 | 4.22 | 24.00 | 0.45 | 3.88 |
16 | 25.00 (0) | 5.00 (0) | 27.00 (0) | 4.08 | 4.37 | 24.00 | 0.45 | 3.88 |
17 | 25.00 (0) | 5.00 (0) | 27.00 (0) | 4.00 | 4.23 | 26.00 | 0.43 | 3.12 |
Term | Regression Coefficients Estimated | ||||
---|---|---|---|---|---|
TpH4.5 (h) | OA (Score) | Biomass Growth Rate (% G) | Lactic Acid (% v/v) | Lactobacillus Count (Log CFU/mL) | |
Intercept | |||||
β0 | 4.03 | 4.35 | 24.80 | 0.44 | 3.63 |
Linear | |||||
β1 | −0.30 * | 0.44 * | −2.75 ** | −0.06 ** | −0.76 ** |
β2 | −1.03 * | 1.39 * | −7.75 * | −0.03 *** | −0.54 ** |
β3 | −1.55 * | 1.46 * | −13.25 * | −0.14 * | −1.76 * |
Interaction | |||||
β1 β2 | −0.18 ** | 0.49 * | −0.75 n.s. | 0.05 *** | −0.10 n.s. |
β1 β3 | −0.05 n.s. | 0.33 ** | −0.25 n.s. | −0.03 n.s. | −0.22 n.s. |
β2 β3 | 0.67 * | 0.67 * | 4.75 * | 0.06 ** | 0.69 *** |
Quadratic | |||||
β11 | 0.23 ** | 0.28 *** | 2.72 ** | 0.11 ** | 0.91 ** |
β22 | 0.92 * | −1.13 * | 6.72 * | 0.13 * | 1.48 ** |
β33 | −0.08 *** | −0.39 ** | −1.27 n.s. | 0.01 n.s. | 0.13 n.s. |
R2 | 0.9993 | 0.9979 | 0.9961 | 0.9837 | 0.9796 |
CV% | 1.34 | 3.05 | 3.91 | 5.23 | 8.37 |
Adq. Pre. | 125.87 | 66.27 | 53.49 | 22.13 | 20.31 |
plof-value | 0.1188 n.s. | 0.5293 n.s. | 0.1683 n.s. | 0.1758 n.s. | 0.4990 n.s. |
pm-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Response Variables | Goal | Predicted Mean a | 95% PI Low c | Observed Value b | 95% PI High c |
---|---|---|---|---|---|
TpH4.5 (h) | Minimize | 4.59 | 4.44 | 4.54 ± 0.06 | 4.74 |
OA (score) | Maximize | 4.01 | 3.73 | 4.03 ± 0.12 | 4.30 |
Biomass growth rate (% G) | Maximize | 29.68 | 26.92 | 31.00 ± 1.12 | 32.44 |
Lactic acid (% v/v) | Maximize | 0.66 | 0.59 | 0.68 ± 0.03 | 0.73 |
Lactobacillus count (Log CFU/mL) | Maximize | 6.31 | 5.32 | 6.41 ± 0.40 | 7.30 |
Parameters | Values |
---|---|
Proximate composition (% wet bases) | |
Moisture | 89.06 ± 0.14 |
Ash | 2.81 ± 0.05 |
Protein | 3.26 ± 0.13 |
Dietary fibre | 2.75 ± 0.07 |
Fat | 0.14 ± 0.03 |
Carbohydrate | 1.98 ± 0.20 |
Minerals (mg/L) | |
Potassium (K) | 2186.33 ± 1.53 |
Phosphorus (P) | 180.67 ± 0.58 |
Magnesium (Mg) | 207.07 ± 2.65 |
Calcium (Ca) | 137.33 ± 2.08 |
Iron (Fe) | 1.37 ± 0.03 |
Zinc (Zn) | 0.23 ± 0.03 |
Copper (Cu) | 0.56 ± 0.04 |
Selenium (Se) | 0.47 ± 0.03 |
Manganese (Mn) | 0.77 ± 0.03 |
Physicochemical Properties | Storage Time (Day) | |||
---|---|---|---|---|
0 | 28 | 56 | ||
TSS (°Brix) | 6.87 ± 0.02 a | 6.87 ± 0.02 a | 6.84 ± 0.04 a | |
pH | 4.53 ± 0.02 a | 4.55 ± 0.05 a | 4.43 ± 0.12 a | |
Viscosity (cP) | 54.57 ± 0.02 a | 54.57 ± 0.02 a | 54.53 ± 0.05 a | |
Colour | L* | 37.21 ± 0.01 a | 37.23 ± 0.12 a | 37.10 ± 0.90 a |
a* | 2.24 ± 0.03 a | 2.24 ± 0.01 a | 2.15 ± 0.13 a | |
b* | 23.83 ± 0.02 a | 23.83 ± 0.03 a | 23.81 ± 0.11 a |
Antioxidative Contents and Activities | Values |
---|---|
Total carotenoid (mg/100 mL) | 33.24 ± 0.29 |
Total phenolic (mg GAE/100 mL) | 89.93 ± 0.35 |
Total flavonoid (mg QE/100 mL) | 49.94 ± 0.34 |
FRAP (mM Fe (II)/100 mL) | 169.17 ± 0.06 |
DPPH IC50 (mg/mL) | 27.17 ± 0.07 |
Fermentation Time (h) | Sugar (g/L) | |
---|---|---|
Glucose | Fructose | |
0 | 38.75 ± 0.09 c | 27.17 ± 0.08 c |
2.25 | 23.35 ± 0.05 b | 19.10 ± 0.05 b |
4.50 | 16.72 ± 0.07 a | 14.87 ± 0.07 a |
Fermentation Time (h) | Organic Acid (g/L) | |||
---|---|---|---|---|
Lactic Acid | Acetic Acid | Malic Acid | Tartaric Acid | |
0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.20 ± 0.01 b | 0.02 ± 0.02 a |
2.25 | 5.80 ± 0.01 a | 0.08 ± 0.02 a | 0.17 ± 0.01 a | 0.12 ± 0.03 b |
4.50 | 6.79 ± 0.03 b | 0.13 ± 0.01 b | 0.16 ± 0.02 a | 0.14 ± 0.02 b |
Fermentation Time (h) | Ethanol (g/L) |
---|---|
0 | 0.05 ± 0.00 a |
2.25 | 0.51 ± 0.03 b |
4.50 | 0.66 ± 0.02 c |
Microorganisms’ Viability (Log CFU/mL) | Storage Time (Day) | ||
---|---|---|---|
0 | 28 | 56 | |
Lactic acid bacteria | 8.57 ± 0.06 a | 8.54 ± 0.36 a | 8.98 ± 0.56 a |
Lactobacillus | 6.41 ± 0.40 a | 6.65 ± 0.58 a | 6.75 ± 0.59 a |
Acetic acid bacteria | 2.08 ± 0.08 a | 2.08 ± 0.06 a | 2.03 ± 0.32 a |
Yeast | 6.29 ± 0.08 a | 6.36 ± 0.23 a | 6.52 ± 0.42 a |
Closely-Related Relatives (Type Strains) | Max Score | Query Cover | E Value | Similarity |
---|---|---|---|---|
Lactobacillus satsumensis | 2215 | 94% | 0 | 96% |
Lactobacillus mali | 2215 | 94% | 0 | 96% |
Lactobacillus hordei | 2207 | 92% | 0 | 96% |
Lactobacillus oeni | 2189 | 95% | 0 | 95% |
Lactobacillus uvarum | 2141 | 94% | 0 | 95% |
Lactobacillus aquaticus | 2141 | 94% | 0 | 95% |
Lactobacillus sucicola | 2130 | 95% | 0 | 94% |
Lactobacillus capillatus | 2126 | 95% | 0 | 94% |
Lactobacillus mobilis | 2098 | 93% | 0 | 94% |
Lactobacillus vini | 2098 | 93% | 0 | 94% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koh, W.Y.; Lim, X.X.; Khor, B.H.; Rasti, B.; Tan, T.C.; Kobun, R.; Uthumporn, U. Production and Optimisation of Fermented Pumpkin-Based Mature Coconut Water Kefir Beverage Using Response Surface Methodology. Beverages 2024, 10, 34. https://doi.org/10.3390/beverages10020034
Koh WY, Lim XX, Khor BH, Rasti B, Tan TC, Kobun R, Uthumporn U. Production and Optimisation of Fermented Pumpkin-Based Mature Coconut Water Kefir Beverage Using Response Surface Methodology. Beverages. 2024; 10(2):34. https://doi.org/10.3390/beverages10020034
Chicago/Turabian StyleKoh, Wee Yin, Xiao Xian Lim, Ban Hock Khor, Babak Rasti, Thuan Chew Tan, Rovina Kobun, and Utra Uthumporn. 2024. "Production and Optimisation of Fermented Pumpkin-Based Mature Coconut Water Kefir Beverage Using Response Surface Methodology" Beverages 10, no. 2: 34. https://doi.org/10.3390/beverages10020034
APA StyleKoh, W. Y., Lim, X. X., Khor, B. H., Rasti, B., Tan, T. C., Kobun, R., & Uthumporn, U. (2024). Production and Optimisation of Fermented Pumpkin-Based Mature Coconut Water Kefir Beverage Using Response Surface Methodology. Beverages, 10(2), 34. https://doi.org/10.3390/beverages10020034