CropsDisNet: An AI-Based Platform for Disease Detection and Advancing On-Farm Privacy Solutions
Abstract
:1. Introduction
2. Methodology
2.1. Data Preparation
2.2. CNN Architectures in the Proposed Experimental Setup
2.3. Integration of Differential Privacy in CropsDisNet: Implementation and Application
2.4. Visualizing Interpretability of CropsDisNet with Grad-CAM
3. Results
3.1. Performance Matrices of Engaged Models
3.2. Interpretation of CropsDisNet on the Dataset
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 2002, 418, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv 2015, arXiv:1511.08060. [Google Scholar]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Abid, S.Z.; Jahan, B.; Al Mamun, A.; Hossen, J.; Mazumder, S.H. Bangladeshi crops leaf disease detection using YOLOv8. Heliyon 2024, 10, e36694. [Google Scholar] [CrossRef]
- Finegold, C.; Ried, J.; Denby, K.; Gurr, S. Global burden of crop loss. Gates Open Res. 2019, 3, 1599. [Google Scholar] [CrossRef]
- Bourne, J.K., Jr. The End of Plenty: The Race to Feed a Crowded World; WW Norton & Company: New York, NY, USA, 2015. [Google Scholar]
- Ristaino, J.B.; Anderson, P.K.; Bebber, D.P.; Brauman, K.A.; Cunniffe, N.J.; Fedoroff, N.V.; Finegold, C.; Garrett, K.A.; Gilligan, C.A.; Jones, C.M.; et al. The persistent threat of emerging plant disease pandemics to global food security. Proc. Natl. Acad. Sci. USA 2021, 118, e2022239118. [Google Scholar] [CrossRef]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases—A field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef]
- Chakraborty, K.K.; Mukherjee, R.; Chakroborty, C.; Bora, K. Automated recognition of optical image based potato leaf blight diseases using deep learning. Physiol. Mol. Plant Pathol. 2022, 117, 101781. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, Y.; Meng, F.; Fan, C.; Zhang, M. Identification of maize leaf diseases using improved deep convolutional neural networks. IEEE Access 2018, 6, 30370–30377. [Google Scholar] [CrossRef]
- Narayanasamy, P. Detection of Fungal Pathogens in Plants. Microbial Plant Pathogens-Detection and Disease Diagnosis. Fungal Pathogens 2011, 1, 5–199. [Google Scholar] [CrossRef]
- Bauriegel, E.; Giebel, A.; Geyer, M.; Schmidt, U.; Herppich, W.B. Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput. Electron. Agric. 2011, 75, 304–312. [Google Scholar] [CrossRef]
- Gajjar, R.; Gajjar, N.; Thakor, V.J.; Patel, N.P.; Ruparelia, S. Real-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform. Vis. Comput. 2021, 38, 2923–2938. [Google Scholar] [CrossRef]
- Agarwal, M.; Bohat, V.K.; Ansari, M.D.; Sinha, A.; Gupta, S.K.; Garg, D. A convolution neural network based approach to detect the disease in corn crop. In Proceedings of the 2019 IEEE 9th International Conference on Advanced Computing (IACC), Tiruchirappalli, India, 13–14 December 2019; pp. 176–181. [Google Scholar]
- Hayit, T.; Erbay, H.; Varçın, F.; Hayit, F.; Akci, N. Determination of the severity level of yellow rust disease in wheat by using convolutional neural networks. J. Plant Pathol. 2021, 103, 923–934. [Google Scholar] [CrossRef]
- Rozaqi, A.J.; Sunyoto, A. Identification of disease in potato leaves using Convolutional Neural Network (CNN) algorithm. In Proceedings of the 2020 3rd International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 24–25 November 2020; pp. 72–76. [Google Scholar]
- Ennadifi, E.; Laraba, S.; Vincke, D.; Mercatoris, B.; Gosselin, B. Wheat diseases classification and localization using convolutional neural networks and gradcam visualization. In Proceedings of the 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 9–11 June 2020; pp. 1–5. [Google Scholar]
- Hazrati, M.; Dara, R.; Kaur, J. On-Farm Data Security: Practical Recommendations for Securing Farm Data. Front. Sustain. Food Syst. 2022, 6, 884187. [Google Scholar] [CrossRef]
- Moin, N. New Bangladeshi Crop Disease Dataset. Available online: https://www.kaggle.com/datasets/nafishamoin/new-bangladeshi-crop-disease (accessed on 3 March 2024).
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- John, B. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. Advances in Neural Information Processing Systems 2 (NIPS 1989). In Advances in Neural Information Processing Systems; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1989; pp. 211–217. [Google Scholar]
- Dwork, C.; Lei, J. Differential privacy and robust statistics. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, New York, NY, USA, 31 May 2009; pp. 371–380. [Google Scholar]
- Dwork, C.; Kenthapadi, K.; McSherry, F.; Mironov, I.; Naor, M. Our data, ourselves: Privacy via distributed noise generation. in Advances in Cryptology-EUROCRYPT 2006. In Proceedings of the 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, 28 May–1 June 2006; Proceedings 25. Springer: Berlin/Heidelberg, Germany, 2006; pp. 486–503. [Google Scholar]
- Dwork, C.; McSherry, F.; Nissim, K.; Smith, A. Calibrating noise to sensitivity in private data analysis. In Proceedings of theTheory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, 4–7 March 2006; Proceedings 3. Springer: Berlin/Heidelberg, Germany, 2006; pp. 265–284. [Google Scholar]
- Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, New York, NY, USA, 24–28 October 2016; pp. 308–318. [Google Scholar]
- Bhavani, S.; Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Randhawa, M.S. Wheat rusts: Current status, prospects of genetic control and integrated approaches to enhance resistance durability. In Wheat Improvement: Food Security in a Changing Climate; Springer International Publishing: Cham, Switzerland, 2022; pp. 125–141. [Google Scholar]
- Huerta-Espino, J.; Singh, R.; Crespo-Herrera, L.A.; Villaseñor-Mir, H.E.; Rodriguez-Garcia, M.F.; Dreisigacker, S.; Barcenas-Santana, D.; Lagudah, E. Adult plant slow rusting genes confer high levels of resistance to rusts in bread wheat cultivars from mexico. Front. Plant Sci. 2020, 11, 824. [Google Scholar] [CrossRef]
- Liu, X.; Xie, L.; Wang, Y.; Zou, J.; Xiong, J.; Ying, Z.; Vasilakos, A.V. Privacy and Security Issues in Deep Learning: A Survey. IEEE Access 2021, 9, 4566–4593. [Google Scholar] [CrossRef]
- Talha, Z.M.; Khan, M.A.; El-Sayed, H. Application of differential privacy approach in healthcare data–a case study. In Proceedings of the 2020 14th International Conference on Innovations in Information Technology (IIT), Al Ain, United Arab Emirates, 17–18 November 2020; pp. 2325–5498. [Google Scholar]
- Davidow, D.M.; Manevich, Y.; Toch, E. Privacy-Preserving Transactions with Verifiable Local Differential Privacy. In Proceedings of the 5th Conference on Advances in Financial Technologies (AFT 2023), Princeton, NJ, USA, 23–25 October 2023. [Google Scholar]
- Jiang, H.; Pei, J.; Yu, D.; Yu, J.; Gong, B.; Cheng, X. Applications of differential privacy in social network analysis: A survey. IEEE Trans. Knowl. Data Eng. 2021, 35, 108–127. [Google Scholar] [CrossRef]
- Guo, T.; Luo, J.; Dong, K.; Yang, M. Differentially private graph-link analysis based social recommendation. Inf. Sci. 2018, 463–464, 214–226. [Google Scholar] [CrossRef]
- Panwar, H.; Gupta, P.; Siddiqui, M.K.; Morales-Menendez, R.; Bhardwaj, P.; Singh, V. A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images. Chaos Solitons Fractals 2020, 140, 110190. [Google Scholar] [CrossRef]
- Jahmunah, V.; Ng, E.Y.; Tan, R.S.; Oh, S.L.; Acharya, U.R. Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals. Comput. Biol. Med. 2022, 146, 105550. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, J.S.; Lee, H.S.; Yoo, S.H.; Oh, K.J. Combining CNN and Grad-CAM for profitability and explainability of investment strategy: Application to the KOSPI 200 futures. Expert Syst. Appl. 2023, 225, 120086. [Google Scholar] [CrossRef]
- Kinger, S.; Kulkarni, V. Explainable ai for deep learning based disease detection. In Proceedings of the 2021 Thirteenth International Conference on Contemporary Computing (IC3-2021), New York, NY, USA, 5–7 August 2021; pp. 209–216. [Google Scholar]
- Nirgude, V.; Rathi, S. Improving the accuracy of real field pomegranate fruit diseases detection and visualisation using convolution neural networks and grad-CAM. Int. J. Data Anal. Tech. Strat. 2023, 15, 57–75. [Google Scholar] [CrossRef]
Crops | Dataset Details | Approaches | Accuracy (%) | Reference |
---|---|---|---|---|
Potato | PlantVillage Dataset [2] | Fine-tuned VGG 16 | 97.9 | [9] |
Maize | 500 images from PlantVillage dataset and Google websites (including different periods of occurrence of maize leaf diseases) | GoogleNet | 98.9 | [10] |
Cifar10 | 98.8 | |||
Corn Apple Tomato Potato | PlantVillage Dataset [2] (comprising 21,978 images, four types of crops—corn, apple, tomato, and potato) along with manual image collection |
| 96.9 | [13] |
Corn | PlantVillage Dataset |
| 94.0 | [14] |
Wheat | Yellow-Rust-19, consisted of 15,000 images |
| 91.0 | [15] |
Potato | 1125 ges from PlantVillage Datatset |
| 97.0 | [16] |
Wheat | Wheat-based dataset consisting of 1163 images collected by WARC (Walloon Agricultural Research Center) |
| 93.5 | [17] |
Crop Name | Disease | Number of Images | Repository |
---|---|---|---|
Corn | Common Rust | 1192 | Kaggle (New Bangladeshi Crop Disease) [19] |
Gray Leaf Spot | 513 | ||
Healthy | 1162 | ||
Northern Leaf Blight | 985 | ||
Potato | Early Blight | 1000 | |
Healthy | 152 | ||
Late Blight | 1000 | ||
Wheat | Brown Rust | 902 | |
Healthy | 1116 | ||
Yellow Rust | 924 |
Models | Optimizer | Base Learning Rate | Momentum | Learning Decay Rate | Train Batch Size |
---|---|---|---|---|---|
VGG-16 | SGD | 1e−4 | 0.9 | 1e−6 | 16 |
Inception v3 | SGD | 1e−4 | 0.9 | 1e−6 | 16 |
Inception_Resnet-V2 | SGD | 1e−4 | 0.9 | 1e−6 | 16 |
CropsDisNet | Differentially Private Gradient Descent | 1e−4 | 0.9 | 1e−6 | 16 |
Layer | Input | Operation | Parameter Size | Strides | Output |
---|---|---|---|---|---|
1 | 224 × 224 × 3 | Conv2D + Relu | 64 × 3 × 3 | 1 | 222 × 222 × 64 |
2 | 222 × 222 × 64 | Conv2D + Relu | 64 × 3 × 3 | 1 | 220 × 220 × 64 |
3 | 220 × 220 × 64 | Conv2D + Relu | 64 × 3 × 3 | 1 | 218 × 218 × 64 |
4 | 218 × 218 × 64 | Maxpool2D | 2 × 2 | 2 | 109 × 109 × 64 |
5 | 109 × 109 × 64 | Dropout | 0.3 | - | 109 × 109 × 64 |
6 | 109 × 109 × 64 | Conv2D + Relu | 128 × 3 × 3 | 1 | 107 × 107 × 128 |
7 | 107 × 107 × 128 | Conv2D + Relu | 128 × 3 × 3 | 1 | 105 × 105 × 128 |
8 | 105 × 105 × 128 | Conv2D + Relu | 128 × 3 × 3 | 1 | 103 × 103 × 128 |
9 | 103 × 103 × 128 | Maxpool2D | 2 × 2 | 2 | 51 × 51 × 128 |
10 | 51 × 51 × 128 | Dropout | 0.3 | - | 51 × 51 × 128 |
11 | 51 × 51 × 128 | Conv2D + Relu | 256 × 3 × 3 | 1 | 49 × 49 × 256 |
12 | 49 × 49 × 256 | Conv2D + Relu | 256 × 3 × 3 | 1 | 47 × 47 × 256 |
13 | 47 × 47 × 256 | Conv2D + Relu | 256 × 3 × 3 | 1 | 45 × 45 × 256 |
14 | 45 × 45 × 256 | Maxpool2D | 2 × 2 | 2 | 22 × 22 × 256 |
15 | 22 × 22 × 256 | Dropout | 0.3 | - | 22 × 22 × 256 |
16 | 22 × 22 × 256 | flatten | 123,904 | - | 123,904 × 1 |
17 | 123,904 × 1 | Dense + Relu | 4096 | - | 4096 × 1 |
18 | 4096 × 1 | Dropout | 0.5 | - | 4096 × 1 |
19 | 4096 × 1 | Dense + Relu | 4096 | - | 4096 × 1 |
20 | 4096 × 1 | Dropout | 0.5 | - | 4096 × 1 |
21 | 4096 × 1 | Dense + Softmax | 3 | - | 3 × 1 |
Differential Private Hyper-Parameter | Value |
---|---|
L2_norm_clip | 1.5 |
Noise_multiplier | 5 |
Num_microbatches | 250 |
Learning rate | 0.0009 |
Part of the Dataset | Engaged Deep Learning Models | Class of the Diseases | Performance Matrices | ||||
---|---|---|---|---|---|---|---|
Precision | Recall | F1-Score | Accuracy | AUC | |||
Corn Disease | VGG-16 | Common Rust | 0.99 | 1.00 | 1.00 | 0.97 | 0.9968 |
Gray Leaf Spot | 0.86 | 0.94 | 0.90 | ||||
Healthy | 1.00 | 0.98 | 0.99 | ||||
Northern Leaf Blight | 0.97 | 0.93 | 0.95 | ||||
Inception_ResNetV2 | Common Rust | 1.00 | 1.00 | 1.00 | 0.97 | 0.9969 | |
Gray Leaf Spot | 0.90 | 0.85 | 0.87 | ||||
Healthy | 1.00 | 1.00 | 1.00 | ||||
Northern Leaf Blight | 0.92 | 0.95 | 0.94 | ||||
InceptionV3 | Common Rust | 0.99 | 1.00 | 1.00 | 0.95 | 0.9939 | |
Gray Leaf Spot | 0.84 | 0.83 | 0.83 | ||||
Healthy | 0.97 | 1.00 | 0.99 | ||||
Northern Leaf Blight | 0.93 | 0.90 | 0.91 | ||||
CropsDisNet | Common Rust | 1.00 | 1.00 | 1.00 | 0.95 | 0.9945 | |
Gray Leaf Spot | 0.77 | 0.92 | 0.84 | ||||
Healthy | 1.00 | 1.00 | 1.00 | ||||
Northern Leaf Blight | 0.96 | 0.86 | 0.90 | ||||
Potato Disease | VGG-16 | Early Blight | 1.00 | 0.99 | 0.99 | 0.98 | 0.9992 |
Healthy | 0.87 | 0.87 | 0.87 | ||||
Late Blight | 0.97 | 0.98 | 0.98 | ||||
Inception_ResNetV2 | Early Blight | 0.99 | 0.99 | 0.99 | 0.98 | 0.9993 | |
Healthy | 1.00 | 0.87 | 0.93 | ||||
Late Blight | 0.97 | 0.99 | 0.98 | ||||
InceptionV3 | Early Blight | 0.93 | 0.98 | 0.96 | 0.92 | 0.9902 | |
Healthy | 0.69 | 0.73 | 0.71 | ||||
Late Blight | 0.95 | 0.89 | 0.92 | ||||
CropsDisNet | Early Blight | 0.99 | 0.98 | 0.98 | 0.986 | 0.9983 | |
Healthy | 0.93 | 0.87 | 0.90 | ||||
Late Blight | 0.96 | 0.98 | 0.97 | ||||
Wheat Disease | VGG-16 | Brown Rust | 0.95 | 1.00 | 0.97 | 0.98 | 0.9991 |
Healthy | 1.00 | 1.00 | 1.00 | ||||
Yellow Rust | 1.00 | 0.95 | 0.97 | ||||
Inception_ResNetV2 | Brown Rust | 0.94 | 0.99 | 0.96 | 0.97 | 0.9990 | |
Healthy | 0.99 | 0.98 | 0.99 | ||||
Yellow Rust | 0.99 | 0.95 | 0.97 | ||||
InceptionV3 | Brown Rust | 0.86 | 0.99 | 0.92 | 0.94 | 0.9959 | |
Healthy | 0.98 | 0.95 | 0.97 | ||||
Yellow Rust | 1.00 | 0.88 | 0.94 | ||||
CropsDisNet | Brown Rust | 0.92 | 1.00 | 0.96 | 0.97 | 0.9984 | |
Healthy | 0.98 | 1.00 | 0.99 | ||||
Yellow Rust | 1.00 | 0.89 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Tamkin, S.; Ara, J.; Alam, M.; Bhuiyan, H. CropsDisNet: An AI-Based Platform for Disease Detection and Advancing On-Farm Privacy Solutions. Data 2025, 10, 25. https://doi.org/10.3390/data10020025
Khan MB, Tamkin S, Ara J, Alam M, Bhuiyan H. CropsDisNet: An AI-Based Platform for Disease Detection and Advancing On-Farm Privacy Solutions. Data. 2025; 10(2):25. https://doi.org/10.3390/data10020025
Chicago/Turabian StyleKhan, Mohammad Badhruddouza, Salwa Tamkin, Jinat Ara, Mobashwer Alam, and Hanif Bhuiyan. 2025. "CropsDisNet: An AI-Based Platform for Disease Detection and Advancing On-Farm Privacy Solutions" Data 10, no. 2: 25. https://doi.org/10.3390/data10020025
APA StyleKhan, M. B., Tamkin, S., Ara, J., Alam, M., & Bhuiyan, H. (2025). CropsDisNet: An AI-Based Platform for Disease Detection and Advancing On-Farm Privacy Solutions. Data, 10(2), 25. https://doi.org/10.3390/data10020025