New Sparkling Wines from Traditional Grape Varieties and Native Yeasts: Focusing on Wine Identity to Address the Industry’s Crisis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reference Compounds
2.2. Grape Composition, Harvest and Climatic Data
- Huglin Index (IH), which calculates the sum of temperatures above a threshold of 10 °C from the beginning of April to the end of August [19];
- Night Coolness Index (IF), which is determined using the means of the minimum temperatures recorded in the 30 days before the harvest date in August [20];
- Hydrothermal Index of Branas, Bernon, and Levandoux (BBLI), which is calculated by summing the products of the monthly mean temperature and the monthly accumulated precipitation for the period from April to August [21]. Basic parameters on grapes at harvest were measured. For pH and total acidity (TA) a Crison Basic 20 pH meter was used (TA by titration with NaOH), while total soluble solids (TSS in Brix) were determined with a digital refractometer Atago PR1 (Atago Co., Tokyo, Japan).
2.3. Physiochemical Composition of Base and Sparkling Wines
2.4. GC-MS Analysis
2.5. Sensory Analysis
2.6. NIR Data
2.7. Statistical Analysis
3. Results and Discussion
3.1. Climatic Data
3.2. Grape, Basic, and Sparkling Wines Chemical Composition
3.3. Sensory Analysis
3.4. Volatilomic Profile
3.5. Odor Activity Value and Principal Component Analysis
3.6. NIR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Organization of Vine and Wine (OIV). State of the World Vine and Wine Sector in 2023. Available online: https://www.oiv.int/sites/default/files/2024-04/OIV_STATE_OF_THE_WORLD_VINE_AND_WINE_SECTOR_IN_2023.pdf (accessed on 1 October 2024).
- International Organization of Vine and Wine (OIV). OIV Focus: The Global Sparkling Wine Market. 2023. Available online: https://www.oiv.int/public/medias/7291/oiv-sparkling-focus-2020.pdf (accessed on 1 October 2024).
- Vecchio, R.; Lisanti, M.T.; Caracciolo, F.; Cembalo, L.; Gambuti, A.; Moio, L.; Siani, T.; Marotta, G.; Nazzarao, C.; Piombino, P. The role of production process and information on quality expectations and perceptions of sparkling wines. J. Sci. Food Agric. 2018, 99, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Arena, M.; Laddomada, B.; Cappello, M.; Bleve, G.; Grieco, F.; Beneduce, L.; Berbegal, C.; Spano, G.; Capozzi, V. Starter cultures for sparkling wine. Fermentation 2016, 2, 21. [Google Scholar] [CrossRef]
- Raymond Eder, M.L.; Fariña, L.; Carrau, F.; Rosa, A.L. Grape-specific native microbial communities influence the volatile compound profiles in fermenting grape juices. Food Chem. 2025, 466, 142155. [Google Scholar] [CrossRef] [PubMed]
- Ritrovato, E. The Wines of Apulia: The Creation of a Regional Brand. In A History of Wine in Europe, 19th to 20th Centuries. Markets, Trade and Regulation of Quality; Conca Messina, S.A., Le Bras, S., Tedeschi, P., Vaquero Piñeiro, M.:, Eds.; Palgrave Macmillan: London, UK; Springer Nature: Cham, Switzerland, 2019; Volume II, pp. 117–135. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A.; Moreno-Arribas, M.V. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef]
- Harvey, M.; White, L.; Frost, W. Exploring wine and identity. In Wine and Identity: Branding, Heritage, Terroir; Harvey, M., White, L., Frost, W., Eds.; Routledge: London, UK, 2014; pp. 1–13. [Google Scholar]
- Capozzi, V.; Tufariello, M.; Berbegal, C.; Fragasso, M.; De Simone, N.; Spano, G.; Russo, P.; Venerito, P.; Bozzo, F.; Grieco, F. Microbial Resources and Sparkling Wine Differentiation: State of the Arts. Fermentation 2022, 8, 275. [Google Scholar] [CrossRef]
- Cotea, V.V.; Focea, M.C.; Luchia, C.E.; Colibaba, L.C.; Scutarașu, E.C.; Marius, N.; Zamfir, C.I.; Popîrdă, A. Influence of Different Commercial Yeasts on Volatile Fraction of Sparkling Wines. Foods 2021, 10, 247. [Google Scholar] [CrossRef]
- Ivit, N.N.; Loira, I.; Morata, A.; Benito, S.; Palomero, F.; Suárez-Lepe, J.A. Making natural sparkling wines with non-Saccharomyces yeasts. Eur. Food Res. Technol. 2018, 244, 925–935. [Google Scholar] [CrossRef]
- Di Gianvito, P.; Perpetuini, G.; Tittarelli, F.; Schirone, M.; Arfelli, G.; Piva, A.; Patrignani, F.; Lanciotti, R.; Olivastri, L.; Suzzi, G.; et al. Impact of Saccharomy cescerevisiae strains on traditional sparkling wines production. Food Res. Int. 2018, 109, 552–560. [Google Scholar] [CrossRef]
- James, A.; Yao, T.; Ke, H.; Wang, Y. Microbiota for production of wine with enhanced functional components. Food Sci. Hum. Wellness 2023, 12, 1481–1492. [Google Scholar] [CrossRef]
- Hranilovic, A.; Gambetta, J.M.; Schmidtke, L.; Boss, P.K.; Grbin, P.R.; Masneuf-Pomarede, I.; Bely, M.; Albertin, W.; Jiranek, V. Oenological traits of Lachanceathermotolerans show signs of domestication and allopatric differentiation. Sci. Rep. 2018, 8, 14812. [Google Scholar] [CrossRef]
- Roudil, L.; Russo, P.; Berbegal, C.; Albertin, W.; Spano, G.; Capozzi, V. Non-Saccharomyces commercial starter cultures: Scientific trends, recent patents and innovation in the wine sector. Recent. Pat. Food Nutr. Agric. 2020, 11, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Vicente, J.; Kelanne, N.; Rodrigo-Burgos, L.; Navascués, E.; Calderón, F.; Santos, A.; Marquina, D.; Yang, B.; Benito, S. Influence of different Lachancea thermotolerans strains in the wine profile in the era of climate challenge. FEMS Yeast Res. 2023, 23, foac062. [Google Scholar] [CrossRef] [PubMed]
- Vicente, J.; Vladic, L.; Navascués, E.; Brezina, S.; Santos, A.; Calderón, F.; Tesfaye, W.; Marquina, D.; Rauhut, D.; Benito, S. A comparative study of Lachancea thermotolerans fermentative performance under standardized wine production conditions. Food Chem. X 2024, 21, 101214. [Google Scholar] [CrossRef] [PubMed]
- Accurate Weather Forecasts for Any Location. Available online: https://open-meteo.com/ (accessed on 24 January 2025).
- Huglin, P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. In Comptes Rendus des Seances de l’Academie d’Agriculture de France; Académie d’agriculture de France: Paris, France, 1978; Volume 64, pp. 1117–1126. Available online: https://www-iuem.univ-brest.fr/wapps/letg/adviclim/BDX/PDF/CR_Acad%C3%A9mie_agriculture_1978_64_Huglin.pdf (accessed on 24 January 2025)ISSN 0151-1335.
- Tonietto, J. Les MacroclimatsViticolesMondiaux et L’influence du Mésoclimat sur la Typicité de la Syrah et du Muscat de Hambourg Dans le sud de la France: Méthodologie de Caráctérisation. Ph.D. Thesis, Ecole Nationale Supérieure Agronomique, Montpellier, France, 1999. [Google Scholar]
- Branas, J.; Bernon, G.; Levadoux, L. Eléments de Viticulture Générale; Imp. Dehan: Montpellier, France, 1946. [Google Scholar]
- Marsico, A.D.; Velenosi, M.; Perniola, R.; Bergamini, C.; Sinonin, S.; David-Vaizant, V.; Maggiolini, F.A.M.; Hervè, A.; Cardone, M.F.; Ventura, M. Native Vineyard Non-Saccharomyces Yeasts Used for Biological Control of Botrytis cinerea in Stored Table Grape. Microorganisms 2021, 9, 457. [Google Scholar] [CrossRef] [PubMed]
- Hranilovic, A.; Albertin, W.; Liacopoulos Capone, D.; Gallo, A.; Grbin, P.R.; Danner, L.; Bastian, S.E.P.; Masneuf-Pomarede, I.; Coulon, J.; Bely, M.; et al. Impact of Lachanceathermotolerans on chemical composition and sensory profiles of Merlot wines. Food Chem. 2021, 349, 129015. [Google Scholar] [CrossRef]
- Garofalo, C.; Berbegal, C.; Grieco, F.; Tufariello, M.; Spano, G.; Capozzi, V. Selection of indigenous yeast strains for the production of sparkling wines from native Apulian grape varieties. Int. J. Food Microbiol. 2018, 285, 7–17. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine (OIV). Compendium of Methods of Wine and Must Analysis. Available online: https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis (accessed on 1 October 2024).
- Perestrelo, R.; Fernandes, A.; Albuquerque, F.F.; Marques, J.C.; Câmara, J.S. Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Anal. Chim. Acta 2006, 563, 154–164. [Google Scholar] [CrossRef]
- Chunhua Zhu, Qi Lu, Xianyan Zhou, Jinxue Li, Jianqiang Yue, Ziran Wang, Siyi Pan, Metabolic variations of organic acids, amino acids, fatty acids and aroma compounds in the pulp of different pummelo varieties. LWT 2020, 130, 109445. [CrossRef]
- Ferreira, V.; de la Fuente, A.; Sáenz-Navajas, M.P. 1-Wine aroma vectors and sensory attributes. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Managing Wine Qualit, 2nd ed.; Reynolds, A.G., Ed.; Woodhead Publishing: Cambridge, UK, 2022; pp. 3–39. [Google Scholar] [CrossRef]
- Gottmann, J.; Vestner, J.; Fischer, U. Sensory relevance of seven aroma compounds involved in unintended but potentially fraudulent aromatization of wine due to aroma carryover. Food Chem. 2023, 402, 134160. [Google Scholar] [CrossRef]
- Parr, W.V.; White, K.G.; Heatherbell, D.A. Exploring the nature of wine expertise: What underlies wine experts’ olfactory recognition memory advantage. Food Qual. Prefer. 2004, 15, 411–420. [Google Scholar] [CrossRef]
- Association de Coordination Technique Pour l’industrieagro-Alimentaire (ACTIA). Sensory Evaluation Guide of Good Practice; Technical Report; Technical Coordination Association for the Food Industry: Paris, France, 2001. Available online: http://www.actia-asso.eu/cms/rubrique-2085-sensory_evaluation.html (accessed on 12 January 2025).
- Molino, S.; Pilar Francino, M.; Rufián Henares, J.Á. Why is it important to understand the nature and chemistry of tannins to exploit their potential as nutraceuticals? Food Res. Int. 2023, 173, 113329. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 1 October 2024).
- Wei, T.; Simko, V. R Package ‘Corrplot’: Visualization of a Correlation Matrix (Version 0.95). 2024. Available online: https://github.com/taiyun/corrplot (accessed on 1 October 2024).
- Vu, V.Q. Ggbiplot: A Ggplot2 Based Biplot. R Package, Version 0.55. 2011. Available online: http://github.com/vqv/ggbiplot (accessed on 1 October 2024).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer Cham: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar] [CrossRef]
- Murphy, K.; Viroli, C.; Gormley, I.C. Infinite Mixtures of Infinite Factor Analysers. Bayesian Anal. 2020, 15, 937–963. [Google Scholar] [CrossRef]
- Kucheryavskiy, S. mdatools—R package for chemometrics. Chemom. Intell. Lab. Syst. 2020, 198, 103937. [Google Scholar] [CrossRef]
- Seisonen, S.; Vene, K.; Koppel, K. The current practice in the application of chemometrics for correlation of sensory and gas chromatographic data. Food Chem. 2016, 210, 530–540. [Google Scholar] [CrossRef]
- Colibaba, L.C.; Bosoi, I.; Pușcalău, M.; Bodale, I.; Luchian, C.; Rotaru, L.; Cotea, V.V. Climatic projections vs. grapevine phenology: A regional case study. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13381. [Google Scholar] [CrossRef]
- Anastasiou, E.; Xanthopoulos, G.; Templalexis, C.; Lentzou, D.; Panitsas, F.; Mesimeri, A.; Karagianni, E.; Biniari, A.; Fountas, S. Climatic indices as markers of table-grapes postharvest quality: A prediction exercise. Smart Agric. Technol. 2022, 2, 100059. [Google Scholar] [CrossRef]
- CREA Consiglio per la Ricerca in Agricoltura e L’analisi dell’economia Agraria, COMUNICATO STAMPA. Available online: https://www.crea.gov.it/en/-/vendemmia-2022-previsioni-crea-siccit%C3%A0-e-anticipo-ma-nessun-dramma (accessed on 12 January 2025).
- Report SNPA n. 36/2023 “Il clima in Italia nel 2022” ISBN 978-88-448-1168-6. Available online: https://www.snpambiente.it/temi/report-intertematici/cambiamenti-climatici/il-clima-in-italia-nel-2022/ (accessed on 12 January 2025).
- Antonacci, D. Grape Vines of Apulia; Mario Adda Editore: Bari, Italy, 2009; ISBN 978-8880826217. [Google Scholar]
- Borrull, A.; Poblet, M.; Rozès, N. New insights into the capacity of commercial wine yeasts to grow on sparkling wine media. Factor screening for improving wine yeast selection. Food Microbiol. 2015, 48, 41–48. [Google Scholar] [CrossRef]
- Cravero, M.C. Innovations in Sparkling Wine Production: A Review on the Sensory Aspects and the Consumer’s Point of View. Beverages 2023, 9, 80. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, A.J.; Polo, M.C. Characterization of the nitrogen compounds released during yeast autolysis in a model wine system. J. Agric. Food Chem. 2000, 48, 1081–1085. [Google Scholar] [CrossRef]
- Mateo, J.J.; Jimenez, M.; Huerta, T.; Pastor, A. Contribution of different yeasts isolated from musts of monastrell grapes to the aroma of wine. Int. J. Food Microbiol. 1991, 14, 153–160. [Google Scholar] [CrossRef]
- Torrens, J.; Urpí, P.; Riu-Aumatell, M.; Vichi, S.; López-Tamames, E.; Buxaderas, S. Different commercial yeast strains affecting the volatile and sensory profile of cava base wine. Int. J. Food Microbiol. 2008, 124, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Tufariello, M.; Palombi, L.; Rizzuti, A.; Musio, B.; Capozzi, V.; Gallo, V.; Mastrorilli, P.; Grieco, F. Volatile and chemical profiles of Bombino sparkling wines produced with autochthonous yeast strains. Food Control. 2023, 145, 109462. [Google Scholar] [CrossRef]
- Chatonnet, P.; Dubourdieu, D.; Boidron, J.; Lavigne, V. Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. J. Sci. Food Agric. 1993, 62, 191–202. [Google Scholar] [CrossRef]
- Martínez-García, R.; García-Martínez, T.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J. Changes in sparkling wine aroma during the second fermentation under CO2 pressure in sealed bottle. Food Chem. 2017, 237, 1030–1040. [Google Scholar] [CrossRef]
- Di Egidio, V.; Sinelli, N.; Giovanelli, G.; Moles, A.; Casiraghi, E. NIR and MIR spectroscopy as rapid methods to monitor red wine fermentation. Eur. Food Res. Technol. 2010, 230, 947–955. [Google Scholar] [CrossRef]
- Marsico, A.D.; Perniola, R.; Cardone, M.F.; Velenosi, M.; Antonacci, D.; Alba, V.; Basile, T. Study of the Influence of Different Yeast Strains on Red Wine Fermentation with NIR Spectroscopy and Principal Component Analysis. J 2018, 1, 133–147. [Google Scholar] [CrossRef]
- Sun, J.; Xia, Y. Pretreating and normalizing metabolomics data for statistical analysis. Genes Dis. 2024, 11, 100979. [Google Scholar] [CrossRef]
- Petronilho, S.; Lopez, R.; Ferreira, V.; Coimbra, M.A.; Rocha, S.M. Revealing the Usefulness of Aroma Networks to Explain Wine Aroma Properties: A Case Study of Portuguese Wines. Molecules 2020, 25, 272. [Google Scholar] [CrossRef]
- Chenglin Zhu, Zhibo Yang, Xuan Lu, Yuwen Yi, Qing Tian, Jing Deng, Dan Jiang, Junni Tang, Luca Laghi, Effects of Saccharomyces cerevisiae strains on the metabolomic profiles of Guangan honey pear cider. LWT 2023, 182, 114816. [CrossRef]
- Basile, T.; Mallardi, D.; Cardone, M.F. Spectroscopy, a Tool for the Non-Destructive Sensory Analysis of Plant-Based Foods and Beverages: A Comprehensive Review. Chemosensors 2023, 11, 579. [Google Scholar] [CrossRef]
- Guth, H. Quantification and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Peinado, R.A.; Mauricio, J.C.; Moreno, J. Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by Saccharomyces cerevisiae var. capensis. Food Chem. 2006, 94, 232–239. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 589–590. [Google Scholar] [CrossRef]
- Welke, J.E.; Zanus, M.; Lazzarotto, M.; Alcaraz Zini, C. Quantitative analysis of headspace volatile compounds using comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine. Food Res. Int. 2014, 59, 85–99. [Google Scholar] [CrossRef]
- Leibniz-LSB@TUM Odorant Database. Available online: https://www.leibniz-lsb.de/en/datenbanken/leibniz-lsbtum-odorant-database/odorantdb (accessed on 1 October 2024).
- Meilgaard, M.C. Flavor chemistry of beer: Part II: Flavor and threshold of 239 aroma volatiles. Techn. Q. Master Brew. Assoc. Am. 1975, 12, 151–168. [Google Scholar]
- Yang, Y.; Chen, J.; Zheng, F.; Lin, B.; Wu, F.; Verma, K.K.; Chen, G. Assessment of Characteristic Flavor and Taste Quality of Sugarcane Wine Fermented with Different Cultivars of Sugarcane. Fermentation 2024, 10, 628. [Google Scholar] [CrossRef]
- Bueno, M.; Zapata, J.; Culleré, L.; Franco-Luesma, E.; de-la-Fuente-Blanco, A.; Ferreira, V. Optimization and Validation of a Method to Determine Enolones and Vanillin Derivatives in Wines-Occurrence in Spanish Red Wines and Mistelles. Molecules 2023, 28, 4228. [Google Scholar] [CrossRef]
- Kang, S.; Yan, H.; Zhu, Y.; Liu, X.; Lv, H.-P.; Zhang, Y.; Dai, W.-D.; Guo, L.; Tan, J.-F.; Peng, Q.-H.; et al. Identification and quantification of key odorants in the world’s four most famous black teas. Food Res. Int. 2019, 121, 73–83. [Google Scholar] [CrossRef]
Parameters and Bioclimatic Indicators | Value |
---|---|
Mean annual temperature (°C) | 18.3 |
Mean temperature in the vegetation period (°C) † | 24.1 |
Rainfall annual (mm) | 548.9 |
Rainfall in the vegetation period (mm) | 165.2 |
Et0 (evapotranspiration) in the vegetation period (mm) | 870 |
HI (Huglin index) in the vegetation period | 2689 |
CI (cool night index) 30 days before harvest in August | 23 |
BBLI (from April to August) | 3528 |
Parameters | Fiano | Greco Bianco | Falanghina | Montonico Pinto |
---|---|---|---|---|
TSS (Brix) | 21.7 ± 1.0 b | 16.6 ± 1.2 a | 14.8 ± 1.0 a | 21.9 ± 2.0 b |
TA (g/L) | 10.5 ± 0.4 a | 17.1 ± 0.3 | 21.6 ± 0.3 | 10.4 ± 0.4 a |
pH | 3.18 ± 0.10 b | 2.93 ± 0.08 a | 2.83 ± 0.08 a | 3.13 ± 0.10 b |
Parameters | Fiano Lt † | Fiano VB1 | Greco Lt | Greco VB1 | Falanghina VB1 | Montonico Lt | Montonico Vb1 |
---|---|---|---|---|---|---|---|
pH | 3.13 ± 0.10 c | 3.11 ± 0.09 c | 2.74 ± 0.10 a | 2.82 ± 0.09 ab | 2.86 ± 0.07 ab | 3.08 ± 0.08 c | 3.12 ± 0.08 c |
TA g/L | 6.2 ± 0.3 a | 6.8 ± 0.3 a | 10.1 ± 0.3 d | 9.9 ± 0.2 d | 8.9 ± 0.3 c | 7.5 ± 0.3 b | 7.8 ± 0.3 b |
Volatile acidity g/L | 0.38 ± 0.03 c | 0.24 ± 0.02 a | 0.45 ± 0.02 d | 0.29 ± 0.03 ab | 0.39 ± 0.02 c | 0.28 ± 0.03 ab | 0.34 ± 0.03 bc |
Malic acid g/L | 1.36 ± 0.11 a | 1.55 ± 0.12 a | 3.42 ± 0.27 c | 3.30 ± 0.26 c | 2.93 ± 0.23 c | 2.34 ± 0.18 b | 2.28 ± 0.15 b |
Lactic acid g/L | 0.17 ± 0.01 d | 0.00 | 0.00 | 0.00 | 0.01 ± 0.01 a | 0.04 ± 0.01 b | 0.10 ± 0.01 c |
Alcohol %vol | 12.80 ± 0.30 bc | 12.90 ± 0.50 bc | 10.00 ± 0.40 ab | 9.80 ± 0.30 a | 12.1 ± 0.40 b | 13.60 ± 0.50 c | 13.50 ± 0.40 c |
Total SO2 mg/L | 41.0 ± 0.3 a | 48.0 ± 0.2 b | 59.0 ± 0.2 c | 57.0 ± 0.3 b | 57.0 ± 0.2 b | 57.0 ± 0.2 b | 73.0 ± 0.3 d |
Residual sugars g/L | 0.89 ± 0.08 c | 0.50 ± 0.02 b | 2.37 ± 0.20 d | 0.00 | 0.24 ± 0.02 a | 3.03 ± 0.03 e | 4.47 ± 0.02 f |
Total polyphenols mg/L | 150 ± 6 a | 163 ± 4 b | 530 ± 12 g | 238 ± 5 c | 285 ± 6 d | 365 ± 3 e | 431 ± 11 f |
Parameters | FiVB1 + Sc † | FiVB1 + S21 | GLt + Sc | G VB1 + S21 | FaVb1 + Sc | Fa Vb1 + S21 | M Lt + S21 | MVB1 + Sc | MLt + Sc | MVB1 + S21 |
---|---|---|---|---|---|---|---|---|---|---|
pH | 3.09 ± 0.06 bc | 3.08 ± 0.08 bc | 2.79 ± 0.05 a | 2.77 ± 0.06 a | 2.93 ± 0.10 ab | 3.08 ± 0.05 bc | 3.15 ± 0.05 c | 3.10 ± 0.05 c | 3.11 ± 0.07 c | 3.12 ± 0.05 c |
TAg/L | 6.4 ± 0.3 a | 6.7 ± 0.3 a | 9.5 ± 0.3 d | 9.5 ± 0.3 d | 8.7 ± 0.3 c | 6.7 ± 0.3 a | 6.5 ± 0.3 a | 7.0 ± 0.3 a | 8.1 ± 0.3 b | 6.8 ± 0.3 a |
Volatile acidity g/L | 0.28 ± 0.04 ab | 0.27 ± 0.03 a | 0.28 ± 0.03 ab | 0.24 ± 0.03 a | 0.44 ± 0.03 d | 0.38 ± 0.03 cd | 0.39 ± 0.04 cd | 0.30 ± 0.03 a | 0.41 ± 0.05 d | 0.34 ± 0.03 bc |
Malic acid g/L | 1.41 ± 0.11 a | 1.32 ± 0.12 a | 2.80 ± 0.12 d | 2.70 ± 0.10 cd | 2.54 ± 0.12 c | 2.53 ± 0.15 cd | 1.80 ± 0.11 b | 2.10 ± 0.11 b | 2.04 ± 0.12 b | 1.98 ± 0.11 b |
Lactic acid g/L | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 ± 0.01 a | 0.18 ± 0.01 c | 0.00 | 0.10 ± 0.01 b | 0.12 ± 0.01 b |
Tartaric acid g/L | 3.2 ± 0.1 c | 3.2 ± 0.1 c | 4.1 ± 0.1 d | 4.2 ± 0.1 d | 2.9 ± 0.1 b | 3.0 ± 0.0 b | 2.6 ± 0.1 a | 2.6 ± 0.1 a | 2.6 ± 0.0 a | 2.6 ± 0.0 a |
Alcohol %vol | 12.80 ± 0.60 bc | 12.70 ± 0.40 bc | 10.50 ± 0.50 a | 10.60 ± 0.30 a | 12.00 ± 0.40 b | 12.70 ± 0.50 bc | 13.00 ± 0.50 c | 13.20 ± 0.50 c | 13.00 ± 0.40 c | 12.90 ± 0.50 bc |
Residualsugars g/L | 10.1 ± 0.1 c | 13.4 ± 0.1 e | 1.2 ± 0.0 a | 1.2 ± 0.0 a | 9.0 ± 0.1 c | 7.2 ± 0.1 b | 18.1 ± 0.2 g | 13.0 ± 0.1 d | 19.1 ± 0.1 h | 15.4 ± 0.1 f |
CAS | Molecules | Fi Vb1 + Sc † | Fi Vb1 + S21 | G Lt + Sc | G Vb1 + S21 | Fa Vb1 + Sc | Fa Vb1 + S21 | M Lt + Sc | M Lt +S21 | M Vb1 + Sc | M Vb1 + S21 |
---|---|---|---|---|---|---|---|---|---|---|---|
Acids | |||||||||||
64-19-7 | Acetic Acid | 3128.8 ± 472.1 bcd | n.d. | 3317.0 ± 500.5 bc | 1971.0 ± 297.4 ab | 3417.2 ± 515.6 cd | 3390.7 ± 511.6 cd | 2853.8 ± 430.6 abc | 1503.2 ± 226.8 a | 4397.9 ± 663.6 d | 4354.6 ± 657.1 d |
79-31-2 | Isobutyric Acid | 188.1 ±21.7 d | 132.4 ± 15.3 bcd | 165.1 ± 19.1 d | 77.6 ± 9.0 ab | 134.5 ± 15.5 bcd | 91.5 ± 10.6 abc | 148.9 ± 17.2 cd | 57.6 ± 6.6 a | 323.3 ± 37.3 f | 252.5 ± 29.1 e |
107-92-6 | Butyric Acid | 399.6 ± 37.8 cd | 502.9 ± 47.5 e | 473.8 ± 44.8 de | 351.9 ± 33.3 cb | 340.9 ± 32.2 cb | 346.1 ± 32.7 cb | 260.5 ± 24.6 b | 151.8 ± 14.4 a | 358.6 ± 33.9 cb | 402.2 ± 38.0 cde |
503-74-2 | Isovaleric Acid | 307.8 ± 20.5 cd | 312.8 ±20.8 cd | 352.7 ± 23.5 de | 238.3 ± 15.9 bc | 245.0 ± 16.3 bc | 228.1 ± 15.2 bc | 181.8 ± 12.1 b | 103.4 ± 6.9 a | 374.0 ± 24.9 de | 401.4 ± 26.7 e |
142-62-1 | Hexanoic Acid | 3170.4 ±270.8 ef | 3220.7 ± 275.1 f | 3469.9 ± 296.4 f | 2707.9 ± 231.3 de | 2454.6 ± 209.7 d | 2674.5 ± 228.4 d | 1634.1 ± 139.6 b | 1239.0 ± 105.8 a | 1622.4 ± 138.6 b | 1932.5 ± 165.1 c |
124-07-2 | Octanoic Acid | 3493.2 ±366.5 e | 2946.3 ± 309.2 e | 3393.9 ± 356.1 e | 2501.9 ± 262.5 d | 1981.0 ± 207.9 c | 2498.2 ± 262.1 d | 1343.1 ± 140.9 a | 1375.4 ± 144.3 ab | 1554.5 ± 163.1 b | 2104.9 ± 220.9 cd |
112-05-0 | Nonanoic Acid | 13.4 ±.5 b | 13.9 ± 2.6 bc | 15.8 ± 3.0 c | 12.5 ± 2.4 bc | 12.4 ± 2.4 bc | 13.3 ± 2.5 bc | 10.3 ± 2.0 b | 6.5 ± 1.2 a | 11.2 ± 2.1 bc | 12.2 ± 2.3 bc |
334-48-5 | N-Decanoic Acid | 770.6 ± 95.9 e | 585.0 ± 72.8 d | 573.5 ± 71.4 d | 495.9 ± 61.8 c | 368.7 ± 45.9 bc | 326.5 ± 40.7 bc | 130.5 ± 16.2 a | 130.6 ± 16.3 a | 294.2 ± 36.6 b | 413.2 ± 51.4 c |
14436-32-9 | 9-Decenoic Acid | 19.6 ±2.0 bc | 14.1 ± 1.4 a | 20.3 ± 2.1 c | 17.9 ± 1.8 b | 154.2 ± 15.7 ef | 175.8 ± 17.9 fg | 213.5 ± 21.8 gh | 229.2 ± 23.4 h | 89.3 ± 9.1 d | 125.5 ± 12.8 e |
65-85-0 | Benzenemethanoic Acid | 20.0 ± 3.2 b | 21.3 ± 3.4 b | 21.9 ± 3.5 bc | 14.2 ± 2.3 a | 32.0 ± 5.1 d | 54.8 ± 8.8 e | 54.9 ± 8.8 e | 30.3 ± 4.9 d | 30.0 ± 4.8 cd | 32.1 ± 5.2 d |
143-07-7 | Lauric Acid | 10.6 ± 1.3 b | 10.9 ± 1.4 b | n.d. | 5.7 ± 0.7 a | n.d. | 5.5 ± 0.7 a | n.d. | n.d. | 4.7 ± 0.6 a | n.d. |
103-82-2 | Benzenacetic Acid | 77.5 ±15.0 cd | 82.7 ± 16.0 cd | 67.7 ± 13.1 b c | 49.1 ± 9.5 b | 46.8 ± 9.0 b | 67.6 ± 13.1 bc | 37.0 ± 5.0 b | 24.7 ± 4.8 a | 77.9 ± 15.1 cd | 88.2 ± 15.0 d |
544-63-8 | Myristic Acid | 13.8 ± 1.9 c | 11.9 ± 1.6 c | 11.8 ± 1.6 c | 12.3 ± 1.7 c | 13.7 ± 1.9 c | 13.2 ± 1.8 c | 7.2 ± 1.0 b | 5.1 ± 0.7 a | 10.5 ± 1.4 c | 12.4 ± 1.7 c |
57-10-3 | Palmitic Acid | 166.4 ± 26.6 c | 151.0 ± 23.2 c | 132.3 ± 29.1 bc | 154.3 ± 24.0 c | 141.9 ± 21.0 c | 146.4 ± 22.2 c | 92.8 ± 20.4 ab | 68.9 ± 15.2 a | 146.3 ± 22.2 c | 165.7 ± 30.1 c |
Alcohols | |||||||||||
78-83-1 | Isobutanol | 2179.6 ± 197.1 e | 1866.1 ± 168.8 cd | 1839.0 ± 166.3 cd | 1212.9 ± 109.7 a | 1333.1 ± 120.6 a | 1597.7 ± 144.5 bc | 2016.4 ± 182.4 de | 1488.8 ± 134.7 b | 1946.8 ± 156.1 d | 2873.2 ± 159.9 f |
763-32-6 | 3-Methyl-3-Buten-1-ol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.7 ± 0.2 | n.d. | n.d. | n.d. |
626-89-1 | 1-Pentanol- 4-Methyl | 49.5 ± 7.0 cd | 55.4 ± 7.8 d | 43.7 ± 6.1 cd | 39.3 ± 5.5 c | 25.7 ± 3.6 ab | 25.6 ± 3.6 ab | 28.5 ± 4.0 b | 21.6 ± 3.0 ab | 21.2 ± 3.0 a | 26.3 ± 3.7 ab |
589-35-5 | 3-Methyl-1-Pentanol | 181.8 ± 15.8 d | 182.9 ± 15.9 d | 119.5 ± 10.4 c | n.f. | 83.0 ± 7.2 b | 78.3 ± 6.8 b | 61.4 ± 5.3 a | n.f. | 85.2 ± 7.4 b | n.f. |
928-97-2 | (E)-3-Hexen-1-ol | 57.0 ± 7.5 e | 59.3 ± 7.8 e | 46.3 ± 6.1 de | 38.1 ± 5.0 d | 10.7 ± 1.4 a | 12.2 ± 1.6 ab | 20.0 ± 2.6 c | 14.9 ± 2.0 ab | 33.1 ± 4.4 d | 45.5 ± 6.0 de |
928-96-1 | (Z)-3-Hexen-1-ol | 23.7 ± 1.5 b | 27.4 ± 1.7 c | 48.9 ± 3.1 e | 39.8 ± 2.5 e | 31.0 ± 2.0 cd | 30.9 ± 2.0 cd | 20.9 ± 1.3 b | 14.7 ± 0.9 a | 33.1 ± 2.1 d | 30.5 ± 1.9 cd |
71-36-3 | 1-Butanol | 131.6 ± 12.1 f | 156.0 ± 13.0 f | 81.1 ± 7.7 e | 68.7 ± 6.5 de | 56.7 ± 5.4 c | 67.3 ± 6.4 cde | 36.3 ± 3.4 b | 23.6 ± 2.2 a | 64.9 ± 6.1 cd | 85.0 ± 8.0 e |
1569-50-2 | 3-Penten-2-ol | 3.5 ± 0.9 b | 3.1 ± 0.8 b | 2.3 ± 0.6 ab | n.d. | n.d. | n.d. | 3.1 ± 0.8 b | 1.7 ± 0.4 a | 2.3 ± 0.6 ab | 3.4 ± 0.8 b |
123-51-3 | 3-Methylbutan-1-ol | 7687.8 ± 397.3 a | 10,802.7 ± 558.2 b | 20,426.7 ± 1055.5 f | 15,401.2 ± 795.9 e | 12,328.3 ± 637.1 c | 14,769.6 ± 763.2 de | 13,682.5 ± 707.0 cd | 10,606.0 ± 548.1 b | 15,257.0 ± 788.4 e | 21,620.4 ± 1117.2 f |
565-67-3 | 2-Methyl-3-Pentanol | 43.8 ± 2.0 d | 100.0 ± 4.6 f | 45.1 ± 2.1 d | 70.5 ± 3.2 e | 29.0 ± 1.3 c | 102.1 ± 4.7 f | 11.6 ± 0.5 a | 15.9 ± 0.7 b | 44.2 ± 2.0 d | 112.6 ± 5.2 f |
513-85-9 | 2,3-Butanediol | 6256.1 ± 973.4 e | 7063.0 ± 1098.9 e | 2265.5 ± 352.5 ab | 1783.4 ± 277.5 a | 2685.7 ± 417.9 b | 3286.0 ± 511.3 bc | 2868.0 ± 446.2 b | 1679.7 ± 261.3 a | 4308.7 ± 670.4 cd | 5107.7 ± 794.7 de |
111-27-3 | 1-Hexanol | 960.2 ± 81.9 e | 958.8 ± 81.7 e | 980.1 ± 83.6 e | 775.3 ± 66.1 d | 445.1 ± 37.9 b | 449.1 ± 38.3 b | 265.8 ± 22.7 a | 205.9 ± 17.6 a | 496.8 ± 42.4 bc | 568.8 ± 48.5 c |
111-35-3 | 3-Ethoxy-1-Propanol | 136.0 ± 11.7 g | 172.5 ± 14.8 h | 72.0 ± 6.2 f | 65.6 ± 5.6 ef | 49.8 ± 4.3 cd | 47.4 ± 4.1 c | 13.8 ± 1.2 b | 3.5 ± 0.3 a | 56.3 ± 4.8 de | 47.2 ± 4.1 c |
513-85-9 | 2, 3-Butanediol (R,R,R) | 1404.1 ± 243.1 e | 1678.7 ± 250.6 e | 446.0 ± 77.2 bc | 316.2 ± 54.7 ab | 575.2 ± 99.6 c | 609.3 ± 105.5 c | 501.0 ± 86.7 c | 247.8 ± 42.9 a | 943.3 ± 163.3 d | 931.1 ± 161.2 d |
505-10-2 | 3-(Methylthio)-1-propanol | 371.8 ± 1.8 d | 463.8 ± 39.6 e | 355.3 ± 30.3 d | 262.8 ± 22.4 c | 257.0 ± 22.0 c | 278.5 ± 23.8 c | 169.6 ± 14.5 b | 96.5 ± 8.2 a | 387.9 ± 33.1 d | 414.5 ± 35.4 de |
100-51-6 | Benzylalchol | 19.9 ± 1.0 g | 23.4 ± 1.1 h | 9.7 ± 0.5 d | 9.2 ± 0.4 cd | 7.1 ± 0.3 b | 7.9 ± 0.4 bc | 8.5 ± 0.4 c | 5.7 ± 0.3 a | 11.7 ± 0.6 e | 14.4 ± 0.7 f |
60-12-8 | 2-Phenylethanol | 32,237.3 ± 1896.1 c | 29,835.0 ± 1847.3 c | 35,421.1 ± 1993.2 c | 30,068.6 ± 1861.8 c | 23,662.9 ± 1465.2 b | 29,991.7 ± 1857.0 c | 16,383.9 ± 1014.5 a | 15,652.7 ± 969.2 a | 23,874.4 ± 1478.3 b | 28,908.4 ± 1790.0 c |
112-53-8 | Lauric alcohol | 274.2 ± 22.8 g | 222.0 ± 18.5 ef | 194.5 ± 16.2 de | 242.8 ± 20.2 fg | 174.3 ± 14.5 cd | 158.3 ± 13.2 bc | 140.1 ± 11.7 b | 97.0 ± 8.1 a | 217.7 ± 18.1 ef | 241.0 ± 20.1 fg |
96-76-4 | 2,4-Di-t-Butylphenol | 384.3 ± 54.0 d | 370.6 ± 52.0 d | 329.4 ± 46.2 bcd | 357.5 ± 50.2 cd | 309.0 ± 43.4 bcd | 286.6 ± 40.2 bc | 256.4 ± 36.0 b | 172.0 ± 24.1 a | 347.0 ± 48.7 bcd | 357.6 ± 50.2 cd |
501-94-0 | 2-(4-Hydroxyphenyl) Ethanol | 4447.5 ± 578.9 def | 5731.8 ± 746.1 ef | 4620.9 ± 601.5 ef | 2877.4 ± 374.5 b | 2843.2 ± 370.1 b | 3325.5 ± 432.9 bc | 3489.9 ± 454.3 bcd | 2066.6 ± 269.0 a | 3368.8 ± 438.5 bc | 3770.3 ± 490.8 cde |
Esters | |||||||||||
105-54-4 | Butanoicacid, Ethyl Ester R | 227.6 ± 41.3 e | 176.5 ± 32.0 de | 197.3 ± 35.8 de | 174.4 ± 31.6 de | 22.7 ± 4.1 a | 61.1 ± 11.1 c | 42.1 ± 7.6 b | 38.4 ± 7.0 b | 144.0 ± 26.1 d | 183.8 ± 33.3 de |
106-32-1 | Octanoic Acid Ethylester | 845.1 ± 157.4 e | 569.5 ± 106.1 de | 537.8 ± 100.1 d | 393.3 ± 73.2 cd | 174.5 ± 32.5 b | 116.6 ± 21.7 a | 108.1 ± 20.1 a | 137.9 ± 25.7 ab | 281.9 ± 52.5 c | 413.9 ± 77.1 d |
123-92-2 | Isoamyl Acetate | 100.4 ± 18.2 e | 62.9 ± 11.4 bcd | 108.2 ± 19.7 e | 56.9 ± 10.3 bc | 25.4 ± 4.6 a | 19.2 ± 3.5 a | 43.7 ± 7.9 b | 20.6 ± 3.7 a | 79.6 ± 14.4 cde | 82.8 ± 15.0 de |
123-66-0 | Ethylexanoate | 575.3 ± 66.5 f | 441.6 ± 51.1 e | 504.1 ± 58.3 ef | 350.2 ± 40.5 d | 152.7 ± 17.7 b | 128.2 ± 14.8 b | 92.4 ± 10.7 a | 101.0 ± 11.7 a | 227.7 ± 26.3 c | 296.7 ± 34.3 cd |
617-35-6 | Ethylpyruvate | 735.7 ± 7.4 d | 823.7 ± 8.2 e | 901.3 ± 9.0 f | 683.8 ± 6.8 c | 741.6 ± 7.4 d | 1090.1 ± 10.9 g | 284.8 ± 2.8 b | 210.3 ± 2.1 a | 1135.5 ± 11.4 h | 2026.5 ± 20.31 i |
97-64-3 | Ethyllactate | 7551.6 ± 109.5 f | 7602.0 ± 110.2 f | 5191.2 ± 75.3 e | 3937.0 ± 57.1 b | 4449.8 ± 64.5 c | 5143.5 ± 74.6 d | 3663.4 ± 53.1 b | 2376.8 ± 34.5 a | 10,776.4 ± 156.2 g | 15,012.7 ± 217.6 h |
5405-41-4 | Ethyl-3-hydroxybutanoate | n.d. | 54.7 ± 5.6 d | 32.5 ± 3.3 b | 26.2 ± 2.7 a | 32.1 ± 3.3 ab | 34.9 ± 3.6 b | n.d. | n.d. | 47.9 ± 4.9 c | 54.3 ± 5.6 d |
110-38-3 | Ethyldecanoate | 194.2 ±36.1 g | 131.0 ± 24.3 f | 86.1 ± 16.0 e | 37.0 ± 6.9 c | 23.9 ± 4.4 b | 13.1 ± 2.4 a | 12.7 ± 2.4 a | 16.5 ± 3.1 b | 54.4 ± 10.1 d | 93.2 ± 17.3 ef |
123-25-1 | Diethylsuccinate | 14,348.0 ± 3346.8 | 11,410.7 ± 2661.6 bc | 12,718.3 ± 2966.7 c | 9127.0 ± 2129.0 b | 9787.8 ± 2283.1 b | 11,714.0 ± 2732.4 c | 4225.3 ± 985.6 a | 4208.2 ± 981.6 a | 12,465.4 ± 2907.7 c | 16,969.8 ± 1823.4 |
67233-91-4 | Ethyl-9-decenoate | n.d. | n.d. | n.d. | n.d. | 8.2 ± 2.0 a | 7.5 ± 1.8 a | 11.8 ± 2.9 ab | 14.6 ± 3.6 b | 7.5 ± 1.8 a | 17.0 ± 4.2 b |
103-45-7 | Phenylethylacetate | 77.7 ± 12.0 e | 63.4 ± 11.1 de | 48.6 ± 8.5 cd | 36.0 ± 6.3 bc | 62.4 ± 11.0 de | 52.1 ± 9.2 d | 24.4 ± 4.3 a | 26.6 ± 4.7 ab | 50.0 ± 8.8 cd | 54.4 ± 9.6 d |
626-11-9 | Diethyl-DL-Malate | 8082.0 ± 1205.2 cd | 7451.9 ± 1111.3 b | 17,044.7 ± 2541.8 f | 12,292.8 ± 1833.2 e | 11,033.1 ± 1645.3 de | 13,616.2 ± 2030.5 ef | 5549.4 ± 827.6 a | 4503.6 ± 671.6 a | 7979.0 ± 1189.9 bc | 10,753.4 ± 1603.6 d |
87-91-2 | (+)-Diethyl-L-Tartrate | 1555.3 ± 351.6 c | 2020.3 ± 456.7 cd | 3964.2 ± 896.0 e | 3064.2 ± 692.6 e | 1842.6 ± 416.5 c | 2290.8 ± 517.8 d | 840.5 ± 190.0 b | 511.4 ± 115.6 a | 1472.1 ± 332.8 c | 1592.0 ± 359.8 c |
1070-34-4 | Ethylhydrogensuccinate | 28,759.4 ± 5682.0 cd | 17,437.1 ± 3445.1 b | 27,043.5 ± 5343.0 cd | 17,528.8 ± 3463.2 b | 17,693.8 ± 3495.8 b | 21,445.7 ± 4237.0 c | 16,577.6 ± 3275.2 b | 11,962.3 ± 2363.4 a | 27,545.3 ± 5442.1 cd | 32,455.5 ± 5412.2 d |
3943-74-6 | Methylvanillate | n.d. | 3.0 ± 0.3 a | 5.2 ± 0.3 b | n.d. | 6.6 ± 0.4 c | 7.4 ± 0.4 c | n.d. | n.d. | n.d. | n.d. |
Terpenes | |||||||||||
98-55-5 | A-Terpineol | 4.9 ± 0.4 b | 5.4 ± 0.5 b | n.d. | n.d. | 3.8 ± 0.3 a | 3.5 ± 0.3 a | 14.5 ± 1.3 c | 12.8 ± 1.1 c | 37.9 ± 3.4 d | 53.2 ± 4.7 e |
14049-11-7 | EpoxylinalolR | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 3.3 ± 0.1 b | 2.5 ± 0.1 a | 7.7 ± 0.3 c | 10.8 ± 0.4 d |
14049-11-7 | EpoxylinalolS | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 11.4 ± 0.4 b | 8.1 ± 0.3 a | 23.4 ± 0.8 c | 32.7 ± 1.1 d |
Lactones | |||||||||||
96-48-0 | Butyrolactone | 1407.2 ± 18.0 g | 1675.9 ± 21.4 h | 1359.8 ± 17.4 f | 1235.5 ± 15.8 d | 1287.1 ± 16.4 e | 1443.3 ± 18.4 g | 754.1 ± 9.6 b | 478.7 ± 6.1 a | 1143.5 ± 14.6 c | 1260.4 ± 16.1 de |
599-04-2 | Pantolactone | 68.0 ± 11.9 bcd | 92.3 ± 16.1 d | 74.2 ± 13.0 bcd | 57.8 ± 10.1 ab | 58.4 ± 10.2 ab | 61.8 ± 10.8 bc | 79.8 ± 13.9 cd | 45.3 ± 7.9 a | 65.6 ± 11.5 bcd | 70.2 ± 12.3 bcd |
1126-51-8 | γ-Carboethoxy-γ-Butyrolactone | 1952.8 ± 127.7 e | 2235.6 ± 146.2 e | 1708.8 ± 111.7 d | 1441.1 ± 94.2 c | 1497.7 ± 97.9 c | 1605.7 ± 105.0 d | 927.8 ± 60.7 b | 668.3 ± 43.7 a | 1687.2 ± 110.3 d | 1951.4 ± 127.6 e |
Metoxyphenols | |||||||||||
2785-89-9 | p-Ethylguaiacol | n.d. | 3.7 ± 1.4 b | 4.3 ± 1.6 b | 3.5 ± 1.3 b | 4.1 ± 1.6 b | 3.8 ± 1.5 b | 2.1 ± 0.8 ab | 1.4 ± 0.5 a | 491.3 ± 187.5 d | 36.1 ± 13.8 c |
7786-61-0 | p-Vinylguaiacol | 84.1 ± 4.4 b | 147.7 ± 7.7 f | 118.7 ± 6.2 d | 106.4 ± 5.5 c | 126.9 ± 6.6 e | 131.8 ± 6.9 e | 85.2 ± 4.4 b | 45.3 ± 2.4 a | 187.4 ± 9.8 g | 218.4 ± 11.4 h |
498-02-2 | Acetylguaiacol | 30.6 ± 1.6 c | 34.0 ± 1.8 c | 31.9 ± 1.7 c | 25.4 ± 1.3 b | 13.7 ± 0.7 a | 14.3 ± 0.7 a | 31.0 ± 1.6 c | 23.3 ± 1.2 b | 56.8 ± 3.0 d | 58.6 ± 3.1 d |
Other | |||||||||||
513-86-0 | Acetoin | 386.8 ± 24.3 d | 1185.6 ± 74.6 e | 248.2 ± 15.6 bc | 242.5 ± 15.3 bc | 274.3 ± 17.3 c | 1587.4 ± 99.9 f | 170.6 ± 10.7 a | 381.2 ± 24.0 d | 237.2 ± 14.9 b | 1262.7 ± 79.5 e |
877-95-2 | N-(2-Phenylethyl)Acetamide | 136.2 ± 6.2 g | 150.6 ± 6.8 h | 99.0 ± 4.5 f | 82.7 ± 3.7 e | 51.2 ± 2.3 d | 50.8 ± 2.3 d | 19.0 ± 0.9 c | 13.6 ± 0.6 a | 16.9 ± 0.8 b | 16.6 ± 0.8 b |
121-33-5 | Vanillin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 2.6 ± 0.2a | 3.6 ± 0.3b | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basile, T.; Debiase, G.; Mazzone, F.; Scarano, L.; Marsico, A.D.; Cardone, M.F. New Sparkling Wines from Traditional Grape Varieties and Native Yeasts: Focusing on Wine Identity to Address the Industry’s Crisis. Beverages 2025, 11, 25. https://doi.org/10.3390/beverages11010025
Basile T, Debiase G, Mazzone F, Scarano L, Marsico AD, Cardone MF. New Sparkling Wines from Traditional Grape Varieties and Native Yeasts: Focusing on Wine Identity to Address the Industry’s Crisis. Beverages. 2025; 11(1):25. https://doi.org/10.3390/beverages11010025
Chicago/Turabian StyleBasile, Teodora, Giambattista Debiase, Francesco Mazzone, Leonardo Scarano, Antonio Domenico Marsico, and Maria Francesca Cardone. 2025. "New Sparkling Wines from Traditional Grape Varieties and Native Yeasts: Focusing on Wine Identity to Address the Industry’s Crisis" Beverages 11, no. 1: 25. https://doi.org/10.3390/beverages11010025
APA StyleBasile, T., Debiase, G., Mazzone, F., Scarano, L., Marsico, A. D., & Cardone, M. F. (2025). New Sparkling Wines from Traditional Grape Varieties and Native Yeasts: Focusing on Wine Identity to Address the Industry’s Crisis. Beverages, 11(1), 25. https://doi.org/10.3390/beverages11010025