Polyphenol Characterization in Red Beverages of Carapa procera (D.C.) Leaf Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Sample Preparation
2.1.1. Plant Material
2.1.2. Pilot Plant Extraction and Concentration
2.2. Standards and Solvents
2.3. Dry Matter
2.4. Total Polyphenol Analyses by Folin–Ciocalteu (F–C) Method
2.5. Total Flavonoid Analyses
2.6. Total Monomeric Anthocyanin Analyses
2.7. Analytical Techniques and Equipment
2.7.1. HPLC-DAD Analyses
2.7.2. HPLC-ESI-MS Analyses
2.7.3. Semipreparative HPLC for Purification
2.8. Statistical Analysis
3. Results and Discussion
3.1. Global Determination of Polyphenols and Dry Matter of C. procera Pilot Plant Extracts
3.2. Identification and Quantitation of Polyphenols by Analytical Techniques: HPLC-DAD/LC-MS2
3.2.1. Anthocyanin Identification
3.2.2. Flavonol Identification
3.2.3. Phenolic Acid Identification
3.3. Effect of Extraction Process Steps on Polyphenol Content
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tchana, E.S.M.; Fankam, G.A.; Mbaveng, T.A.; Nkwengoua, T.E.; Seukep, A.J.; Tchouani, K.F.; Nyassé, B.; Kuete, V. Activities of selected medicinal plants against multi-drug resistant Gram-negative bacteria in Cameroon. Afr. Health Sci. 2014, 14, 167–172. [Google Scholar]
- Diatta, K.; Diatta, W.; Dior, F.A.; Mbacké, D.S.I.; Mbaye, A.I.; Aynina, F.P. Traditionally Used Anti-hepatitis Plants Species in Dakar District, Senegal. Eur. J. Med. Plants 2019, 29, 1–8. [Google Scholar] [CrossRef]
- Dembélé, U.; Lykke, A.M.; Koné, Y.; Témé, B.; Kouyaté, A.M. Use-value and importance of socio-cultural knowledge on Carapa procera trees in the Sudanian zone in Mali. J. Ethnobiol. Ethnomed. 2015, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Weber, N.; Birnbaum, P.; Forget, P.-M.; Gueye, M.; Kenfack, D. L’huile de carapa (Carapa spp., Meliaceae) en Afrique de l’Ouest: Utilisations et implications dans la conservation des peuplements naturels. Fruits 2009, 65, 343–353. [Google Scholar] [CrossRef]
- Dongmo, N.A.; Nganso, D.Y.O.; Nkwengoua, T.E.; Boda, M.; Voundi, O.S.; Etoa, F.X.; Nyasse, S. In-Vitro Testing of Extracts and Fractions From two Cameroonian Medicinal Plants on Bacteria Gastroenteritis. Am. J. Phytomed. Clin. Ther. 2015, 3, 575–588. [Google Scholar]
- Burkill, H.M. The Useful Plants of West Tropical Africa; Royal Botanic Gardens, Kew (K): Richmond, UK, 1985; Volume 4. [Google Scholar]
- Mombouli, J.B.; Marcel, A.; Attibayeba. Evaluation of Proximate, Mineral and Phytochemical Compositions of Carapa procera (Family Meliaceae). Pak. J. Nutr. 2014, 13, 359–365. [Google Scholar]
- Institute of Medicine and National Research Council; Board on Agriculture; Institute of Medicine; Committee to Ensuring Safe Food From Production to Consumption. Ensuring Safe Food: From Production to Consumption; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Gbohaïda, V.; Agbangnan, D.C.P.; Nonviho, G.; Gnansounou, M.; Bothon, F.T.D.; Bogninou, G.S.R.; Avlessi, F.; Sohounhloué, C.K.D. Chemical study and evaluation of the influence of two physical parameters on polyphenols extraction from Carapa procera leaves. World J. Pharm. Res. 2016, 5, 108–119. [Google Scholar]
- Adjé, F.; Lozano, F.Y.; Meudec, E.; Lozano, P.; Adima, A.; N′zi, A.G.; Gaydou, M.E. Anthocyanin Characterization of Pilot Plant Water Extracts of Delonix regia Flowers. Molecules 2008, 13, 1238–1245. [Google Scholar] [CrossRef]
- Koffi, E.N.; Meudec, E.; Adjé, F.A.; Lozano, P.R.; Lozano, Y.F.; Bekro, Y.A. Effects of reverse osmosis concentration coupled with dying processes on polyphenols and antioxidant activity obtained from Tectona grandis leaf aqueous extracts. J. Appl. Res. Med. Aromat. Plants 2015, 2, 54–59. [Google Scholar]
- Adjé, F. Production par procédés membranaires couplés d’extraits polyphénoliques de Carapa procera, Delonix regia et Hibiscus sabdariffa—Détermination des structures moléculaires et des activités antioxydantes, in Sciences Chimiques. Ph.D. Thesis, Université Paul Cézanne, Marseille, France, 2009. [Google Scholar]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the determination of antioxidant capacity and phenolics in foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Wood, J.E.; Senthilmohan, T.S.; Peskin, A.V. Antioxidant activity of procyanin-contaning plant extracts at different pH. Food Chem. 2002, 77, 155–161. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Kim, D.-O.; Seung, J.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Biglari, F.; AlKarkhi, A.F.M.; Easa, A.M. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008, 107, 1636–1641. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Durst, R.W.; Lee, J. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Pawlowska, A.M.; Camangi, F.; Bader, A.; Braca, A. Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) fruits. Food Chem. 2009, 112, 858–862. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, H.; Wu, H.; Pan, Y.; Wang, K.; Jin, Y.; Zhang, C. Characterization and Quantification by LC-MS/MS of the Chemical Components of the Heating Products of the Flavonoids Extract in Pollen Typhae for Transformation Rule Exploration. Molecules 2015, 20, 18352–18366. [Google Scholar] [CrossRef]
- Sunil, K.; Awantik, S.; Brijesh, K. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J. Pharm. Anal. 2017, 7, 214–222. [Google Scholar]
- Parejo, I.; Jauregui, O.; Sánchez-Rabaneda, F.; Viladomat, F.; Bastida, J.; Codina, C. Separation and characterization of phenolic compounds in Fennel (Foeniculum vulgare) using liquid chromatography-negative electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2004, 52, 3679–3687. [Google Scholar] [CrossRef]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical Scheme for LC-MSn Identification of Chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef]
- Rakesh, J.; Sovdat, T.; Vivan, F.; Kuhnert, N. Profiling and Characterization by LC-MSn of the Chlorogenic Acids and Hydroxycinnamoylshikimate Esters in Maté (Ilex paraguariensis). J. Agric. Food Chem. 2010, 58, 5471–5484. [Google Scholar]
Process Coproducts | Extract Volume (L) | Total Phenolic Acids (µmol L−1 GAE) | Total Flavonoids (µmol L−1 DE) | Anthocyanins (µmol L−1 Cya rut) | Dry Matter (%) |
---|---|---|---|---|---|
Crude extract | 244 | 652 ± 36 a | 140 ± 1 a | 0.08 ± 0.01 a | 0.22 ± 0.01 a |
Microfiltrate extract | 230 | 630 ± 44 a | 126 ± 2 a | 0.06 ± 0.01 a | 0.20 ± 0.01 a |
RO concentrate extract | 2.4 | 4420 ± 260 b | 1068 ± 2 b | 1.4 ± 0.2 b | 2.7 ± 0.3 b |
Concentration factor | 7 | 8 | 18 | 13.5 |
Peak n° | TR (min) | λmax (nm) | [M + H]+ m/z | [M − X]+ m/z | Identified Anthocyanins | % |
---|---|---|---|---|---|---|
An1 | 27.5 | 516 | 449 | 287 [M-162] | cyanidin 3-O-glucoside | 19 |
An2 | 29.4 | 516 | 595 | 449 [M-146] 287 [M-162] | cyanidin 3-O-rutinoside | 81 |
Peak n° | RT (min) | λmax (nm) | [M + H]+ m/z | [M − X]+ m/z | Identified Flavonols | % |
---|---|---|---|---|---|---|
F1 | 46.5 | 356 | 611 | 465 [M-146] 303 [M-162] | quercetin 3-O-rutinoside | 15 |
F2 | 47.2 | 356 | 465 | 303 [M-162] | quercetin 3-O-galactoside | 12 |
F3 | 47.7 | 356 | 465 | 303 [M-162] | quercetin 3-O-glucoside | a |
F4 | 49.0 | 348 | 595 | 449 [M-146] 287 [M-162] | kaempferol rutinoside | a |
F5 | 58.6 | 368 | 303 | quercetin | a |
Peak n° | RT (min) | λmax (nm) | [M − H]− m/z | [M − X]+ m/z | Identified Phenolic Acids | % |
---|---|---|---|---|---|---|
AP1 | 15.4 | 217, 260, and 295 | 153 | 109 [M-44] | protocatechuic acid | 3 |
AP2 | 18.6 | 308 | 353 | 191 [M-162] 179 [M-12] 135 [M-44] | 3-caffeoylquinic acid | 20 |
AP3 | 23.6 | 313 | 353 | 191 [M-162] 163 [M-28] | 5-caffeoylquinic acid | a |
AP4 | 25.4 | 327 | 353 | 191 [M-162] 179 [M-12] 135 [M-44] | 4-caffeoylquinic acid | 50 |
AP5 | 33.5 | 313 | 337 | 191 [M-146] 163 [M-28] | coumaroylquinic acid | a |
Process Coproducts | Anthocyanins (µmol L−1 CE) | Flavonols (µmol L−1 QE) | Phenolic Acids (µmol L−1 GAE) |
---|---|---|---|
CrE | 2.0 ± 0.4 a | 230 ± 6 a | 367 ± 4 a |
CFM | 1.6 ± 0.3 a | 226 ± 6 a | 361 ± 2 a |
RO | 28.4 ± 0.3 b | 1587 ± 3 b | 3650 ± 10 b |
CF | 18 | 7 | 10 |
Types of Polyphenols | Compounds | Content (µmol L−1) | % |
---|---|---|---|
Anthocyanins (CE) | cyanidin-3-O-glucoside | 2.9 ± 0.2 | 10.2 |
cyanidin-3-O-rutinoside | 25.5 ± 0.2 | 89.8 | |
Total 1 | 28.4 ± 0.3 | 100 | |
Flavonols (DE) | quercetin-3-O-rutinoside | 613 ± 1 | 38.6 |
quercetin-3-O-galactoside | 519 ± 1 | 32.7 | |
quercetin-3-O-glucoside | 257 ± 1 | 16.2 | |
kaempferol rhamnosyl-hexoside | 198 | 12.5 | |
Quercetin | -* | -* | |
Total 2 | 1587 ± 3 | 100 | |
Phenolic acids (GAE) | protocatechuic acid | 756 ± 3 | 20.7 |
caffeoylquinic acid | 2310 ± 1 | 63.3 | |
coumaroylquinic acid | 583 ± 5 | 16.0 | |
Total 3 | 3650 ± 10 | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adjé, F.A.; Koffi, E.N.; Koné, K.Y.; Meudec, E.; Adima, A.A.; Lozano, P.R.; Lozano, Y.F.; Gaydou, E.M. Polyphenol Characterization in Red Beverages of Carapa procera (D.C.) Leaf Extracts. Beverages 2019, 5, 68. https://doi.org/10.3390/beverages5040068
Adjé FA, Koffi EN, Koné KY, Meudec E, Adima AA, Lozano PR, Lozano YF, Gaydou EM. Polyphenol Characterization in Red Beverages of Carapa procera (D.C.) Leaf Extracts. Beverages. 2019; 5(4):68. https://doi.org/10.3390/beverages5040068
Chicago/Turabian StyleAdjé, Félix A., Emmanuel N. Koffi, Kisselmina Y. Koné, Emmanuelle Meudec, Augustin A. Adima, Paul R. Lozano, Yves F. Lozano, and Emile M. Gaydou. 2019. "Polyphenol Characterization in Red Beverages of Carapa procera (D.C.) Leaf Extracts" Beverages 5, no. 4: 68. https://doi.org/10.3390/beverages5040068
APA StyleAdjé, F. A., Koffi, E. N., Koné, K. Y., Meudec, E., Adima, A. A., Lozano, P. R., Lozano, Y. F., & Gaydou, E. M. (2019). Polyphenol Characterization in Red Beverages of Carapa procera (D.C.) Leaf Extracts. Beverages, 5(4), 68. https://doi.org/10.3390/beverages5040068