Large-Scale Dataset for the Analysis of Outdoor-to-Indoor Propagation for 5G Mid-Band Operational Networks
Abstract
:1. Introduction
2. Measurement System and Data Collection Methodology
2.1. Measurement System
2.2. Data Collection Methodology
3. Data Description
- ID represents the sequence number of PDPs.
- Longitude and Latitude shows the GPS coordinates of the current measurement location.
- PCI refers to the Physical Cell Identity. PCI is a cell identifier used to distinguish the different cells of a 5G system. Cellular BSs are most often referred to in terms of their PCI for their identification.
- SSB index (SSB Idx) stands for the synchronization signal block (SSB) index to indicate which SSB was transmitted from the BS. The 5G NR cells may transmit up to 8 SSBs.
- SS-Ref-MHz represents the synchronization signal’s reference frequency in MHz, which is also called the channel frequency.
- Power-dBm represents the power of each multipath component in a PDP, which is calculated based on the synchronization signals (SS). Its unit is dBm.
- P-total-dBm is the average in-band power corresponding to a PDP in dBm, which is calculated based on the SS.
- Delay-us denotes the absolute propagation time of each multipath component within a PDP. The Delay-us column contains the absolute propagation time values in microseconds (s). The relative delay of each multipath component corresponding to a PDP sample can be calculated by considering the delay of the first multipath component equal to zero.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 3GPP TR 21.915; Digital Cellular Telecommunications System (Phase 2+) (GSM). Universal Mobile Telecommunications System (UMTS); LTE; 5G, Version 15.0.0 Release 15. 3GPP: Sophia Antipolis Cedex, France, 2019.
- 3GPP TR 21.916; Digital Cellular Telecommunications System (Phase 2+) (GSM). Universal Mobile Telecommunications System (UMTS); LTE; 5G, Version 16.0.1 Release 16. 3GPP: Sophia Antipolis Cedex, France, 2021.
- Zhang, S. An overview of network slicing for 5G. IEEE Wirel. Commun. 2019, 26, 111–117. [Google Scholar] [CrossRef]
- Adegoke, E.I.; Kampert, E.; Higgins, M.D. Channel Modeling and Over-the-Air Signal Quality at 3.5 GHz for 5G New Radio. IEEE Access 2021, 9, 11183–11193. [Google Scholar] [CrossRef]
- Cero, E.; Baraković Husić, J.; Baraković, S. IoT’s tiny steps towards 5G: Telco’s perspective. Symmetry 2017, 9, 213. [Google Scholar] [CrossRef]
- Chiu, W.; Su, C.; Fan, C.Y.; Chen, C.M.; Yeh, K.H. Authentication with what you see and remember in the internet of things. Symmetry 2018, 10, 537. [Google Scholar] [CrossRef] [Green Version]
- Li, S.D.; Liu, Y.J.; Lin, L.K.; Sheng, Z.; Sun, X.C.; Chen, Z.P.; Zhang, X.J. Channel measurements and modeling at 6 GHz in the tunnel environments for 5G wireless systems. Int. J. Antennas Propag. 2017, 2017, 1513038. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Tian, L.; Zheng, Y.; Zhang, J. Propagation characteristics of indoor radio channel from 3.5 GHz to 28 GHz. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016; pp. 1–5. [Google Scholar]
- Adegoke, E.I.; Edwards, R.; Whittow, W.G.; Bindel, A. Characterizing the indoor industrial channel at 3.5 GHz for 5G. In Proceedings of the 2019 Wireless Days (WD), Manchester, UK, 24–26 April 2019; pp. 1–4. [Google Scholar]
- Kaya, A.O.; Calin, D.; Viswanathan, H. 28 GHz and 3.5 GHz wireless channels: Fading, delay and angular dispersion. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–7. [Google Scholar]
- Halvarsson, B.; Simonsson, A.; Elgcrona, A.; Chana, R.; Machado, P.; Asplund, H. 5G NR testbed 3.5 GHz coverage results. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar]
- He, D.; Ai, B.; Guan, K.; Wang, L.; Zhong, Z.; Kürner, T. The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A tutorial. IEEE Commun. Surv. Tutor. 2018, 21, 10–27. [Google Scholar] [CrossRef]
- Siriwardhana, Y.; Gür, G.; Ylianttila, M.; Liyanage, M. The role of 5G for digital healthcare against COVID-19 pandemic: Opportunities and challenges. ICT Express 2020, 7, 244–252. [Google Scholar] [CrossRef]
- El Boudani, B.; Kanaris, L.; Kokkinis, A.; Kyriacou, M.; Chrysoulas, C.; Stavrou, S.; Dagiuklas, T. Implementing deep learning techniques in 5G IoT networks for 3D indoor positioning: DELTA (DeEp Learning-Based Co-operaTive Architecture). Sensors 2020, 20, 5495. [Google Scholar] [CrossRef]
- Attaran, M. The impact of 5G on the evolution of intelligent automation and industry digitization. J. Ambient. Intell. Humaniz. Comput. 2021, 1–17. [Google Scholar] [CrossRef]
- Karrenbauer, M.; Ludwig, S.; Buhr, H.; Klessig, H.; Bernardy, A.; Wu, H.; Pallasch, C.; Fellan, A.; Hoffmann, N.; Seelmann, V.; et al. Future industrial networking: From use cases to wireless technologies to a flexible system architecture. At-Automatisierungstechnik 2019, 67, 526–544. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Pan, S.; Zhang, R.; Li, C.; Zhai, D. Space-Time Domain Power Spectrum Measurement and Modeling of UMi O2I Channel at 3.5 GHz. In Proceedings of the 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 23–25 October 2019; pp. 1–6. [Google Scholar]
- Zhang, R.; Xu, H.; Du, X.; Zhou, D.; Guizani, M. Dual-polarized spatial–temporal propagation measurement and modeling in UMa O2I scenario at 3.5 GHz. IEEE Access 2019, 7, 122988–123001. [Google Scholar] [CrossRef]
- Diago-Mosquera, M.E.; Aragón-Zavala, A.; Rodriguez, M. Testing a 5g communication system: Kriging-aided o2i path loss modeling based on 3.5 ghz measurement analysis. Sensors 2021, 21, 6716. [Google Scholar] [CrossRef]
- Valcarce, A.; Zhang, J. Empirical indoor-to-outdoor propagation model for residential areas at 0.9–3.5 GHz. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 682–685. [Google Scholar] [CrossRef]
- Du, D.; Zhang, J.; Pan, C.; Zhang, C. Cluster characteristics of wideband 3D MIMO channels in outdoor-to-indoor scenario at 3.5 GHz. In Proceedings of the 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, Korea, 18–21 May 2014; pp. 1–6. [Google Scholar]
- Li, C.; Zhao, Z.; Tian, L.; Zhang, J.; Zheng, Z.; Kang, J.; Guan, H.; Zheng, Y.; Sun, H. Height gain modeling of outdoor-to-indoor path loss in metropolitan small cell based on measurements at 3.5 GHz. In Proceedings of the 2014 International Symposium on Wireless Personal Multimedia Communications (WPMC), Sydney, Australia, 7–10 September 2014; pp. 552–556. [Google Scholar]
- Sheikh, M.U.; Mela, L.; Saba, N.; Ruttik, K.; Jäntti, R. Outdoor to Indoor Path Loss Measurement at 1.8 GHz, 3.5 GHz, 6.5 GHz, and 26 GHz Commercial Frequency Bands. In Proceedings of the 2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC), Okayama, Japan, 14–16 December 2021; pp. 1–5. [Google Scholar]
- Samad, M.A.; Diba, F.D.; Kim, Y.J.; Choi, D.Y. Results of Large-Scale Propagation Models in Campus Corridor at 3.7 and 28 GHz. Sensors 2021, 21, 7747. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhao, J.; Li, C. Outdoor-to-Indoor channel measurement and coverage analysis for 5G Typical Spectrums. Int. J. Antennas Propag. 2019, 2019, 3981678. [Google Scholar] [CrossRef] [Green Version]
- Diakhate, C.A.; Conrat, J.M.; Cousin, J.C.; Sibille, A. Millimeter-wave outdoor-to-indoor channel measurements at 3, 10, 17 and 60 GHz. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 1798–1802. [Google Scholar]
- Yu, Y.; Zhang, J.; Shafi, M.; Zhang, M.; Mirza, J. Statistical characteristics of measured 3-dimensional MIMO channel for outdoor-to-indoor scenario in China and New Zealand. Chin. J. Eng. 2016, 2016, 27. [Google Scholar] [CrossRef] [Green Version]
- Debaenst, W.; Feys, A.; Cuiñas, I.; Garcia Sanchez, M.; Verhaevert, J. RMS delay spread vs. coherence bandwidth from 5G indoor radio channel measurements at 3.5 GHz band. Sensors 2020, 20, 750. [Google Scholar] [CrossRef] [Green Version]
- Pérez, J.R.; Torres, R.P.; Rubio, L.; Basterrechea, J.; Domingo, M.; Peñarrocha, V.M.R.; Reig, J. Empirical characterization of the indoor radio channel for array antenna systems in the 3 to 4 GHz frequency band. IEEE Access 2019, 7, 94725–94736. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, J. Propagation characteristics in indoor office scenario at 3.5 GHz. In Proceedings of the 2013 8th International Conference on Communications and Networking in China (CHINACOM), Guilin, China, 14–16 August 2013; pp. 332–336. [Google Scholar]
- Adegoke, E.I.; Kampert, E.; Higgins, M.D. Empirical indoor path loss models at 3.5 GHz for 5G communications network planning. In Proceedings of the 2020 International Conference on UK-China Emerging Technologies (UCET), Glasgow, UK, 20–21 August 2020; pp. 1–4. [Google Scholar]
- He, R.; Yang, M.; Xiong, L.; Dong, H.; Guan, K.; He, D.; Zhang, B.; Fei, D.; Ai, B.; Zhong, Z.; et al. Channel measurements and modeling for 5G communication systems at 3.5 GHz band. In Proceedings of the 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), Seoul, Korea, 21–25 August 2016; pp. 1855–1858. [Google Scholar]
- Lai, Z.; Bessis, N.; de la Roche, G.; Kuonen, P.; Zhang, J.; Clapworthy, G. The characterisation of human body influence on indoor 3.5 GHz path loss measurement. In Proceedings of the 2010 IEEE Wireless Communication and Networking Conference Workshops, Sydney, Australia, 18 April 2010; pp. 1–6. [Google Scholar]
- Jiang, T.; Zhang, J.; Shafi, M.; Tian, L.; Tang, P. The comparative study of sv model between 3.5 and 28 GHz in indoor and outdoor scenarios. IEEE Trans. Veh. Technol. 2019, 69, 2351–2364. [Google Scholar] [CrossRef]
- Al-Saman, A.; Mohamed, M.; Cheffena, M. Radio propagation measurements in the indoor stairwell environment at 3.5 and 28 GHz for 5G wireless networks. Int. J. Antennas Propag. 2020, 2020, 6634050. [Google Scholar] [CrossRef]
- Al-Samman, A.M.; Al-Hadhrami, T.; Daho, A.; Hindia, M.; Azmi, M.H.; Dimyati, K.; Alazab, M. Comparative study of indoor propagation model below and above 6 GHz for 5G wireless networks. Electronics 2019, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Rohde&Schwarz. R&S®TSMx Drive and Walk Test Scanner. Available online: https://www.rohde-schwarz.com/products/test-and-measurement/network-data-collection/rs-tsmx-drive-and-walk-test-scanner_63493-526400.html (accessed on 4 February 2022).
- Rohde&Schwarz. R&S®Romes4 Drive Test Software. Available online: https://www.rohde-schwarz.com/products/test-and-measurement/network-data-collection/rs-romes4-drive-test-software_63493-8650.html (accessed on 4 February 2022).
- Ali, U.; Caso, G.; De Nardis, L.; Kousias, K.; Rajiullah, M.; Alay, Ö.; Brunstrom, A.; Di Benedetto, M.G. Data-driven analysis of outdoor-to-indoor propagation for 5G mid band operational networks. Sensors, 2022; Submitted and currently under review. [Google Scholar]
Location ID | No. of Campaigns | PCI | No. of PDPs for Op1 | No. of PDPs for Op2 |
---|---|---|---|---|
1 | 8 | 174 | 4143 | N/A |
8 | 175 | 3809 | N/A | |
8 | 176 | 4156 | N/A | |
8 | 177 | 2675 | N/A | |
8 | 179 | 4329 | N/A | |
8 | 302 | 2133 | N/A | |
8 | 261 | N/A | 4194 | |
8 | 362 | N/A | 2441 | |
2 | 1 | 148 | 175 | N/A |
1 | 174 | 230 | N/A | |
1 | 176 | 241 | N/A | |
1 | 179 | 244 | N/A | |
1 | 282 | 236 | N/A | |
1 | 156 | N/A | 239 | |
1 | 261 | N/A | 259 | |
1 | 362 | N/A | 246 | |
3 | 1 | 176 | 115 | N/A |
4 | 1 | 176 | 89 | N/A |
1 | 282 | 189 | N/A | |
1 | 261 | N/A | 191 | |
5 | 1 | 261 | N/A | 294 |
6 | 4 | 261 | N/A | 3158 |
7 | 1 | 261 | N/A | 291 |
8 | 1 | 176 | 259 | N/A |
1 | 282 | 267 | N/A | |
1 | 261 | N/A | 266 |
ID | Timestamp | Longitude | Latitude | PCI | SSB_Idx | Power__dBm | P_total__dBm | Delay__us |
---|---|---|---|---|---|---|---|---|
1 | 12:00:25 AM | 12.494398 | 41.893274 | 174 | 0 | −119.55 | −112.37 | 8494.06 |
1 | 12:00:25 AM | 12.494398 | 41.893274 | 174 | 0 | −136.19 | −112.37 | 8494.33 |
1 | 12:00:25 AM | 12.494398 | 41.893274 | 174 | 0 | −126.01 | −112.37 | 8495.49 |
2 | 12:00:33 AM | 12.49442 | 41.893248 | 174 | 0 | −118.83 | −114.26 | 8494.03 |
2 | 12:00:33 AM | 12.49442 | 41.893248 | 174 | 0 | −125.31 | −114.26 | 8494.08 |
2 | 12:00:33 AM | 12.49442 | 41.893248 | 174 | 0 | −134.59 | −114.26 | 8494.33 |
2 | 12:00:33 AM | 12.49442 | 41.893248 | 174 | 0 | −133.27 | −114.26 | 8494.37 |
2 | 12:00:33 AM | 12.49442 | 41.893248 | 174 | 0 | −144.66 | −114.26 | 8494.51 |
2 | 12:00:33 AM | 12.49442 | 41.893248 | 174 | 0 | −139.42 | −114.26 | 8495.03 |
2 | 12:00:33 AM | 12.49442 | 41.893248 | 174 | 0 | −127.19 | −114.26 | 8495.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, U.; Caso, G.; De Nardis, L.; Kousias, K.; Rajiullah, M.; Alay, Ö.; Neri, M.; Brunstrom, A.; Di Benedetto, M.-G. Large-Scale Dataset for the Analysis of Outdoor-to-Indoor Propagation for 5G Mid-Band Operational Networks. Data 2022, 7, 34. https://doi.org/10.3390/data7030034
Ali U, Caso G, De Nardis L, Kousias K, Rajiullah M, Alay Ö, Neri M, Brunstrom A, Di Benedetto M-G. Large-Scale Dataset for the Analysis of Outdoor-to-Indoor Propagation for 5G Mid-Band Operational Networks. Data. 2022; 7(3):34. https://doi.org/10.3390/data7030034
Chicago/Turabian StyleAli, Usman, Giuseppe Caso, Luca De Nardis, Konstantinos Kousias, Mohammad Rajiullah, Özgü Alay, Marco Neri, Anna Brunstrom, and Maria-Gabriella Di Benedetto. 2022. "Large-Scale Dataset for the Analysis of Outdoor-to-Indoor Propagation for 5G Mid-Band Operational Networks" Data 7, no. 3: 34. https://doi.org/10.3390/data7030034
APA StyleAli, U., Caso, G., De Nardis, L., Kousias, K., Rajiullah, M., Alay, Ö., Neri, M., Brunstrom, A., & Di Benedetto, M. -G. (2022). Large-Scale Dataset for the Analysis of Outdoor-to-Indoor Propagation for 5G Mid-Band Operational Networks. Data, 7(3), 34. https://doi.org/10.3390/data7030034