Dataset for Scheduling Strategies for Microgrids Coupled with Natural Gas Networks
Abstract
:1. Summary
2. Data Description
3. Methods
4. User Notes
Limitations and Recommendations
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RES | Renewable Energy Source |
DER | Distributed Energy Source |
FC | Fuel cell |
MPPT | Maximum Power Point Tracking |
PV | Photovoltaic |
MATLAB | MATrix LABoratory software developed by MathWorks |
References
- Qian, A.; Ran, H. Key technologies and challenges for multi-energy complementarity and optimization of integrated energy system. Autom. Electr. Power Syst. 2018, 42, 2–10. [Google Scholar]
- Yousif, M.; Ai, Q.; Wattoo, W.A.; Jiang, Z.; Hao, R.; Gao, Y. Least cost combinations of solar power, wind power, and energy storage system for powering large-scale grid. J. Power Sources 2019, 412, 710–716. [Google Scholar] [CrossRef]
- Yousif, M.; Ai, Q.; Gao, Y.; Wattoo, W.A.; Jiang, Z.; Hao, R. Application of Particle Swarm Optimization to a Scheduling Strategy for Microgrids Coupled with Natural Gas Networks. Energies 2018, 11, 3499. [Google Scholar] [CrossRef]
- Yousif, M.; Ai, Q.; Gao, Y.; Wattoo, W.A.; Jiang, Z.; Hao, R. An Optimal Dispatch Strategy for Distributed Micro-Grids. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–5. [Google Scholar]
- Kou, Y.N.; Zheng, J.H.; Li, Z.; Wu, Q.H. Many-objective optimization for coordinated operation of integrated electricity and gas network. J. Mod. Power Syst. Clean Energy 2017, 5, 350–363. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Nik, V.M.; Mauree, D.; Scartezzini, J.L. Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid. Appl. Energy 2017, 190, 232–248. [Google Scholar] [CrossRef]
- Jing, Z.X.; Jiang, X.S.; Wu, Q.H.; Tang, W.H.; Hua, B. Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system. Energy 2014, 73, 399–415. [Google Scholar] [CrossRef]
- An, S.; Li, Q.; Gedra, T.W. Natural gas and electricity optimal power flow. In Proceedings of the 2003 IEEE PES Transmission and Distribution Conference and Exposition (IEEE Cat. No.03CH37495), Dallas, TX, USA, 7–12 September 2003; Volume 1, pp. 138–143. [Google Scholar] [CrossRef]
- Martinez-Mares, A.; Fuerte-Esquivel, C.R. A unified gas and power flow analysis in natural gas and electricity coupled networks. IEEE Trans. Power Syst. 2012, 27, 2156–2166. [Google Scholar] [CrossRef]
- Barbir, F.; Gómez, T. Efficiency and economics of proton exchange membrane (PEM) fuels cells. Int. J. Hydrogen Energy 1996, 21, 891–901. [Google Scholar] [CrossRef]
- Abido, M.A. Environmental/Economic Power Dispatch Using Multiobjective Evolutionary Algorithms. IEEE Trans. Power Syst. 2003, 18, 1529–1537. [Google Scholar] [CrossRef]
- Campanari, S.; Macchi, E. Technical and Tariff Scenarios Effect on Microturbine Trigenerative Applications. In Proceedings of the ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference, Atlanta, GA, USA, 16–19 June 2003; pp. 747–757. [Google Scholar]
- Krishnamurthy, S.; Tzoneva, R. Impact of price penalty factors on the solution of the combined economic emission dispatch problem using cubic criterion functions. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar]
- Kefayat, M.; Lashkar Ara, A.; Nabavi Niaki, S.A. A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources. Energy Convers. Manag. 2015, 92, 149–161. [Google Scholar] [CrossRef]
File Name | Description |
---|---|
Basic_input.m | Basic input about metrological and price info |
Bat.m | Battery’s function |
Cost_calculator.m | Microgrids’ one-day cost calculator |
Dispatch_all.mat | Hourly power flow from all microgrid players |
FuelCell.m | Fuel cell output power and cost calculation |
Gas_dispatch.m | Natural gas dispatch for microturbines |
max60.m | Current generated by solar PV |
micro_gas_turbine.m | Micro gas turbine power and cost calculation |
MicroGrid_Dispatch.m | The main function for power dispatch |
PandO.m | Solar PV maximum power point tracking |
Pwt.m | Power generation calculation by wind turbine |
Micro_grid_parameter.m | Microgrid’s DER and load parameters |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousif, M.; Ai, Q.; Gao, Y.; Wattoo, W.A.; Hao, R.; Jiang, Z. Dataset for Scheduling Strategies for Microgrids Coupled with Natural Gas Networks. Data 2019, 4, 24. https://doi.org/10.3390/data4010024
Yousif M, Ai Q, Gao Y, Wattoo WA, Hao R, Jiang Z. Dataset for Scheduling Strategies for Microgrids Coupled with Natural Gas Networks. Data. 2019; 4(1):24. https://doi.org/10.3390/data4010024
Chicago/Turabian StyleYousif, Muhammad, Qian Ai, Yang Gao, Waqas Ahmad Wattoo, Ran Hao, and Ziqing Jiang. 2019. "Dataset for Scheduling Strategies for Microgrids Coupled with Natural Gas Networks" Data 4, no. 1: 24. https://doi.org/10.3390/data4010024
APA StyleYousif, M., Ai, Q., Gao, Y., Wattoo, W. A., Hao, R., & Jiang, Z. (2019). Dataset for Scheduling Strategies for Microgrids Coupled with Natural Gas Networks. Data, 4(1), 24. https://doi.org/10.3390/data4010024