Barista-Quality Plant-Based Milk for Coffee: A Comprehensive Review of Sensory and Physicochemical Characteristics
Abstract
:1. Introduction
2. Barista-Quality Plant-Based Milk Alternatives (BPMAs)
3. BPMAs and Latte Art: Trends, Market, and Consumer Acceptance
4. Overview of Barista-Quality Plant-Based Milk vs. Dairy Milk
Components | Almond Milk | Oat Milk | Soy Milk | Cow Milk | References |
---|---|---|---|---|---|
Energy (kcal/100 mL) | 23.90 | 52.70 | 38.10 | 66.70 | [5,35,38,53,54] |
Carbohydrate (g/100 mL) | 3.00 | 7.82 | 2.80 | 4.60 | |
Protein (g/100 mL) | 0.50 | 2.16 | 2.90 | 3.30 | |
Fat (g/100 mL) | 1.10 | 1.42 | 1.70 | 3.90 | |
Fibre (g/100 mL) | 1.40 | 1.30 | 1.20 | - | |
Minerals (mg/L) | |||||
Calcium | 325.29 | 12.25 | 205.86 | 119.0 | |
Zinc | 0.56 | 0.13 | 0.075 | 0.38 | |
Iron | 0.18 | 0.76 | 0.84 | 0.05 | |
Magnesium | 21.00 | 42.0 | 0.49 | 13.00 | |
Potassium | 65.00 | 0.01 | 364.29 | 151.00 | |
Phosphorus Copper Selenium | 48.00 0.2 0.001 | 0.01 - - | 108.00 1.7 0.023 | 93.00 0.1 0.01 | |
Vitamins (mg/L) | |||||
Vitamin C | - | - | - | 1.5 | |
Thiamine | - | - | 0.08 | 0.04 | |
Riboflavin | 0.02 | - | 0.24 | 0.16 | |
Niacin | - | - | 0.28 | 0.08 | |
Vitamin B6 | - | - | 0.10 | 0.04 | |
Vitamin E Vitamin A Total folate | 3.84 0.43 0.01 | - - - | 4.00 0.55 0.09 | - 0.38 0.1 | |
Physicochemical | [5,7,38,55,56] | ||||
Conductivity (mS) | 1.22 | 1.83 | 1.95 | 3.27 | |
Density (kg/L) at 20 °C | 1.009 | 1.023 | 1.021 | 1.029 | |
Titratable acidity (%) | 0.39 | 0.45 | 0.17 | 0.16 | |
pH | 5.7–6.9 | 7.16 | 6.9–7.4 | 6.64 | |
Viscosity (mPa∙s) at 20 °C | 4.60 | 3.50 | 3.49 | 3.15 | |
Flow index | 0.82 | 0.89 | 0.90 | 1.00 | |
Whiteness index | 68.40 | 60.20 | 70.30 | 81.90 | |
Mean particle size (µm) | 2.40 | 1.70 | 0.94 | 0.36 | |
Separation rate (%h) | 33.93 | 40.10 | 13.95 | 3.90 |
5. Challenges of Barista-Quality PMAs in Coffee Application
5.1. Sensory Challenges
5.2. Physcicohemical Challenges
5.3. Foaming Challenges
6. Strategies to Overcome Challenges of PMAs in Coffee Application
6.1. Optimizing Preparation Parameters
6.1.1. Addressing Curdling, Phase Separation, and Sedimentation
6.1.2. Standardization of Preparation Guidelines
6.2. Customizing PMAs for Coffee Applications
6.2.1. Hydrolysis of Starch to Manage Viscosity in Oat Milk
6.2.2. Enzyme Treatments and Ingredient Adjustments for Protein Stability and Improving Foaming Properties
6.2.3. Fermentation
6.3. Flavour Masking and Sweeteners
6.4. Creating Synergies with Blended PMAs
6.5. Next-Genegeration Holistic Approach Augmented with Artificial Intelligence (AI)
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siddiqui, S.A.; Mehany, T.; Schulte, H.; Pandiselvam, R.; Nagdalian, A.A.; Golik, A.B.; Asif Shah, M.; Muhammad Shahbaz, H.; Maqsood, S. Plant-based Milk–thoughts of researchers and industries on what should be called as milk. Food Rev. Int. 2024, 40, 1703–1730. [Google Scholar] [CrossRef]
- Welna, M.; Szymczycha-Madeja, A.; Lesniewicz, A.; Pohl, P. The Nutritional Value of Plant Drink against Bovine Milk—Analysis of the Total Concentrations and the Bio-Accessible Fraction of Elements in Cow Milk and Plant-Based Beverages. Processes 2024, 12, 231. [Google Scholar] [CrossRef]
- Haas, R.; Schnepps, A.; Pichler, A.; Meixner, O. Cow milk versus plant-based milk substitutes: A comparison of product image and motivational structure of consumption. Sustainability 2019, 11, 5046. [Google Scholar] [CrossRef]
- Craig, W.J.; Messina, V.; Rowland, I.; Frankowska, A.; Bradbury, J.; Smetana, S.; Medici, E. Plant-based dairy alternatives contribute to a healthy and sustainable diet. Nutrients 2023, 15, 3393. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Rudy, M.; Duma-Kocan, P.; Stanisławczyk, R.; Krajewska, A.; Dziki, D.; Hassoon, W.H. Sustainability of Alternatives to Animal Protein Sources, a Comprehensive Review. Sustainability 2024, 16, 7701. [Google Scholar] [CrossRef]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Yang, T.; Dharmasena, S. US consumer demand for plant-based milk alternative beverages: Hedonic metric augmented barten’s synthetic model. Foods 2021, 10, 265. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Moss, R.; LeBlanc, J.; Gorman, M.; Ritchie, C.; Duizer, L.; McSweeney, M.B. A prospective review of the sensory properties of plant-based dairy and meat alternatives with a focus on texture. Foods 2023, 12, 1709. [Google Scholar] [CrossRef]
- Xie, A.; Dong, Y.; Liu, Z.; Li, Z.; Shao, J.; Li, M.; Yue, X. A review of plant-based drinks addressing nutrients, flavor, and processing technologies. Foods 2023, 12, 3952. [Google Scholar] [CrossRef] [PubMed]
- Karimidastjerd, A.; Gulsunoglu-Konuskan, Z.; Olum, E.; Toker, O.S. Evaluation of rheological, textural, and sensory characteristics of optimized vegan rice puddings prepared by various plant-based milks. Food Sci. Nutr. 2024, 12, 1779–1791. [Google Scholar] [CrossRef] [PubMed]
- Plamada, D.; Teleky, B.-E.; Nemes, S.A.; Mitrea, L.; Szabo, K.; Călinoiu, L.-F.; Pascuta, M.S.; Varvara, R.-A.; Ciont, C.; Martău, G.A. Plant-based dairy alternatives—A future direction to the milky way. Foods 2023, 12, 1883. [Google Scholar] [CrossRef] [PubMed]
- Halabi, N.; Hristova, V.; Vlaev, I. Milking the Alternatives: Understanding Coffee Consumers’ Preferences for Non-Dairy Milk. Behav. Sci. 2024, 14, 569. [Google Scholar] [CrossRef]
- Gorman, M.; Knowles, S.; Falkeisen, A.; Barker, S.; Moss, R.; McSweeney, M.B. Consumer perception of milk and plant-based alternatives added to coffee. Beverages 2021, 7, 80. [Google Scholar] [CrossRef]
- Zakidou, P.; Varka, E.-M.; Paraskevopoulou, A. Foaming properties and sensory acceptance of plant-based beverages as alternatives in the preparation of cappuccino style beverages. Int. J. Gastron. Food Sci. 2022, 30, 100623. [Google Scholar] [CrossRef]
- Chung, Y.L.; Kuo, W.Y.; Liou, B.K.; Chen, P.C.; Tseng, Y.C.; Huang, R.Y.; Tsai, M.C. Identifying sensory drivers of liking for plant-based milk coffees: Implications for product development and application. J. Food Sci. 2022, 87, 5418–5429. [Google Scholar] [CrossRef]
- Velangi, M.; Savla, M. Role of Plant Based Milk Alternatives as a Functional Beverage: A Review. Int. J. Health Sci. Res. 2022, 12, 273–281. [Google Scholar] [CrossRef]
- Craig, W.J.; Fresán, U. International analysis of the nutritional content and a review of health benefits of non-dairy plant-based beverages. Nutrients 2021, 13, 842. [Google Scholar] [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef]
- Jaeger, S.R.; de Matos, A.D.; Oduro, A.F.; Hort, J. Sensory characteristics of plant-based milk alternatives: Product characterisation by consumers and drivers of liking. Food Res. Int. 2024, 180, 114093. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, C. Barista milk: Climate-friendly and still dairy. Nat. Biotechnol. 2021, 39, 534. [Google Scholar]
- Christin Brettschneider, K.; Zettel, V.; Sadeghi Vasafi, P.; Hummel, D.; Hinrichs, J.; Hitzmann, B. Spectroscopic-Based Prediction of Milk Foam Properties for Barista Applications. Food Bioprocess Technol. 2022, 15, 1748–1757. [Google Scholar] [CrossRef]
- Hassan, L.; Reynoso, M.; Xu, C.; Al Zahabi, K.; Maldonado, R.; Nicholson, R.A.; Boehm, M.W.; Baier, S.K.; Sharma, V. The bubbly life and death of animal and plant milk foams. Soft. Matter. 2024, 20, 8215–8229. [Google Scholar] [CrossRef] [PubMed]
- Samoggia, A.; Riedel, B. Coffee consumption and purchasing behavior review: Insights for further research. Appetite 2018, 129, 70–81. [Google Scholar] [CrossRef]
- Samoggia, A.; Busi, R. Sustainable coffee capsule consumption: Understanding Italian consumers’ purchasing drivers. Front. Sustain. Food Syst. 2023, 7, 1088877. [Google Scholar] [CrossRef]
- Clay, N.; Sexton, A.E.; Garnett, T.; Lorimer, J. Palatable disruption: The politics of plant milk. In Social Innovation and Sustainability Transition; Springer: Cham, Switzerland, 2022; pp. 11–28. [Google Scholar]
- Hassoun, A.; Marvin, H.J.P.; Bouzembrak, Y.; Barba, F.J.; Castagnini, J.M.; Pallarés, N.; Rabail, R.; Aadil, R.M.; Bangar, S.P.; Bhat, R. Digital transformation in the agri-food industry: Recent applications and the role of the COVID-19 pandemic. Front. Sustain. Food Syst. 2023, 7, 1217813. [Google Scholar] [CrossRef]
- Krampe, C.; Fridman, A. Oatly, a serious ‘problem’ for the dairy industry? A case study. Int. Food Agribus. Manag. Rev. 2022, 25, 157–171. [Google Scholar] [CrossRef]
- Popova, A.; Mihaylova, D.; Lante, A. Insights and perspectives on plant-based beverages. Plants 2023, 12, 3345. [Google Scholar] [CrossRef]
- Hsu, L.; Chen, Y.-J. Does coffee taste better with latte art? A neuroscientific perspective. Br. Food J. 2021, 123, 1931–1946. [Google Scholar] [CrossRef]
- Van Doorn, G.; Colonna-Dashwood, M.; Hudd-Baillie, R.; Spence, C. Latté art influences both the expected and rated value of milk-based coffee drinks. J. Sens. Stud. 2015, 30, 305–315. [Google Scholar] [CrossRef]
- Gupta, M.; Joshi, R.M. Art infusion phenomenon: A systematic literature review. J. Prod. Brand. Manag. 2023, 32, 235–256. [Google Scholar] [CrossRef]
- Jervis, S.M.; Lopetcharat, K.; Drake, M.A. Application of ethnography and conjoint analysis to determine key consumer attributes for latte-style coffee beverages. J. Sens. Stud. 2012, 27, 48–58. [Google Scholar] [CrossRef]
- McClements, D.J.; Newman, E.; McClements, I.F. Plant-based milks: A review of the science underpinning their design, fabrication, and performance. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2047–2067. [Google Scholar] [CrossRef]
- Paul, A.A.; Kumar, S.; Kumar, V.; Sharma, R. Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3005–3023. [Google Scholar] [CrossRef]
- He, A.; Xu, B. High-pressure homogenisation improves food quality of plant-based milk alternatives. Int. J. Food Sci. Technol. 2024, 59, 399–407. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Soto-Reyes, N.; Dávila-Rodríguez, M.; Lorenzo-Leal, A.; Jiménez-Munguía, M.T.; Mani-López, E.; López-Malo, A. Plant-based milk alternatives: Types, processes, benefits, and characteristics. Food Rev. Int. 2023, 39, 2320–2351. [Google Scholar] [CrossRef]
- Silva, A.R.A.; Silva, M.M.N.; Ribeiro, B.D. Health issues and technological aspects of plant-based alternative milk. Food Res. Int. 2020, 131, 108972. [Google Scholar] [CrossRef]
- Silva, B.Q.; Smetana, S. Review on milk substitutes from an environmental and nutritional point of view. Appl. Food Res. 2022, 2, 100105. [Google Scholar] [CrossRef]
- Stanley, N.; Villarino, C.B.; Nyambayo, I. Overcoming barriers to sustainable, healthy diets. Food Sci. Technol. 2022, 36, 40–45. [Google Scholar]
- Rasane, P.; Jha, A.; Sabikhi, L.; Kumar, A.; Unnikrishnan, V.S. Nutritional advantages of oats and opportunities for its processing as value added foods-a review. J. Food Sci. Technol. 2015, 52, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Deswal, A.; Deora, N.S.; Mishra, H.N. Optimization of enzymatic production process of oat milk using response surface methodology. Food Bioprocess Technol. 2014, 7, 610–618. [Google Scholar] [CrossRef]
- Zhang, H.; Önning, G.; Triantafyllou, A.Ö.; Öste, R. Nutritional properties of oat-based beverages as affected by processing and storage. J. Sci. Food Agric. 2007, 87, 2294–2301. [Google Scholar] [CrossRef]
- Giri, S.; Mangaraj, S. Processing influences on composition and quality attributes of soymilk and its powder. Food Eng. Rev. 2012, 4, 149–164. [Google Scholar] [CrossRef]
- Cruz, N.; Capellas, M.; Hernández, M.; Trujillo, A.J.; Guamis, B.; Ferragut, V. Ultra high pressure homogenization of soymilk: Microbiological, physicochemical and microstructural characteristics. Food Res. Int. 2007, 40, 725–732. [Google Scholar] [CrossRef]
- Kopf-Bolanz, K.A.; Villareal Cruz, M.C.; Walther, B.; Denkel, C.; Guggisberg, D. Comparison of physicochemical properties of commercial UHT-treated plant-based beverages and cow’s milk. Agrar. Schweiz. 2023, 14, 43–56. [Google Scholar]
- Sevillano Pires, V.; Zuklic, J.; Hryshko, J.; Hansen, P.; Boyer, M.; Wan, J.; Jackson, L.S.; Sandhu, A.K.; Redan, B.W. Market basket survey of the micronutrients vitamin A, vitamin D, calcium, and potassium in eight types of commercial plant-based milk alternatives from United States markets. ACS Food Sci. Technol. 2022, 3, 100–112. [Google Scholar] [CrossRef]
- Suryamiharja, A.; Gong, X.; Zhou, H. Towards more sustainable, nutritious, and affordable plant-based milk alternatives: A critical review. Sustain. Food Proteins 2024, 2, 250–267. [Google Scholar] [CrossRef]
- Grainger, E.M.; Jiang, K.; Webb, M.Z.; Kennedy, A.J.; Chitchumroonchokchai, C.; Riedl, K.M.; Manubolu, M.; Clinton, S.K.J.J.o.A.; Chemistry, F. Bioactive (Poly) phenol Concentrations in Plant-Based Milk Alternatives in the US Market. J. Agric. Food Chem. 2024, 72, 18638–18648. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, W.; Bi, S.; Liu, Y. Application of legumes in plant-based milk alternatives: A review of limitations and solutions. Crit. Rev. Food Sci. Nutr. 2024, 1–17. [Google Scholar] [CrossRef]
- Sumner, O.; Burbridge, L. Plant-based milks: The dental perspective. BDJ Team 2021, 8, 16–23. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Vanga, S.K.; Raghavan, V. How well do plant based alternatives fare nutritionally compared to cow’s milk? J. Food Sci. Technol. 2018, 55, 10–20. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Development of next-generation nutritionally fortified plant-based milk substitutes: Structural design principles. Foods 2020, 9, 421. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Evaluation of physicochemical and glycaemic properties of commercial plant-based milk substitutes. Plant Foods Hum. Nutr. 2017, 72, 26–33. [Google Scholar] [CrossRef]
- Grant, C.A.; Hicks, A.L. Comparative life cycle assessment of milk and plant-based alternatives. Environ. Eng. Sci. 2018, 35, 1235–1247. [Google Scholar] [CrossRef]
- Cardello, A.V.; Llobell, F.; Giacalone, D.; Roigard, C.M.; Jaeger, S.R. Plant-based alternatives vs dairy milk: Consumer segments and their sensory, emotional, cognitive and situational use responses to tasted products. Food Qual. Prefer. 2022, 100, 104599. [Google Scholar] [CrossRef]
- Schiano, A.N.; Harwood, W.S.; Drake, M.A. A 100-year review: Sensory analysis of milk. J. Dairy Sci. 2017, 100, 9966–9986. [Google Scholar] [CrossRef]
- Huppertz, T. Foaming properties of milk: A review of the influence of composition and processing. Int. J. Dairy Technol. 2010, 63, 477–488. [Google Scholar] [CrossRef]
- McCarthy, K.S.; Lopetcharat, K.; Drake, M.A. Milk fat threshold determination and the effect of milk fat content on consumer preference for fluid milk. J. Dairy Sci. 2017, 100, 1702–1711. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res. Int. 2018, 110, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudlou, Y.; Alami, M.; Mashkour, M.; Shahraki, M.H. Optimization of ultrasound-assisted stabilization and formulation of almond milk. J. Food Process. Preserv. 2016, 40, 828–839. [Google Scholar] [CrossRef]
- Francisquini, J.d.A.; Altivo, R.; Diaz, C.C.M.; Da Costa, J.D.C.; Kharfan, D.; Stephani, R.; Perrone, I.T. Physicochemical analysis of thermally treated commercial plant-based beverages coffee added. Eur. Food Res. Technol. 2023, 249, 3191–3199. [Google Scholar] [CrossRef]
- Moss, R.; Barker, S.; Falkeisen, A.; Gorman, M.; Knowles, S.; McSweeney, M.B. An investigation into consumer perception and attitudes towards plant-based alternatives to milk. Food Res. Int. 2022, 159, 111648. [Google Scholar] [CrossRef]
- Nindita, S.; Nahdlah, Z. Formulations of Milk Cappuccino from Soy Milk with Evaluation Sensorys and Benefit of Health. In Proceedings of the International Conference on Tourism, Gastronomy, and Tourist Destination (ICTGTD 2016), South Jakarta, Indonesia, 14–15 November 2016; pp. 78–82. [Google Scholar]
- Li, C. Recent progress in understanding starch gelatinization-An important property determining food quality. Carbohydr. Polym. 2022, 293, 119735. [Google Scholar] [CrossRef] [PubMed]
- Daszkiewicz, T.; Michalak, M.; Śmiecińska, K. A comparison of the quality of plain yogurt and its analog made from coconut flesh extract. J. Dairy Sci. 2024, 107, 3389–3399. [Google Scholar] [CrossRef]
- Schochat, P.R.; Lepp, L.; Karbstein, H.P.; Leister, N. Changing the Oral Tribology of Emulsions Through Crystallization of the Dispersed Triglyceride Phase. J. Texture Stud. 2024, 55, e12871. [Google Scholar] [CrossRef]
- Meiland, P.; Aljabbari, A.; Kihara, S.; Bērziņš, K.; Andersen, U.; Kirkensgaard, J.J.K.; Boyd, B.J. Comparing the lipid self-assembly behaviour and fatty acid composition of plant-based drinks to bovine milk during digestion. Food Chem. 2024, 465, 142031. [Google Scholar] [CrossRef]
- Blasi, F.; Ianni, F.; Cossignani, L. Phenolic profiling for geographical and varietal authentication of extra virgin olive oil. Trends Food Sci. Technol. 2024, 147, 104444. [Google Scholar] [CrossRef]
- Food and Drug Law at Keller and Heckman. Labeling Plant-Based Products as “Milk” Violates Standard of Identity, Members of Congress Tell FDA. Natl. Law Rev. 2016, XIII, 163. Available online: https://natlawreview.com/organization/keller-and-heckman-llp (accessed on 29 November 2024).
- Waldersee, V.; Reuters. Plant-Based Food Industry Fights EU Proposal to Ban Dairy Comparisons. Available online: https://www.reuters.com/article/us-europe-dairy-regulation-idUKKBN2C71I2 (accessed on 12 June 2023).
- Gonzalez, T.T. FDA Issues Draft Guidance on Labeling of Plant-Based Milk Alternatives. National Law Review. 2023. Available online: https://natlawreview.com/article/fda-issues-draft-guidance-labeling-plant-based-milk-alternatives (accessed on 29 November 2024).
- Fibrianto, K.; Maharani, Y. The effect of different non-dairy creamer on ready-to-drink milk coffee. Proc. IOP Conf. Ser. Earth Environ. Sci. 2021, 782, 032083. [Google Scholar] [CrossRef]
- Ohlau, M.; Risius, A. Integrating a Real-Life Experience with Consumer Evaluation: Sensory Acceptance and Willingness to Pay for Coffee Drinks in a Real Café. J. Int. Food Agribus. Mark. 2022, 34, 123–143. [Google Scholar] [CrossRef]
- Zakidou, P.; Paraskevopoulou, A. Aqueous sesame seed extracts: Study of their foaming potential for the preparation of cappuccino-type coffee beverages. LWT 2021, 135, 110258. [Google Scholar] [CrossRef]
- Brown, M.; Laitano, F.; Williams, C.; Gibson, B.; Haw, M.; Sefcik, J.; Johnston, K. “Curdling” of soymilk in coffee: A study of the phase behaviour of soymilk coffee mixtures. Food Hydrocoll. 2019, 95, 462–467. [Google Scholar] [CrossRef]
- Illy, E.; Navarini, L. Neglected food bubbles: The espresso coffee foam. Food Biophys. 2011, 6, 335–348. [Google Scholar] [CrossRef]
- Ho, T.M.; Bhandari, B.R.; Bansal, N. Effect of shearing-induced lipolysis on foaming properties of milk. J. Sci. Food Agric. 2023, 103, 5312–5321. [Google Scholar] [CrossRef]
- Ho, T.M.; Xiong, X.; Bhandari, B.R.; Bansal, N. Foaming Properties and Foam Structure of Milk Determined by Its Protein Content and Protein to Fat Ratio. Food Bioprocess Technol. 2024, 17, 4665–4678. [Google Scholar] [CrossRef]
- Ho, T.M.; Lu, Y.J.; Xiong, X.; Bhandari, B.R.; Bansal, N. Ability to re-foam frothed milk at different solid concentrations and their foam structure. Int. J. Dairy Technol. 2024, 77, 874–883. [Google Scholar] [CrossRef]
- Dias, F.F.G.; Yang, J.S.; Pham, T.T.K.; Barile, D.; LN de Moura Bell, J.M. Unveiling the contribution of Osborne protein fractions to the physicochemical and functional properties of alkaline and enzymatically extracted green lentil proteins. Sustain. Food Proteins 2024, 2, 61–77. [Google Scholar] [CrossRef]
- Yu, Y.; Li, X.; Zhang, J.; Li, X.; Wang, J.; Sun, B. Oat milk analogue versus traditional milk: Comprehensive evaluation of scientific evidence for processing techniques and health effects. Food Chem. X 2023, 19, 100859. [Google Scholar] [CrossRef] [PubMed]
- Lima Nascimento, L.G.; Odelli, D.; Fernandes de Carvalho, A.; Martins, E.; Delaplace, G.; Peres de sá Peixoto Júnior, P.; Nogueira Silva, N.F.; Casanova, F. Combination of milk and plant proteins to develop novel food systems: What are the limits? Foods 2023, 12, 2385. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Junca, C.; Sher, A.; Gumy, J.-C.; Niranjan, K. Production of milk foams by steam injection: The effects of steam pressure and nozzle design. J. Food Eng. 2015, 166, 247–254. [Google Scholar] [CrossRef]
- Kamath, S.; Webb, R.E.; Deeth, H.C. The composition of interfacial material from skim milk foams. J. Dairy Sci. 2011, 94, 2707–2718. [Google Scholar] [CrossRef]
- Wu, J.; Li, H.; A’yun, Q.; Doost, A.S.; De Meulenaer, B.; Van der Meeren, P. Conjugation of milk proteins and reducing sugars and its potential application in the improvement of the heat stability of (recombined) evaporated milk. Trends Food Sci. Technol. 2021, 108, 287–296. [Google Scholar] [CrossRef]
- Vogelsang-O’Dwyer, M.; Sahin, A.W.; Zannini, E.; Arendt, E.K. Physicochemical and nutritional properties of high protein emulsion-type lupin-based model milk alternatives: Effect of protein source and homogenization pressure. J. Sci. Food Agric. 2022, 102, 5086–5097. [Google Scholar] [CrossRef]
- Ho, T.M.; Le, T.H.A.; Yan, A.; Bhandari, B.R.; Bansal, N. Foaming properties and foam structure of milk during storage. Food Res. Int. 2019, 116, 379–386. [Google Scholar] [CrossRef]
- Santos, N.C.; Almeida, R.L.J.; de Medeiros, M.d.F.D.; Hoskin, R.T.; da Silva Pedrini, M.R. Foaming characteristics and impact of ethanol pretreatment in drying behavior and physical characteristics for avocado pulp powder obtained by foam mat drying. J. Food Sci. 2022, 87, 1780–1795. [Google Scholar] [CrossRef]
- Shameena Beegum, P.P.; Manikantan, M.R.; Anju, K.B.; Vinija, V.; Pandiselvam, R.; Jayashekhar, S.; Hebbar, K.B. Foam mat drying technique in coconut milk: Effect of additives on foaming and powder properties and its economic analysis. J. Food Process. Preserv. 2022, 46, e17122. [Google Scholar] [CrossRef]
- Akesowan, A. Influence of konjac flour on foaming properties of milk protein concentrate and quality characteristics of gluten-free cookie. Int. J. Food Sci. Technol. 2016, 51, 1560–1569. [Google Scholar] [CrossRef]
- Martínez-Padilla, L.P.; García-Rivera, J.L.; Romero-Arreola, V.; Casas-Alencáster, N.B. Effects of xanthan gum rheology on the foaming properties of whey protein concentrate. J. Food Eng. 2015, 156, 22–30. [Google Scholar] [CrossRef]
- Jimenez-Junca, C.A.; Gumy, J.C.; Sher, A.; Niranjan, K. Rheology of milk foams produced by steam injection. J. Food Sci. 2011, 76, E569–E575. [Google Scholar] [CrossRef] [PubMed]
- Buccioni, A.; Minieri, S.; Rapaccini, S. Effect of Total Proteosepeptone Content on the Variability of Bovine Milk Foaming Property. Ital. J. Anim. Sci. 2013, 12, e12. [Google Scholar] [CrossRef]
- Ibrahim, F.S.; Ateteallah, H.A.J.J.o.F.; Sciences, D. Assessment some Function Properties of Acid Casein in Different Types of Milk. J. Food Dairy Sci. 2019, 10, 171–173. [Google Scholar] [CrossRef]
- Tan, S.H.; Mailer, R.J.; Blanchard, C.L.; Agboola, S.O. Canola proteins for human consumption: Extraction, profile, and functional properties. J. Food Sci. 2011, 76, R16–R28. [Google Scholar] [CrossRef]
- Shimizu, M.; Saito, M.; Yamauchi, K. Emulsifying and structural properties of β-lactoglobulin at different pHs. Agric. Biol. Chem. 1985, 49, 189–194. [Google Scholar]
- Jaeger, A.; Sahin, A.W.; Nyhan, L.; Zannini, E.; Arendt, E.K. Functional properties of brewer’s spent grain protein isolate: The missing piece in the plant protein portfolio. Foods 2023, 12, 798. [Google Scholar] [CrossRef]
- Ma, K.K.; Greis, M.; Lu, J.; Nolden, A.A.; McClements, D.J.; Kinchla, A.J. Functional performance of plant proteins. Foods 2022, 11, 594. [Google Scholar] [CrossRef]
- Sutariya, S.G.; Salunke, P. Effect of hyaluronic acid and kappa-carrageenan on milk properties: Rheology, protein stability, foaming, water-holding, and emulsification properties. Foods 2023, 12, 913. [Google Scholar] [CrossRef]
- Lazidis, A.; Hancocks, R.D.; Spyropoulos, F.; Kreuß, M.; Berrocal, R.; Norton, I.T. Whey protein fluid gels for the stabilisation of foams. Food Hydrocoll. 2016, 53, 209–217. [Google Scholar] [CrossRef]
- Amagliani, L.; Silva, J.V.C.; Saffon, M.; Dombrowski, J. On the foaming properties of plant proteins: Current status and future opportunities. Trends Food Sci. Technol. 2021, 118, 261–272. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll. 2009, 23, 1473–1482. [Google Scholar] [CrossRef]
- Patino, J.M.R.; Sánchez, C.C.; Niño, M.R.R. Implications of interfacial characteristics of food foaming agents in foam formulations. Adv. Colloid. Interface Sci. 2008, 140, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Deotale, S.; Dutta, S.; Moses, J.A.; Balasubramaniam, V.M.; Anandharamakrishnan, C. Foaming characteristics of beverages and its relevance to food processing. Food Eng. Rev. 2020, 12, 229–250. [Google Scholar] [CrossRef]
- Zhan, F.; Youssef, M.; Shah, B.R.; Li, J.; Li, B. Overview of foam system: Natural material-based foam, stabilization, characterization, and applications. Food Hydrocoll. 2022, 125, 107435. [Google Scholar] [CrossRef]
- Koponen, A.; Eloranta, H.; Jäsberg, A.; Honkanen, M.; Kiiskinen, H. Real-time monitoring of bubble size distribution in a foam forming process. Tappi J. 2019, 18, 487–494. [Google Scholar] [CrossRef]
- Petrozzi, S. Characterisation and visualisation of foam quality attributes such as foamability, foam stability and foam structure of coffee brews, whole uht milk and coffee-based beverages. Afr. J. Food Sci. 2022, 15, 10–21. [Google Scholar]
- Amagliani, L.; Dombrowski, J. Plant proteins for dairy analogs. In Functionality of Plant Proteins; Elsevier: Amsterdam, The Netherlands, 2024; pp. 401–426. [Google Scholar]
- Liu, X.; Wang, C.; Zhang, X.; Zhang, G.; Zhou, J.; Chen, J. Application prospect of protein-glutaminase in the development of plant-based protein foods. Foods 2022, 11, 440. [Google Scholar] [CrossRef]
- Pua, A.; Tang, V.C.Y.; Goh, R.M.V.; Sun, J.; Lassabliere, B.; Liu, S.Q. Ingredients, processing, and fermentation: Addressing the organoleptic boundaries of plant-based dairy analogues. Foods 2022, 11, 875. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Shen, A.; Zhang, T.; Jiang, L.; El-Seedi, H.; Zhang, G.; Sui, X. Legumes as an alternative protein source in plant-based foods: Applications, challenges, and strategies. Curr. Res. Food Sci. 2024, 9, 100876. [Google Scholar] [CrossRef]
- Kumar, M.; Selvasekaran, P.; Chidambaram, R.; Zhang, B.; Hasan, M.; Gupta, O.P.; Rais, N.; Sharma, K.; Sharma, A.; Lorenzo, J.M. Tea (Camellia sinensis (L.) Kuntze) as an emerging source of protein and bioactive peptides: A narrative review. Food Chem. 2023, 428, 136783. [Google Scholar] [CrossRef] [PubMed]
- Tangyu, M.; Fritz, M.; Tan, J.P.; Ye, L.; Bolten, C.J.; Bogicevic, B.; Wittmann, C. Flavour by design: Food-grade lactic acid bacteria improve the volatile aroma spectrum of oat milk, sunflower seed milk, pea milk, and faba milk towards improved flavour and sensory perception. Microb. Cell Fact. 2023, 22, 133. [Google Scholar] [CrossRef] [PubMed]
- Tzifi, F.; Grammeniatis, V.; Papadopoulos, M. Soy-and rice-based formula and infant allergic to cow’s milk. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Vaikma, H.; Kaleda, A.; Rosend, J.; Rosenvald, S. Market mapping of plant-based milk alternatives by using sensory (RATA) and GC analysis. Future Foods 2021, 4, 100049. [Google Scholar] [CrossRef]
- Patra, T.; Rinnan, Å.; Olsen, K. The physical stability of plant-based drinks and the analysis methods thereof. Food Hydrocoll. 2021, 118, 106770. [Google Scholar] [CrossRef]
- Mehany, T.; Siddiqui, S.A.; Olawoye, B.; Olabisi Popoola, O.; Hassoun, A.; Manzoor, M.F.; Punia Bangar, S. Recent innovations and emerging technological advances used to improve quality and process of plant-based milk analogs. Crit. Rev. Food Sci. Nutr. 2024, 64, 7237–7267. [Google Scholar] [CrossRef]
- Pointke, M.; Albrecht, E.H.; Geburt, K.; Gerken, M.; Traulsen, I.; Pawelzik, E. A comparative analysis of plant-based milk alternatives part 1: Composition, sensory, and nutritional value. Sustainability 2022, 14, 7996. [Google Scholar] [CrossRef]
- Abou Ayana, I.A.A.; Elgarhy, M.R.; Al-Otibi, F.O.; Omar, M.M.; El-Abbassy, M.Z.; Khalifa, S.A.; Helmy, Y.A.; Saber, W.I.A. Artificial Intelligence-Powered Optimization and Milk Permeate Upcycling for Innovative Sesame Milk with Enhanced Probiotic Viability and Sensory Appeal. ACS Omega 2024, 9, 25189–25202. [Google Scholar] [CrossRef]
Parameter | Cow Milk | Soy Milk | Oat Milk | Almond Milk |
---|---|---|---|---|
Water use (L) | 620 | 40 | 60 | 380 |
Greenhouse gas emissions (kg CO2 eq/L) | 3.2 | 1 | 0.9 | 0.8 |
Land use (m2/L) | 9 | ≤1 | ≤1 | ≤1 |
Eutrophication (g PO43− eq/L) | 11 | 1 | 1.9 | 1.8 |
Fossil fuel depletion (MJ/L) | 2.92 | 1.04 | N/A | 1.53 |
Ecotoxicity (CTUe/L) | 133 | 9.64 | N/A | 31.3 |
Product Format 0 | Type of Milk Used # | Additive Supplementation | Sample Size | Sensory Method ^ | Panellist | Findings | Issues Reported | Reference |
---|---|---|---|---|---|---|---|---|
Cappuccino | C, COSO, O, S | - | 5 | H (7-point) | 50 Untrained | Overall liking: C > COSO > O > S | S scored low in taste due to off flavours, while O scored lowest for colour, gloss, texture, and aroma due to its low protein content | [16] |
Espresso + Milk (N.D) | Barista style A, C, CO, O, S | - | 12 | H (9-point), CATA, QDA | 80 untrained, 9 trained | Sensory attributes: “Smooth, milky, thick textures” drive liking, while rancid, greasy, and astringent notes negatively impact sensory acceptance | Astringency, off-flavours (especially in S), inconsistent sweetness, and lack of creaminess/mild flavours created barriers in acceptance | [17] |
Espresso + Milk (N.D) | A, D, O, S | - | 4 | H (9-Point), CATA | 116 (n = 58; dairy consumers), (n = 58; plant consumers) | Sweetness drives liking; beany, grassy, and earthy notes reduce it | Beany, vegetative, and grassy notes in S and A were major barriers for acceptance | [15] |
Cappuccino | O, P | - | 2 | H (9-point) | 144 untrained (n = 72; for O), (n = 72; for P) | Overall liking: O > P | Both O and P lack mouthfeel and had off-flavours | [76] |
Cappuccino | C, S * | Non-dairy creamer (0%, 5%, and 10%) | 4 | H (4-Point), QDA | 10 untrained | S with 5% non- dairy creamer matched cow milk cappuccino, while S alone was least liked | Despite the addition of non-dairy creamer, S milk has a beany flavour and less creamy mouthfeel and lacks richness compared to C | [66] |
Product Format 0/Treatment | Sample Used # | Method of Evaluation | Key Findings | Reference | ||
---|---|---|---|---|---|---|
Physical | Chemical | Foaming | ||||
Cappuccino (65 °C) | C, COSO, O, S | Particle size [surface-weighted mean diameter (d3,2) and volume-weighted mean diameter (d4,3)] | Fat, protein, pH (at 25 °C) | Foam expansion (%), foam stability (%), foam overrun (%), foam strength (g) | S can replace C with satisfactory foaming properties but needs modification for stability. | [16] |
Cappuccino (60 °C) | A, C, CA, CO, H, O, R, S, SP | Viscosity colour, particle size distribution (volume-weighted particle diameters) | Fat, protein, carbohydrate, sugar, fibre, salt content, phytic acid, pH (at 25 °C) | Initial foam height and foam height instability, initial bubble size and bubble size instability | S and O exhibited better foaming among PMAs, while C milk remained the best. Phytic acid in S positively influenced foam height at 60 °C and above. | [47] |
T0: Room temperature (25 °C ± 1.5 °C) T1: Heated at 85 °C/5 min T2: Heated at 85 °C/5 min, with 1 g of soluble coffee added | A, CN, CO O, S | Heat coagulation time (HCT), particle size distribution optical microscopy | pH (at 25 °C) | - | Coffee addition reduced pH (6.4–7.9) and decreased thermal stability but had no effect on particle size or morphology. | [64] |
Cappuccino (65 °C) | C, S, SSE * (roasted or blanched with or without gums) | Particle size distribution | pH, moisture, fat, protein, lipid, fatty acid profile, volatile compounds (GC-MS) | Foam expansion (%), foam stability (%), foam overrun (%), foam strength (g) | Modified SSE (roasting with xanthan gum) showed potential as PMA coffee foam. | [77] |
25 °C to 60 °C with coffee/water ratio (0.0125 to 0.075) | S (2% to 25% w/w) | Phase behaviour, kinetics of separation | pH | Soymilk–coffee mixtures separate into two phases at high temperatures, reversible by cooling or increasing soymilk concentration. Stabilizers (e.g., gellan gum) can reduce curdling. | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.; Keast, R.; Liem, D.G.; Jadhav, S.R.; Mahato, D.K.; Gamlath, S. Barista-Quality Plant-Based Milk for Coffee: A Comprehensive Review of Sensory and Physicochemical Characteristics. Beverages 2025, 11, 24. https://doi.org/10.3390/beverages11010024
Gupta A, Keast R, Liem DG, Jadhav SR, Mahato DK, Gamlath S. Barista-Quality Plant-Based Milk for Coffee: A Comprehensive Review of Sensory and Physicochemical Characteristics. Beverages. 2025; 11(1):24. https://doi.org/10.3390/beverages11010024
Chicago/Turabian StyleGupta, Akansha, Russell Keast, Djin Gie Liem, Snehal R. Jadhav, Dipendra Kumar Mahato, and Shirani Gamlath. 2025. "Barista-Quality Plant-Based Milk for Coffee: A Comprehensive Review of Sensory and Physicochemical Characteristics" Beverages 11, no. 1: 24. https://doi.org/10.3390/beverages11010024
APA StyleGupta, A., Keast, R., Liem, D. G., Jadhav, S. R., Mahato, D. K., & Gamlath, S. (2025). Barista-Quality Plant-Based Milk for Coffee: A Comprehensive Review of Sensory and Physicochemical Characteristics. Beverages, 11(1), 24. https://doi.org/10.3390/beverages11010024