Microbial Glycosidases for Wine Production
Abstract
:1. Introduction
2. Yeast Glycosidases
3. Bacterial Glycosidases
4. Fungal Glycosidases
5. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
DEAE | DiEthylAminoEthyl |
LAB | Lactic Acid Bacteria |
MLF | MaloLactic Fermentation |
pNPG | p-NitroPhenyl-β-d-Glucoside |
References
- International Organisation of Vine and Wine. Available online: http://www.oiv.int (accessed on 8 March 2016).
- Cray, J.A.; Bell, A.N.W.; Bhaganna, P.; Mswaka, A.Y.; Timson, D.J.; Hallsworth, J.E. The biology of habitat dominance; can microbes behave as weeds? Microb. Biotechnol. 2013, 6, 453–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil, J.V.; Mateo, J.J.; Jiménez, M.; Pastor, A.; Huerta, T. Aroma compounds in wine as influenced by apiculate yeasts. J. Food Sci. 1996, 61, 1247–1249. [Google Scholar] [CrossRef]
- Mendes-Ferreira, A.; Clımaco, M.C.; Mendes-Faia, A. The role of non–Saccharomyces species in releasing glycosidic bound fraction of grape aroma components–a preliminary study. J. Appl. Microbiol. 2001, 91, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, I.S. The genetic analysis and tailoring of wine yeasts. In Topics in Current Genetics; de Winde, J.H., Ed.; Springer-Verlag: Berlin, Germany, 2003; Volume 2, pp. 99–141. [Google Scholar]
- Maicas, S.; Mateo, J.J. Hydrolysis of terpenyl glycosides in grape juice and other fruit juices, a review. Appl. Microbiol. Biotechnol. 2005, 67, 322–355. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, I.S.; van der Westhuizen, T.J.; Augustyn, O.P.H. Yeast biodiversity in vineyards and wineries and its importance to the South African wine industry. S. Afr. J. Enol. Vitic. 1999, 20, 61–74. [Google Scholar]
- Swiegers, J.H.; Pretorius, I.S. Yeast modulation of wine flavor. Adv. Appl. Microbiol. 2005, 57, 131–175. [Google Scholar] [PubMed]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Kievit, R.L.; Siebert, T.; Lattey, K.A.; Bramley, B.R.; Francis, I.L.; King, E.S.; Pretorius, I.S. The influence of yeast on the aroma of Sauvignon blanc wine. Food Microbiol. 2009, 26, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Andorrà, I.; Berradre, M.; Rozès, N.; Mas, A.; Guillamón, J.M.; Esteve–Zarzoso, B. Effect of pure and mixed cultures of the main yeast species on grape must fermentation. Eur. J. Food Res. Technol. 2010, 231, 215–224. [Google Scholar] [CrossRef]
- Mateo, J.J.; Jiménez, M.; Huerta, T.; Pastor, A. Contribution of different yeasts isolated from musts of Monastrell grapes to the aroma of wine. Int. J. Food Microbiol. 1991, 14, 153–160. [Google Scholar] [CrossRef]
- Rodríguez, M.E.; Lopes, C.A.; Barbagelata, R.J.; Barda, N.B.; Caballero, A.C. Influence of Candida pulcherrima Patagonian strain on alcoholic fermentation behaviour and wine aroma. Int. J. Food Microbiol. 2010, 138, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Ciani, M.; Maccarelli, F. Oenological properties of non–Saccharomyces yeasts associated with wine-making. World J. Microbiol. Biotechnol. 1998, 14, 199–203. [Google Scholar] [CrossRef]
- Davis, C.R.; Wibowo, D.; Fleet, G.H.; Lee, T.H. Properties of wine lactic acid bacteria, their potential enological significance. Am. J. Enol. Vitic. 1988, 39, 290–301. [Google Scholar]
- Kunkee, R.E. A heady concoction of alcoholic and malolactic fermentations. Nat. Biotechnol. 1997, 15, 224–225. [Google Scholar] [CrossRef] [PubMed]
- Dicks, L.M.T.; Dellaglio, F.; Collins, M.D. Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. Int. J. Syst. Bacteriol. 1995, 45, 395–397. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, D.; Eschenbruch, R.; Davis, C.R.; Lee, T.H. Occurrence and growth of lactic acid bacteria in wine, a review. Am. J. Enol. Vitic. 1985, 36, 302–313. [Google Scholar]
- Grossmann, M.; Rapp, A.; Rieth, W. Enzymatische Freisetzung gebundener Aromastoffe in wein. Dtsch. Lebensm. Rdsch. 1987, 83, 7–12. [Google Scholar]
- Gunata, Z.; Brillouet, J.M.; Voirin, S.; Baumes, B.; Cordonnier, R. Purification and some properties of an α-l-arabinofuranosidase from Aspergillus niger. Action on grape monoterpenyl arabinofuranosyl glucosidases. J. Agric. Food Chem. 1990, 38, 772–776. [Google Scholar] [CrossRef]
- Boido, E.; Lloret, A.; Medina, K.; Carrau, F.; Dellacasa, E. Effect of β-glucosidase activity of Oenococcus oeni on the glycosylated flavor precursors of Tannat wine during malolactic fermentation. J. Agric. Food Chem. 2002, 50, 2344–2349. [Google Scholar] [CrossRef] [PubMed]
- Gonde, P.; Ratomahenina, R.; Arnaud, A.; Galzy, P. Purification and properties of the exocellular β-glucosidase of Candida wickerhamii (Zikes) Meyer and Yarrow capable of hydrolysing soluble cellodextrines. Can. J. Biochem. Cell Biol. 1985, 63, 1160–1166. [Google Scholar] [CrossRef]
- Leclerc, M.; Arnaud, A.; Ratomahenina, R.; Galzy, P.; Nicolas, M. The enzyme system in a strain of Candida wickerhamii Meyer and Yarrow participating in the hydrolysis of cellodextrins. J. Gen. Appl. Microbiol. 1984, 30, 509–521. [Google Scholar] [CrossRef]
- Gueguen, Y.; Chemardin, P.; Pien, S.; Arnaud, A.; Galzy, P. Enhancement of aromatic quality of Muscat wine by the use of immobilized β-glucosidase. J. Biotechnol. 1997, 55, 151–156. [Google Scholar] [CrossRef]
- Brimer, L.; Nout, M.J.R.; Tuncel, G. Glycosidase (amygdalase and linamarase) from Endomyces fibuliger (LU677), formation and crude enzyme properties. Appl. Microbiol. Biotechnol. 1998, 49, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Rosi, I.; Vinella, M.; Domizio, P. Characterization of β-glucosidase activity in yeasts of enological origin. J. Appl. Bacteriol. 1994, 77, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Riccio, P.; Rossano, R.; Vinella, M.; Domizio, P.; Zito, F.; Sanseverino, F.; D’Elia, A.; Rosi, I. Extraction and immobilization in one step of two β-glucosidases released from a yeast strain of Debaryomyces hansenii. Enzym. Microbiol. Technol. 1999, 24, 123–129. [Google Scholar] [CrossRef]
- Fernandez, M.; di Stefano, R.; Briones, A. Hydrolysis and transformation of terpene glycosides from Muscat must by different yeast species. Food Microbiol. 2003, 20, 35–41. [Google Scholar] [CrossRef]
- Sabel, A.; Martens, S.; König, H.; Claus, H. Wickerhamomyces anomalus AS1: A new strain with potential to improve wine aroma. Ann. Microbiol. 2014, 64, 483–491. [Google Scholar] [CrossRef]
- Schwentke, J.; Sabel, A.; Petri, A.; König, H.; Claus, H. The yeast Wickerhamomyces anomalus AS1 secretes a multifunctional exo-β-1,3-glucanase with implications for winemaking. Yeast 2014, 31, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Esteve, B.; Manzanares, P.; Ramon, D.; Querol, A. The role of non-Saccharomyces yeasts in industrial wine making. Int. Microbiol. 1998, 1, 143–148. [Google Scholar]
- Mendes, A.; Climaco, M.C.; Mendes, A. The role of non-Saccharomyces species in releasing glycosidic bound fraction of grape aroma components—A preliminary study. J. Appl. Microbiol. 2001, 91, 67–71. [Google Scholar] [CrossRef]
- Dugelay, I.; Gunata, Z.; Sapis, J.C.; Baumes, R.; Bayonove, C. Etude de l’origine du citronellol dans les vins. J. Int. Sci. Vigne Vin 1992, 26, 177–184. [Google Scholar]
- Hernandez, L.F.; Espinosa, J.C.; Fernandez, M.; Briones, A. β-Glucosidase activity in a Saccharomyces cerevisiae wine strain. Int. J. Food Microbiol. 2003, 80, 171–176. [Google Scholar] [CrossRef]
- Di Stefano, R.; Magiorotto, G.; Gianotti, S. Transformazioni di nerolo e geraniolo indotte dai lieviti. Riv. Vitic. Enol. 1992, 42, 43–49. [Google Scholar]
- Delcroix, A.; Gunata, Z.; Sapis, J.C.; Salmon, J.M.; Bayonove, C. Glycosidase activities of three enological yeast strains during wine making. Effect on the terpenol content of Muscat wine. Am. J. Enol. Viticult. 1994, 45, 291–296. [Google Scholar]
- Gunata, Z.; Dugelay, I.; Sapis, J.C.; Baumes, R.; Bayonove, C. Action des glycosidases exogènes au cours de la vinification, Liberation de l’arôme à partir des précurseurs glycosidiques. J. Int. Sci. Vigne Vin 1990, 24, 133–144. [Google Scholar]
- Darriet, P.; Boidron, J.N.; Dubourdieu, D. L’hydrolyse des hétérosides terpéniques du Muscat a Petit Grains par les enzymes périplasmiques de Saccharomyces cerevisiae. Conn. Vigne Vin 1988, 22, 189–195. [Google Scholar]
- Mateo, J.J.; di Stefano, R. Description of the β-glucosidase activity of wine yeasts. Food Microbiol. 1997, 14, 583–591. [Google Scholar] [CrossRef]
- Shoseyov, O.; Bravdo, B.A.; Goldman, A.; Cohen, S.; Shoseyov, L.; Ikan, R. Immobilized endo-β-glucosidase enriches flavour of wine and passion fruit juice. J. Agric. Food Chem. 1990, 38, 1387–1390. [Google Scholar] [CrossRef]
- Dupin, I.; Gunata, Z.; Sapis, J.C.; Bayonove, C.; M’Bairaroua, O.; Tapiero, C. Production of a β-apiosidase by Aspergillus niger. Partial purification, properties and effect on terpenyl apiosylglucosides from grape. J. Agric. Food Chem. 1992, 40, 1886–1891. [Google Scholar] [CrossRef]
- Henick-Kling, T. Control of malo-lactic fermentation in wine, energetics, flavour modification and methods of starter culture preparation. J. Appl. Bacteriol. 1995, 79, 29–37. [Google Scholar]
- Maicas, S.; Gil, J.V.; Pardo, I.; Ferrer, S. Improvement of volatile composition of wines by controlled addition of malolactic bacteria. Food Res. Int. 1999, 32, 491–496. [Google Scholar] [CrossRef]
- Fleet, G.H. Wine Microbiology and Biotechnology; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Davis, C.R.; Wibowo, D.; Eschenbruch, R.; Lee, T.H.; Fleet, G.H. Practical implications of malolactic fermentation, a review. Am. J. Enol. Vitic. 1985, 36, 290–301. [Google Scholar]
- Grimaldi, A.; McLean, H.; Jiranek, V. Identification and partial characterization of glycosidic activities of commercial strains of the lactic acid bacterium, Oenococcus oeni. Am. J. Enol. Vitic. 2000, 51, 362–369. [Google Scholar]
- D’Incecco, N.; Bartowsky, E.; Kassara, S.; Lante, A.; Spettoli, P.; Henschke, P. Release of glycosidically bound flavour compounds of Chardonnay by Oenococcus oeni during malolactic fermentation. Food Microbiol. 2004, 21, 257–266. [Google Scholar] [CrossRef]
- Ugliano, M.; Genovese, A.; Moio, L. Hydrolysis of wine aroma precursors during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. J. Agric. Food Chem. 2003, 51, 5073–5078. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.J.; Strauss, C.R.; Wilson, B.; Massy-Westropp, R.A. Use of C18 reversed-phase liquid chromatography for the isolation of monoterpene glycosides and nor-isoprenoid precursors from grape juice and wines. J. Chromatogr. 1982, 235, 471–480. [Google Scholar] [CrossRef]
- McMahon, H.; Zoecklein, B.W.; Fugelsang, K.; Jasinski, Y. Quantification of glycosidase activities in selected yeasts and lactic acid bacteria. J. Ind. Microbiol. Biotechnol. 1999, 23, 198–203. [Google Scholar] [CrossRef]
- Pérez-Martín, F.; Izquierdo-Cañas, P.M.; Seseña, S.; García-Romero, E.; Palop, M.LL. Aromatic compounds released from natural precursors by selected Oenococcus oeni strains during malolactic fermentation. Eur. Food Res. Technol. 2015, 240, 609. [Google Scholar] [CrossRef]
- Michlmayr, H.; Nauer, S.; Brandes, W.; Schümann, C.; Kulbe, K.D.; del Hierro, A.M.; Eder, R. Release of wine monoterpenes from natural precursors by glycosidases from Oenococcus oeni. Food Chem. 2012, 135, 80–87. [Google Scholar] [CrossRef]
- Mansfield, A.K.; Zoecklein, B.W.; Whiton, R.S. Quantification of glycosidase activity in selected strains of Brettanomyces bruxellensis and Oenococcus oeni. Am. J. Enol. Vitic. 2002, 53, 303–307. [Google Scholar]
- Barbagallo, R.N.; Spagna, G.; Palmeri, R.; Restuccia, C.; Giudici, P. Selection, characterization and comparison of β-glucosidase from mould and yeasts employables for enological Applications. Enzym. Microbiol. Technol. 2004, 35, 58–66. [Google Scholar] [CrossRef]
- Yahui, L.; Mingtao, F.; Guoqiang, Z.; Yanlin, L. Assessment of β-d-glucosidase activity from two typical strains of the lactic acid bacteria, Oenococcus oeni, in China. S. Afr. J. Enol. Vitic. 2012, 33, 144–149. [Google Scholar]
- Mesas, J.M.; Rodríguez, M.C.; Alegre, M.T. Basic characterization and partial purification of β-glucosidase from cell-free extracts of Oenococcus oeni ST81. Appl. Microbiol. 2012, 55, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Fan, M.; Zhang, Z.; Xu, Y.; Li, A.; Wang, P.; Yang, K. Purification and characterization of β-glucosidase from Oenococcus oeni 31MBR. Eur. Food Res. Technol. 2014, 239, 995–1001. [Google Scholar] [CrossRef]
- Michlmayr, H.; Eder, R.; Kulbe, K.D.; del Hierro, A. β-Glycosidase activities of Oenococcus oeni: Current state of research and future challenges. Mitteilungen Klosterneuburg 2012, 62, 87–96. [Google Scholar]
- Li, Y.H.; Fan, M.T.; Zhang, G.Q.; Liu, Y.L. Assessment of β-d-glucosidase activity from two typical strains of the lactic acid bacteria, Oenococcus oeni, in China. S. Afr. J. Enol. Vitic. 2012, 33, 144–149. [Google Scholar]
- Pérez-Martín, F.; Seseña, S.; Izquierdo, P.M.; Martín, R.; Palop, M.L. Screening for glycosidase activities of lactic acid bacteria as a biotechnological tool in oenology. World J. Microbiol. Biotechnol. 2012, 28, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Bartowsky, E.J.; Borneman, A.R. Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine. Appl. Microbiol. Biotechnol. 2011, 92, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Bloem, A.; Lonvaud-Funel, A.; de Revel, G. Hydrolysis of glycosidically bound flavour compounds from oak wood by Oenococcus oeni. Food Microbiol. 2008, 25, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Palmeri, R.; Spagna, G. β-Glucosidase in cellular and acellular form for winemaking application. Enzym. Microb. Technol. 2007, 40, 382–389. [Google Scholar] [CrossRef]
- Bloem, A.; Lonvaud, A.; Bertrand, A.; de Revel, G. Ability of Oenococcus oeni to influence vanillin levels. Dev. Food Sci. 2006, 43, 137–140. [Google Scholar]
- Grimaldi, A.; Bartowsky, E.; Jiranek, V. A survey of glycosidase activities of commercial wine strains of Oenococcus oeni. Int. J. Food Microbiol. 2005, 105, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Du Toit, M.; Engelbrecht, L.; Lerm, E.; Krieger-Weber, S. Lactobacillus: The next generation of malolactic fermentation starter cultures-An overview (2011). Food Bioprocess Technol. 2011, 4, 876–906. [Google Scholar] [CrossRef]
- Michlmayr, H.; Brandes, W.; Eder, R.; Schümann, C.; del Hierro, A.M.; Kulbe, K.D. Characterization of two distinct glycosyl hydrolase family 78 α-l-rhamnosidases from Pediococcus acidilactici. Appl. Microbiol. Biotechnol. 2011, 77, 6524–6530. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Yadav, P.K.; Yadav, S.; Yadav, K.D.S. α-l-rhamnosidase: A review. Process Biochem. 2010, 45, 1226–1235. [Google Scholar] [CrossRef]
- Aryan, A.P.; Wilson, B.; Strauss, C.R.; Williams, P.J. The properties of glycosidases of Vitis vinifera and comparison of their β-glucosidase activity with that of exogenous enzymes. An assessment of possible applications in enology. Am. J. Enol. Vitic. 1987, 38, 182–188. [Google Scholar]
- Chen, D.; Liu, S.Q. Transformation of chemical constituents of lychee wine by simultaneous alcoholic and malolactic fermentations. Food Chem. 2016, 196, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Gunata, Z.; Bitteur, S.; Brillouet, J.M.; Bayonove, C.; Cordonnier, R. Sequential enzymic hydrolysis of potentially aromatic glycosides from grape. Carbohydr. Res. 1988, 184, 139–149. [Google Scholar] [CrossRef]
- Bitteur, S.; Gunata, Z.; Brillouet, J.M.; Bayonove, C.; Cordonnier, R. GC and HPLC of grape monoterpenyl glycosides. J. Sci. Food Agric. 1989, 47, 341–352. [Google Scholar] [CrossRef]
- Voirin, S.; Baumes, R.; Bayonove, C.; M’Bairaroua, O.; Tapiero, C. Synthesis and NMR spectral properties of grape monoterpenyl glycosides. Carbohydr. Res. 1990, 207, 39–56. [Google Scholar] [CrossRef]
- Voirin, S.; Baumes, R.; Sapis, J.C.; Bayonove, C. Analytical method for monoterpene glycosides in grape and wine. Part 2. Qualitative and quantitative determination of glycosides in grape. J. Chromatogr. 1992, 595, 269–281. [Google Scholar] [CrossRef]
- Skouroumounis, G.K.; Massy-Westropp, R.A.; Sefton, M.A.; Williams, P.J. Synthesis of glucosides related to grape and wine aroma precursors. J. Agric. Food Chem. 1995, 43, 974–980. [Google Scholar] [CrossRef]
- Spagna, G.; Andreani, F.; Salatelli, F.; Romagnoli, D.; Casarini, D.; Pifferi, P.G. Immobilization of the glycosidases, α-l-arabinofuranosidase and β-d-glucopyranosidase from Aspergillus niger on a chitosan derivative to increase the aroma of wine. Part II. Enzym. Microb. Technol. 1998, 23, 413–421. [Google Scholar] [CrossRef]
- Shoseyov, O.; Bravdo, B.A.; Ikan, R.; Chet, I. Endo-β-glucosidase from Aspergillus niger grown on monoterpene glycoside containing medium. Phytochemistry 1988, 27, 1973–1976. [Google Scholar] [CrossRef]
- Fu-Mian, C.; Pifferi, P.G.; Setti, L.; Spagna, G.; Martino, A. Immobilizzazione di un’antocianasi (β-glucosidasi) da Aspergillus niger. Ital. J. Food Sci. 1994, 1, 31–42. [Google Scholar]
- Riou, C.; Salmon, J.M.; Vallier, M.J.; Gunata, Z.; Barre, P. Purification, characterization and substrate specifity of novel high glucosidase from Aspergillus orzyae. Appl. Environ. Microbiol. 1998, 64, 3607–3614. [Google Scholar] [PubMed]
- Gunata, Z.; Vallier, M.J. Production of highly glucose-tolerant extracellular β-glucosidase by three Aspergillus strains. Biotechnol. Lett. 1999, 21, 219–223. [Google Scholar] [CrossRef]
- Gunata, Z.; Bayonove, C.; Tapiero, C.; Cordonnier, R. Hydrolysis of grape monoterpenyl β-d-glucosides by various β-glucosidases. J. Agric. Food Chem. 1990, 38, 1232–1236. [Google Scholar] [CrossRef]
- Gunata, Z.; Dugelay, I.; Vallier, M.J.; Sapis, J.C.; Bayonove, C. Multiple forms of glycosidases in an enzyme preparation from Aspergillus niger: partial characterization of an apiosidase. Enzym. Microbiol. Technol. 1997, 21, 39–44. [Google Scholar] [CrossRef]
No. | Terpenes | Grape Skin | Saccharomyces cerevisiae S1U Glucosidase [39] | Klerzyme 200® * | Exogenous Glycosidases | Hemicellulase | ||
---|---|---|---|---|---|---|---|---|
Pectinol C® * | Rohapect C® * | Sweet Wine * | Dry Wine * | |||||
1 | trans-Furan linalool oxide | 108.2 | 122.9 | 247.3 | 174.3 | 943.1 | 109.7 | 129.7 |
2 | cis-Furan linalool oxide | 124.3 | 296.8 | 149.2 | 133.8 | 456.1 | 87.0 | 117.6 |
3 | Linalool | 101.2 | 204.6 | 113.6 | 111.0 | 187.8 | 107.5 | 108.8 |
4 | Hotrienol | 93.3 | 113.2 | 130.8 | 87.1 | |||
5 | Neral | |||||||
6 | α-Terpineol | 230.0 | 150.8 | 190.8 | 113.8 | 141.7 | ||
7 | Geranial | |||||||
8 | trans-Pyran linalool oxide | 124.9 | 109.3 | 109.1 | 113.1 | 104.2 | 104.4 | |
9 | cis-Pyran linalool oxide | 104.5 | 88.9 | 136.3 | 111.4 | 98.0 | ||
10 | Citronellol | 177.6 | 176.6 | 551.9 | 239.8 | 131.8 | 146.5 | 335.4 |
11 | Nerol | 593.0 | 847.6 | 424.5 | 720.0 | 1173.2 | 190.6 | 642.0 |
12 | Geraniol | 381.9 | 833.4 | 491.8 | 633.2 | 806.2 | 107.0 | 359.1 |
13 | Diol I | 104.2 | 91.4 | 151.9 | 112.7 | 152.3 | 113.8 | 98.0 |
14 | Endiol | 133.0 | ||||||
15 | Diol II | 101.4 | 112.5 | 174.7 | 114.0 | 124.3 | 100.1 | 97.6 |
16 | Hydroxy-citronellol | 152.6 | 159.0 | 178.4 | 552.9 | |||
17 | 8-Hydroxy-dihydro-linalool | 275.9 | 230.8 | 152.9 | 397.6 | 105.9 | 93.2 | |
18 | Hydroxy-nerol | 141.4 | ||||||
19 | trans-8-Hydroxy-linalool | 133.4 | 466.0 | 1343.0 | 431.5 | |||
20 | Hydroxy-geraniol | 140.2 | 475.0 | |||||
21 | cis-8-Hydroxy-linalool | 271.8 | 688.9 | 4083.0 | 990.0 | 916.9 | ||
22 | Geranic acid | 362.6 | 522.8 | 410.2 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maicas, S.; Mateo, J.J. Microbial Glycosidases for Wine Production. Beverages 2016, 2, 20. https://doi.org/10.3390/beverages2030020
Maicas S, Mateo JJ. Microbial Glycosidases for Wine Production. Beverages. 2016; 2(3):20. https://doi.org/10.3390/beverages2030020
Chicago/Turabian StyleMaicas, Sergi, and José Juan Mateo. 2016. "Microbial Glycosidases for Wine Production" Beverages 2, no. 3: 20. https://doi.org/10.3390/beverages2030020
APA StyleMaicas, S., & Mateo, J. J. (2016). Microbial Glycosidases for Wine Production. Beverages, 2(3), 20. https://doi.org/10.3390/beverages2030020