Effect of Nitrogen Fertilization on Savvatiano (Vitis vinifera L.) Grape and Wine Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Description
2.2. Plant Material Vineyard Management and Fertilization Treatments
2.3. Grape Sampling
2.4. Amonia and Primary Amino Nitrogen
2.5. Vinification Process
2.6. Determination of Organic Acids, Sugars, and Alcohols
2.7. Quantitative Determination of Volatile Compounds
2.8. Sensorial Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Grape Berries Maturity and Must Composition
3.2. Berry Nitrogen Status
3.3. Alcoholic Fermentation Kinetics
3.4. Physicochemical Analysis—Organic Acids
3.5. Formation of Volatile Compounds in Response to Different N Fertilizations in the Vineyard
3.6. Odor Activity Values
3.7. Sensory Profile
3.8. PCA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schleper, C.; Nicol, G.W. Ammonia-Oxidising Archaea—Physiology. Ecology and Evolution. Adv. Microb. Physiol. 2010, 57, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes fermentation and wine. Aust. J. Grape Wine Res 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Poni, S.; Gatti, M.; Palliotti, A.; Dai, Z.; Duchene, E.; Truong, T.T.; Ferrara, G.; Matarrese, A.M.S.; Gallotta, A.; Bellincontro, A.; et al. Grapevine quality: A multiple choice issue. Sci. Hortic. 2018, 234, 445–462. [Google Scholar] [CrossRef] [Green Version]
- Lasa, B.; Menendez, S.; Sagastizabal, K.; Cervantes, M.E.C.; Irigoyen, I.; Muro, J.; Ariz, I. Foliar application of urea to Sauvignon Blanc and Merlot vines: Doses and time of application. Plant Growth Regul. 2012, 67, 73–81. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Portu, J.; López, R.; Santamaría, P. Effect of foliar applications of proline, Phenylalanine, urea, and commercial nitrogen fertilizers on stilbene concentrations in Tempranillo musts and mines. Am. J. Enol. Vitic. 2015, 66, 4. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Gonzalo-Diago, A.; Moreno Simunovic, Y.; Martínez-Gil, A.M. Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard. LWT Food Sci. Technol. 2017, 75, 147–154. [Google Scholar] [CrossRef]
- Styger, G.; Prior, B.; Bauer, F.F. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145. [Google Scholar] [CrossRef]
- Chone, X.; van Leeuwen, C.; Chery, P.; Ribereau-Gayon, P. Terroir influence on water status and nitrogen status of non irrigated Cabernet-Sauvignon (Vitis vinifera): Vegetative development must and wine composition. S. Afr. J. Enol. Vitic. 2001, 22, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Hilbert, G.; Soyer, J.P.; Molot, C.; Giraudon, J.; Milin, S.; Gaudillere, J. Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot. Vitis 2003, 42, 69–76. [Google Scholar]
- Nikolantonaki, M.; Magiatis, P.; Waterhouse, A.L. Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones. Food Chem. 2014, 163, 61–67. [Google Scholar] [CrossRef]
- Choné, X.; Lavigne-Cruège, V.; Tominaga, T.; Van Leeuwen, C.; Castagnède, C.; Saucier, C.; Dubourdieu, D. Effect of vine nitrogen status on grape aromatic potential: Flavor precursors (S-cysteine conjugates). glutathione and phenolic content in Vitis vinifera L. cv Sauvignon blanc grape juice. OENO One 2006, 40, 1. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, T.; Peyrot des Gachons, C.; Dubourdieu, D. A new type of flavor precursors in Vitis vinifera L. cv. Sauvignon Blanc: S-cysteine conjugates. J. Agric. Food Chem. 1998, 46, 5215–5219. [Google Scholar] [CrossRef]
- Charrier, F.; Dufourcq, T. Influence de l’apport d’azote foliaire sur le potential aromatique des vins blancs. In Proceedings of the VIIIth Symposium d’oenologie de Bordeaux, Bordeaux, France, 26–27 June 2007. [Google Scholar]
- Lacroux, F.; Tregoat, O.; van Leeuwen, C.; Pons, A.; Tominaga, T.; Lavigne-Cruège, V.; Dubourdieu, D. Effect of foliar nitrogen end sulphur application on aromatic expression of Vitis Vinifera L. cv. Sauvignon blanc. J. Int. Sci. Vigne Vin. 2008, 2, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Dufourcq, T.; Charrier, F.; Poupault, P.; Schneider, R.; Gontier, L.; Serrano, E. Foliar spraying of nitrogen and sulfur at veraison: A viticultural technique to improve aromatic composition of white and rosés wines. In Proceedings of the 16th International GiESCO Symposium, Davis, CA, USA, 12–15 July 2009; University of California, Department of Viticulture and Enology: Davis, CA, USA, 2009; pp. 379–383. [Google Scholar]
- Song, C.Z.; Liu, M.Y.; Meng, J.F.; Shi, P.B.; Zhang, Z.W.; Xi, Z.M. Influence of foliage-sprayed zinc sulfate on grape quality and wine aroma characteristics of Merlot. Eur. Food Res. Technol. 2016, 242, 609–623. [Google Scholar] [CrossRef]
- Strebel, O.W.H.M.; Duynisveld, W.H.M.; Böttcher, J. Nitrate pollution of groundwater in western Europe. Agric. Ecosyst. Environ. 1989, 26, 189–214. [Google Scholar] [CrossRef]
- Shen, T.; Stieglmeier, M.; Dai, J.; Urich, T.; Schleper, C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Let. 2013, 344, 121–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Li, F.; Deng, A.; Feng, X.; Fang, F.; Zhang, W. Integrated assessment of the impact of enhanced-efficiency nitrogen fertilizer on N2O emission and crop yield. Agric. Ecosyst. Environ. 2016, 231, 218–228. [Google Scholar] [CrossRef]
- Kaye-Blake, W.; Schilling, C.; Monaghan, R.; Vibart, R.; Dennis, S.; Post, E. Quantification of environmental-economic trade-offs in nutrient management policies. Agric. Syst. 2019, 173, 458–468. [Google Scholar] [CrossRef]
- European Commission. EU Agricultural Outlook for Markets and Income 2019–2030. Available online: https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/markets/outlook/medium-term_en (accessed on 23 March 2022).
- Verdenal, T.; Dienes-Nagy, Á.; Spangenberg, J.E.; Zufferey, V.; Spring, J.-L.; Viret, O.; Marin-Carbonne, J.; van Leeuwen, C. Understanding and managing nitrogen nutrition in grapevine: A review. OENO One 2021, 55, 1–43. [Google Scholar] [CrossRef]
- OIV. OIV Descriptor List for Grape Varieties and Vitis Species, 2nd ed.; Organisation Internationale de la Vigne et du Vin: Paris, France, 2009; Available online: https://www.oivint/oiv/info/enplubicationoiv (accessed on 21 July 2021).
- Y15 Enzymatic Autoanalyzer. Y15 Automatic Analyzer. Available online: https://www.swisslabs.eu/wp-content/uploads/2019/09/6-Biosystems-Y15-Analyzer.pdf (accessed on 23 March 2022).
- Coelho, E.M.; Da Silva Padilha, C.V.; Miskinis, G.A.; De Sá, A.G.B.; Pereira, G.E.; De Azevêdo, L.C. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from Northeast Brazil. J. Food Compos. Anal. 2018, 66, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, V.; Stefova, M.; Stafilov, T.; Vojnoski, B.; Bíró, I.; Bufa, A.; Kilár, F. Validation of a Method for Analysis of Aroma Compounds in Red Wine using Liquid–Liquid Extraction and GC–MS. Food Anal. Methods 2012, 5, 1427–1434. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Zhang, L. Intensity prediction of typical aroma characters of cabernet sauvignon wine in Changli County (China). LWT Food Sci. Technol. 2010, 43, 1550–1556. [Google Scholar] [CrossRef]
- Abd El-Razek, E.; Treutter, D.; Saleh, M.M.S.; El-Shammaa, M.; Abdel-Hamid, N.; Abou-Rawash, M. Effect of nitrogen and potassium fertilization on productivity and fruit quality of ‘crimson seedless’ grape. Agric. Biol. J. N. Am. 2011, 2, 330–340. [Google Scholar] [CrossRef]
- Perez-Alvarez, E.P.; Garde-Cerdán, T.; García-Escudero, E.; Martínez-Vidaurre, J.M. Effect of two doses of urea foliar application on leaves and grape nitrogen composition during two vintages. J. Sci. Food Agric. 2017, 97, 2524–2532. [Google Scholar] [CrossRef]
- Helwi, P.; Habran, A.; Guillaumie, S.; Thibon, C.; Hilbert, G.; Gomes, E.; Delrot, S.; Darriet, P.; van Leeuwen, C. Vine Nitrogen Status Does Not Have a Direct Impact on 2-Methoxy-3-isobutylpyrazine in Grape Berries and Wines. J. Agric. Food Chem. 2015, 63, 9789–9802. [Google Scholar] [CrossRef] [PubMed]
- Helwi, P.; Guillaumie, S.; Thibon, C.; Keime, C.; Habran, A.; Hilbert, G.; Gomes, E.; Darriet, P.; Delrot, S.; van Leeuwen, C. Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level. BMC Plant Biol. 2016, 16, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Leeuwen, C.; Friant, P.; Soyer, J.P.; Molot, C.; Chone, X.; Dubourdieu, D. L’interet du dosage de l’azote total et de l’azote assimilable dans le moût comme indicateur de la nutrition azotee de la’ vigne. J. Int. Sci. Vigne Vin 2000, 34, 75–82. [Google Scholar]
- Matthews, M.A.; Nuzzo, V. Berry size and yield paradigms on grapes and wine quality. Acta Hortic. 2007, 754, 423–436. [Google Scholar] [CrossRef] [Green Version]
- Keller, M. Deficit irrigation and vine mineral nutrition. Am. J. Enol. Vitic. 2005, 56, 267–283. [Google Scholar]
- Linsenmeie, A.W.; Loos, U.; Lohnertz, O. Must composition and nitrogen uptake in a long-term trial as affected by timing of nitrogen fertilization in a cool-climate riesling vineyard. Am. J. Enol. Vitic. 2008, 59, 255–264. [Google Scholar]
- Rollero, S.; Bloem, A.; Camarasa, C.; Sanchez, I.; Ortiz-Julien, A.; Sablayrolles, J.M.; Dequin, S.; Mouret, J.R. Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 2291–2304. [Google Scholar] [CrossRef] [PubMed]
- Salmon, J.M.; Barre, P. Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 1998, 64, 3831–3837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bely, M.; Rinaldi, A.; Dubourdieu, D. Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. J. Biosci. Bioeng. 2003, 96, 507–512. [Google Scholar] [CrossRef]
- Vilanova, M.; Ugliano, M.; Varela, C.; Siebert, T.; Pretorius, I.S.; Henschke, P.A. Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl. Microbiol. Biotechnol. 2007, 77, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Yanniotis, S.; Kotseridis, G.; Orfanidou, A.; Petraki, A. Effect of ethanol, dry extract and glycerol on the viscosity of wine. J. Food Eng. 2007, 81, 399–403. [Google Scholar] [CrossRef]
- Brandberg, T.; Gustafsson, L.; Franzén, C.J. The impact of severe nitrogen limitation and microaerobic conditions on extended continuous cultivations of Saccharomyces cerevisiae with cell recirculation. Enzym. Microb. Technol. 2007, 40, 585–593. [Google Scholar] [CrossRef]
- Christofi, S.; Papanikolaou, S.; Dimopoulou, M.; Terpou, A.; Cioroiu, I.B.; Cotea, V.; Kallithraka, S. Effect of Yeast Assimilable Nitrogen Content on Fermentation Kinetics. Wine Chemical Composition and Sensory Character in the Production of Assyrtiko Wines. Appl. Sci. 2022, 12, 1405. [Google Scholar] [CrossRef]
- Liszkowska, W.; Berlowska, J. Yeast fermentation at low temperatures: Adaptation to changing environmental conditions and formation of volatile compounds. Molecules 2021, 26, 1035. [Google Scholar] [CrossRef]
- Perestrelo, R.; Nogueira, J.M.; Camara, J. Potentialities of two solventless extraction approaches–Stir bar sorptive extraction and headspace solid-phase microextraction for determination of higher alcohol acetates isoamyl esters and ethyl esters in wines. Talanta 2009, 80, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Maigre, D. Comportement du Pinot noir en présence d’enherbement permanent et influence de la fumure azotée. 2. Résultats analytiques et organoleptiques. Rev. Suisse De Vitic. Arboric. Hortic. 2002, 34, 239–244. [Google Scholar]
- Spring, J.L. Valorization de la fumure azotée en vigne enherbées. Résultats d’un essai sur Chasselas dans le basin lémanique. Rev. Suisse Vitic. Arboric. Hortic. 2002, 34, 289–296. [Google Scholar]
- Saerens, S.M.G.; Delvaux, F.; Verstrepen, K.J.; van Dijck, P.; Thevelein, J.M.; Delvaux, F.R. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl. Environ. Microbiol. 2008, 74, 454–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology. ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 2017, 41 (Suppl. S1), 95–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darriet, P.; Thibon, C.; Dubourdieu, D.; Gerós, H.; Chaves, M.M.; Delrot, S. Aroma and Aroma Precursors in Grape Berry. In The Biochemistry of the Grape Berry; Bentham Science: Bussum, The Netherlands, 2012; pp. 111–136. [Google Scholar]
- Reynolds, A.G.; Wardle, D.A. Influence of fruit microclimate on monoterpene levels of Gew0rztraminer. Am. J. Enol. Vitic. 1989, 40, 149–154. [Google Scholar]
- Reynolds, A.G.; Wardle, D.A.; Dever, M. Shoot density: Interactions with crop level and cordon age. In Proceedings of the Grape and Wine Forum, Victoria, BC, Canada, 23 April 1991; Ministry of Agriculture, Fisheries, and Food: London, UK, 1991; pp. 1–34.
- Spayd, S.E.; Wample, R.L.; Evans, R.G.; Stevens, R.G.; Seymour, B.J.; Nagel, C.W. Nitrogen fertilization of white Riesling grapes in Washington. Must and wine composition. Am. J. Enol. Vitic. 1994, 45, 34–42. [Google Scholar]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Ferreira, V.; Lopez, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Guth, H. Quantification and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Etievant, P.X. Wine. In Volatile Compounds in Foods and BeVerages; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 483–546. [Google Scholar]
- Escudero, A.; Gogorza, B.; Melus, M.A.; Ortin, N.; Cacho, J.; Ferreira, V. Characterization of the aroma of a wine from Maccabeo. Key role played by compounds with low odor activity values. J. Agric. Food Chem. 2004, 52, 3516–3524. [Google Scholar] [CrossRef]
- Lopez, R.N.; Ortín, J.P.; Pérez-Trujillo, J.; Cacho, V. Ferreira Impact Odorants of different young white wines from the Canary Islands. J. Agric. Land Food Chem. 2003, 51, 3419–3425. [Google Scholar] [CrossRef]
- Miettinen, S.-M. Instrumentally Measured Release and Human Perception of Aroma Compounds from Foods and Model Systems Differing in Fat Content. Ph.D Thesis, University of Helsinki, Helsinki, Finland, 2004. [Google Scholar]
- Thomidis, T.; Zioziou, E.; Koundouras, S.; Karagiannidis, C.; Navrozidis, I.; Nikolaou, N. Effects of nitrogen and irrigation on the quality of grapes and the susceptibility to Botrytis bunch rot. Sci. Hortic. 2016, 212, 60–68. [Google Scholar] [CrossRef]
- Tominaga, T.; Baltenweck-Guyot, R.; Peyrot des Gachons, C.; Dubourdieu, D. Contribution of volatile thiols to the aromas of white wines made from several Vitis vinifera grape varieties. Am. J. Enol. Vitic. 2000, 51, 178–181. [Google Scholar]
- Lang, C.P.; Merkt, N.; Klaiber, I.; Pfannstiel, J.; Zörb, C. Different forms of nitrogen application affect metabolite patterns in grapevine leaves and the sensory of wine. Plant Physiol. Biochem. 2019, 143, 308–319. [Google Scholar] [CrossRef]
- Braidot, E.; Zancani, M.; Petrussa, E.; Peresson, C.; Bertolini, A.; Patui, S.; Macrì, F.; Vianello, A. Transport and accumulation of flavonoids in grapevine (Vitis vinifera L.). Plant Signal. Behav. 2008, 3, 626–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A.; Moreno-Arribas, M.V. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henschke, P.A.; Jiranek, V. Yeasts-Metabolism of nitrogen compounds. In Wine Microbiology and Biotechnology; Fleet, G.H., Ed.; Harwood Academic: Chur, Switzerland, 1993; pp. 77–164. [Google Scholar]
- Blateyron, L.; Sablayrolles, J.M. Stuck and slow fermentations in enology: Statistical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate. J. Biosci. Bioeng. 2001, 91, 184–189. [Google Scholar] [CrossRef]
- Varela, C.; Pizarro, F.; Agosin, E. Biomass content governs fermentation rate in nitrogen deficient wine musts. Appl. Environ. Microbiol. 2004, 70, 3392–3400. [Google Scholar] [CrossRef] [Green Version]
- Ali, K.; Maltese, F.; Toepfer, R.; Choi, Y.H.; Verpoorte, R. Metabolic characterization of Palatinate German white wines according to sensory attributes, varieties, and vintages using NMR spectroscopy and multivariate data analyses. J. Biomol. NMR 2011, 49, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Peyrot des Gachons, C.; van Leeuwen, C.; Tominaga, T.; Soyer, J.P.; Gaudillère, J.P.; Dubourdieu, D. Influence of water and nitrogen deficit on fruit ripening and aroma potential of Vitis vinifera L. cv. Sauvignon Blanc in field conditions. J. Sci. Food Agric. 2005, 85, 73–85. [Google Scholar] [CrossRef]
- Kallithraka, S.; Salacha, M.I.; Tzourou, I. Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chem. 2009, 113, 500–505. [Google Scholar] [CrossRef]
- Salacha, I.M.; Kallithraka, S.; Tzourou, I. Browning of white wines: Correlation with antioxidant characteristics. total polyphenolic composition and flavanol content. Intern. J. Food Sci. Technol. 2008, 43, 1073–1077. [Google Scholar] [CrossRef]
- Keller, M. (Ed.) The Science of Grapevines: Anatomy and Physiology; Elsevier Inc.: Burlington, MA, USA; London, UK; San Diego, CA, USA, 2010; pp. 169–225. [Google Scholar] [CrossRef]
- Kennedy, J.A. Grape and wine phenolics. Observations and recent findings Cienc. Investig. Agrar. 2008, 35, 77–90. [Google Scholar] [CrossRef]
- Romanet, R.; Sarhane, Z.; Bahut, F.; Uhl, J.; Schmitt-Kopplin, P.; Nikolantonaki, M.; Gougeon, R.D. Exploring the chemical space of white wine antioxidant capacity: A combined DPPH. EPR and FT-ICR-MS study. Food Chem. 2021, 355, 129566. [Google Scholar] [CrossRef] [PubMed]
Treatment/ Fertilization | Control | DMPP | N | N + DMPP |
---|---|---|---|---|
Weight/ Berry (g) | 2.39 ± 0.17 c | 2.49 ± 0.09 bc | 2.65 ± 0.05 a | 2.52 ± 0.08 b |
TSS (oBrix) | 19.78 ± 0.83 | 20.38 ± 0.95 | 20.43 ± 0.54 | 19.81 ± 0.46 |
T.A. (g/L of Tart. Acid) | 5.31 ± 0.31 | 5.41 ± 0.49 | 5.23 ± 0.66 | 5.83 ± 0.35 |
pH | 3.38 ± 0.05 | 3.35 ± 0.04 | 3.42 ± 0.10 | 3.35 ± 0.08 |
Weight/Seed (mg) | 29.79 ± 1.12 c | 30.23 ± 0.85 c | 35.59 ± 1.71 a | 32.37 ± 2.14 b |
Organic Acids | ||||
Tartaric Acid (g/L) | 5.24 ± 0.28 | 5.32 ± 0.21 | 5.27 ± 0.29 | 5.37 ± 0.08 |
Malic Acid (g/L) | 0.84 ± 0.14 | 0.77 ± 0.05 | 0.93 ± 0.17 | 0.86 ± 0.10 |
Citric Acid (g/L) | 0.19 ± 0.03 | 0.20 ± 0.03 | 0.22 ± 0.02 | 0.21 ± 0.01 |
Sugars | ||||
Glucose (g/L) | 97.65 ± 1.51 | 96.79 ± 5.45 | 99.26 ± 3.21 | 94.97 ± 2.12 |
Fructose (g/L) | 109.88 ± 4.58 | 111.58 ± 6.61 | 113.04 ± 4.1 | 109.32 ± 2.39 |
Total Sugars (g/L) | 207.53 ± 8.24 | 208.37 ± 12.03 | 212.31 ± 7.31 | 204.29 ± 4.49 |
Treatment/ Fertilization | Control | DMPP | N | N + DMPP |
---|---|---|---|---|
NH4+ (mg/L) | 11.1 ± 2.9 b | 10.6 ± 6.1 b | 25.2 ± 2.7 a | 30.1 ± 7.2 a |
PAN (mg/L) | 58.7 ± 4.8 b | 52.9 ± 14.1 b | 81.1 ± 4.0 a | 80.0 ± 2.8 a |
YAN (mg/L) | 69.8 ± 2.3 b | 63.5 ± 19.0 b | 106.3 ± 3.1 a | 110.2 ± 7.7 a |
Treatment/ Fertilization | Control | DMPP | N | N + DMPP |
---|---|---|---|---|
Alcoholic Volume (v/v %) | 12.2 ± 0.2 | 12.1 ± 0.4 | 12.5 ± 0.2 | 12.1 ± 0.2 |
T.A. (g/L of Tart. Acid) | 4.22 ± 0.24 | 4.65 ± 0.34 | 4.32 ± 0.22 | 4.57 ± 0.30 |
pH | 3.11 ± 0.23 | 2.95 ± 0.09 | 3.05 ± 0.11 | 2.96 ± 0.04 |
Residual Sugar (g/L) | 0.09 ± 0.008 a | 0.09 ± 0.02 a | 0.03 ± 0.008 b | 0.03 ± 0.01 b |
Glycerol | 9.44 ± 1.10 | 9.60 ± 1.34 | 10.73 ± 1.34 | 10.36 ± 0.20 |
Organic Acids | ||||
Tartaric Acid (g/L) | 1.65 ± 0.40 ab | 1.65 ± 0.34 ab | 1.38 ± 0.1 b | 1.77 ± 0.20 a |
Malic Acid (g/L) | 0.85 ± 0.12 b | 0.84 ± 0.84 b | 1.09 ± 0.14 a | 0.97 ± 0.09 ab |
Citric Acid (g/L) | 0.72 ± 0.24 | 0.93 ± 0.06 | 0.84 ± 0.05 | 0.77 ± 0.09 |
Succinic Acid (g/L) | 0.80 ± 0.09 c | 1.10 ± 0.28 ab | 1.29 ± 0.16 a | 1.10 ± 0.30 ab |
Lactic Acid (g/L) | 0.11 ± 0.01 b | 0.14 ± 0.00 ab | 0.15 ± 0.01 a | 0.16 ± 0.01 a |
Acetic Acid(g/L) | 0.29 ± 0.03 a | 0.29 ± 0.06 a | 0.19 ± 0.02 b | 0.25 ± 0.05 ab |
Color and Phenolic parameters | ||||
420 nm | 0.12 ± 0.03 a | 0.10 ± 0.01 a | 0.12 ± 0.01 a | 0.10 ± 0.01 a |
Total Phenolic Index | 12.03 ± 0.90 a | 11.53 ± 1.52 ab | 11.5 ± 0.74 ab | 10.44 ± 1.14 b |
Folin (Gal. Ac. Mg/L) | 13.17 ± 0.13 a | 12.87 ± 0.17 ab | 12.71 ± 0.07 b | 12.68 ± 0.03 b |
K factor | 0.0077 ± 0.0002 b | 0.0075 ± 0.0001 b | 0.0080 ± 0.0005 ab | 0.0084 ± 0.0001 a |
Treatment/ Fertilization | Control | DMPP | N | N + DMPP |
---|---|---|---|---|
ALCOHOLS | ||||
2 methyl 1 propanol | 32.51 ± 6.43 b | 45.60 ± 10.43 a | 36.21 ± 7.38 b | 32.54 ± 6.16 |
isoamyl alcohol | 237.49 ± 29.80 b | 311.41 ± 32.27 a | 246.74 ± 59.81 b | 236.51 ± 42.77 b |
methionol | 0.26 ± 0.06 b | 0.30 ± 0.08 ab | 0.20 ± 0.05 b | 0.37 ± 0.11 a |
2 phenylethanol | 67.71 ± 6.51 ab | 78.99 ± 19.44 a | 61.68 ± 15.13 b | 60.35 ± 12.11 b |
Total Alcohols | 337.49 ± 10.05 b | 436.30 ± 20.01 a | 344.44 ± 18.65 b | 329.77 ± 7.97 b |
ETHYL ESTERS | ||||
ethyl octanoate | 3.64 ± 0.56 | 3.29 ± 0.60 | 3.43 ± 0.89 | 3.13 ± 0.76 |
ethyl hexanoate | 1.11 ± 0.14 a | 0.75 ± 0.18 b | 1.12 ± 0.24 a | 0.82 ± 0.14 b |
ethyl decanoate | 0.44 ± 0.07 b | 0.34 ± 0.05 bc | 0.67 ± 0.16 a | 0.21 ± 0.05 c |
ethyl butyrate | 0.22 ± 0.06 bc | 0.18 ± 0.06 c | 0.40 ± 0.07 a | 0.32 ± 0.05 ab |
ethyl isobutyrate | 0.024 ± 0.004 | 0.028 ± 0.006 | 0.023 ± 0.008 | 0.022 ± 0.002 |
ethyl isovalerate | 0.046 ± 0.002 b | 0.058 ± 0.011 a | 0.053 ± 0.006 a | 0.045 ± 0.009 b |
Total Ethyl Esters | 5.48 ± 0.24 a | 4.64 ± 0.17 b | 5.69 ± 0.22 a | 4.54 ± 0.20 b |
ACIDS | ||||
hexanoic acid | 2.14 ± 0.29 a | 0.55 ± 0.18 b | 1.72 ± 0.44 a | 1.72 ± 0.42 a |
isobutyric acid | 0.09 ± 0.009 | 0.10 ± 0.002 | 0.11 ± 0.02 | 0.11 ± 0.01 |
butyric acid | 0.58 ± 0.12 b | 0.61 ± 0.08 b | 0.91 ± 0.29 a | 0.63 ± 0.10 b |
isovaleric acid | 0.58 ± 0.13 b | 0.44 ± 0.11 b | 1.29 ± 0.42 a | 0.59 ± 0.11 b |
Total Acids | 3.39 ± 0.19 a | 1.70 ± 0.05 b | 4.03 ± 0.19 a | 3.05 ± 0.20 a |
ACETATES | ||||
isoamyl acetate | 4.58 ± 0.95 b | 3.64 ± 1.04 b | 7.10 ± 1.60 a | 4.77 ± 1.30 b |
2 phenyl ethyl acetate | 2.40 ± 0.60 a | 1.54 ± 0.33 c | 2.17 ± 0.32 a | 1.67 ± 0.41 bc |
hexyl acetate | 0.20 ± 0.05 ab | 0.25 ± 0.03 a | 0.18 ± 0.04 b | 0.17 ± 0.04 b |
Total Acetates | 7.18 ± 0.51 b | 5.43 ± 0.89 c | 9.45 ± 0.30 a | 6.61 ± 0.56 bc |
TERPENES | ||||
Linalool | 0.012 ± 0.001 a | 0.012 ± 0.001 ab | 0.010 ± 0.001 c | 0.010 ± 0.001 bc |
Geraniol | 0.152 ± 0.024 a | 0.121 ± 0.027 b | 0.125 ± 0.023 ab | 0.104 ± 0.008 b |
Total Terpenes | 0.164 ± 0.012 a | 0.133 ± 0.014 b | 0.135 ± 0.011 b | 0.114 ± 0.004 b |
Treatment/ | Sensory Descriptor | Reference | Odor Threshold (mg/L)h | OAV a | |||
---|---|---|---|---|---|---|---|
Fertilization | Control | DMPP | N | N + DMPP | |||
ALCOHOLS | |||||||
2 methyl 1 propanol | wine, solvent, bitter | [54] | 40 | 0.8 | 1.1 | 0.9 | 0.8 |
isoamyl alcohol | whiskey, malt, burnt | [55] | 1 | 7.9 | 10.4 | 8.2 | 7.9 |
methionol | sweet, potato | [54] | 1 | 0.3 | 0.3 | 0.2 | 0.4 |
2 phenylethanol | honey, spice, rose, lilac | [54] | 14 | 4.8 | 4.8 | 4.4 | 4.3 |
ETHYL ESTERS | |||||||
ethyl octanoate | fruit, fat | [54] | 0.005 | 728 | 658 | 686 | 626 |
ethyl hexanoate | apple peel, fruit | [54] | 0.014 | 79.3 | 53.6 | 80.0 | 58.6 |
ethyl decanoate | grape | [54] | 0.200 | 2.2 | 1.7 | 3.4 | 1.1 |
ethyl butyrate | apple | [54] | 0.02 | 11.0 | 9.0 | 20.0 | 16.0 |
ethyl isobutyrate | apple | [54] | 0.018 | 1.3 | 1.6 | 1.3 | 1.2 |
ethyl isovalerate | fruit | [54] | 0.03 | 1.5 | 1.9 | 1.8 | 1.5 |
ACIDS | |||||||
hexanoic acid | sweat | [54] | 0.42 | 5.1 | 1.3 | 4.1 | 4.1 |
isobutyric acid | rancid, butter, cheese | [54] | 8.1 | 0.011 | 0.012 | 0.014 | 0.014 |
butyric acid | rancid, cheese, sweat | [54] | 0.173 | 3.4 | 3.4 | 5.3 | 3.4 |
isovaleric acid | sweat, acid, rancid | [54] | 0.033 | 17.6 | 1.3 | 39.1 | 17.9 |
ACETATES | |||||||
isoamyl acetate | Banana | [54] | 0.03 | 152.7 | 121.3 | 236.7 | 159.0 |
2 phenyl ethyl acetate | rose, honey, tobacco | [55] | 0.25 | 9.6 | 6.2 | 8.7 | 6.7 |
hexyl acetate | fruit, herb | [56] | 1.5 | 0.1 | 0.2 | 0.1 | 0.1 |
TERPENES | |||||||
Linalool | flower, lavender | [54] | 0.025 | 0.5 | 0.5 | 0.4 | 0.4 |
Geraniol | rose, geranium | [57] | 0.036 | 4.2 | 3.4 | 3.5 | 2.9 |
Kruskal–Wallis Test p-Value | Post-Hoc Mann–Whitney–Wilcoxon Test | ||||
---|---|---|---|---|---|
Control | DMPP | N | N + DMPP | ||
Colour Intensity | 0.496 | ||||
Aroma Intensity | 0.0057 | ab | a | b | a |
White Flowers | 0.043 | ab | a | b | ab |
Tropical Fruits | 1.005 × 10−9 | a | b | c | b |
Citrus Fruits | 0.889 | ||||
Vegetal aroma | 1.45 × 10−9 | a | b | b | b |
Green Apple | 0.00015 | b | a | b | a |
Banana | 0.00015 | a | a | b | a |
Acidity | 0.619 | ||||
Aftertaste | 0.944 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miliordos, D.E.; Kanapitsas, A.; Lola, D.; Goulioti, E.; Kontoudakis, N.; Leventis, G.; Tsiknia, M.; Kotseridis, Y. Effect of Nitrogen Fertilization on Savvatiano (Vitis vinifera L.) Grape and Wine Composition. Beverages 2022, 8, 29. https://doi.org/10.3390/beverages8020029
Miliordos DE, Kanapitsas A, Lola D, Goulioti E, Kontoudakis N, Leventis G, Tsiknia M, Kotseridis Y. Effect of Nitrogen Fertilization on Savvatiano (Vitis vinifera L.) Grape and Wine Composition. Beverages. 2022; 8(2):29. https://doi.org/10.3390/beverages8020029
Chicago/Turabian StyleMiliordos, Dimitrios Evangelos, Alexandros Kanapitsas, Despina Lola, Elli Goulioti, Nikolaos Kontoudakis, Georgios Leventis, Myrto Tsiknia, and Yorgos Kotseridis. 2022. "Effect of Nitrogen Fertilization on Savvatiano (Vitis vinifera L.) Grape and Wine Composition" Beverages 8, no. 2: 29. https://doi.org/10.3390/beverages8020029
APA StyleMiliordos, D. E., Kanapitsas, A., Lola, D., Goulioti, E., Kontoudakis, N., Leventis, G., Tsiknia, M., & Kotseridis, Y. (2022). Effect of Nitrogen Fertilization on Savvatiano (Vitis vinifera L.) Grape and Wine Composition. Beverages, 8(2), 29. https://doi.org/10.3390/beverages8020029