An Urban Image Stimulus Set Generated from Social Media
Abstract
:1. Summary
2. Data Description
3. Methods
3.1. Step 1: Image Extraction Process
3.2. Step 2: Image Variable Determination
3.2.1. Geotagging
3.2.2. Normalized Popularity
3.2.3. Cell Image Density
3.2.4. Cell Green Index
3.3. Step 3: Image Selection Process
3.4. Step 4: Selected Images’ Brightness and Contrast Assessment
4. User Notes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statista 2023. Available online: https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/ (accessed on 29 August 2023).
- Meshi, D.; Tamir, D.I.; Heekeren, H.R. The Emerging Neuroscience of Social Media. Trends Cogn. Sci. 2015, 19, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, K.K.; Tamilmani, K.; Rana, N.P.; Patil, P.; Dwivedi, Y.K.; Nerur, S. Advances in Social Media Research: Past, Present and Future. Inf. Syst. Front. 2017, 20, 531–558. [Google Scholar] [CrossRef]
- Karim, F.; Oyewande, A.; Abdalla, L.F.; Ehsanullah, R.C.; Khan, S. Social Media Use and Its Connection to Mental Health: A Systematic Review. Cureus 2020, 12, e8627. [Google Scholar] [CrossRef] [PubMed]
- Statista 2023. Available online: https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/ (accessed on 27 October 2023).
- Kennedy, L.; Naaman, M.; Ahern, S.; Nair, R.; Rattenbury, T. How flickr helps us make sense of the world: Context and content in community-contributed media collections. In Proceedings of the 15th ACM International Conference on Multimedia2007, Augsburg, Germany, 25–29 September 2007. [Google Scholar] [CrossRef]
- Hollenstein, L.; Purves, R.S. Exploring place through user-generated content: Using Flickr tags to describe city cores. J. Spat. Inf. Sci. 2010, 1, 21–48. [Google Scholar]
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Sui, D.; Goodchild, M. The convergence of GIS and social media: Challenges for GIScience. Int. J. Geogr. Inf. Sci. 2011, 25, 1737–1748. [Google Scholar] [CrossRef]
- Anselin, L.; Williams, S. Digital neighborhoods. J. Urban. Int. Res. Placemaking Urban Sustain. 2015, 9, 305–328. [Google Scholar] [CrossRef]
- Haklay, M. Citizen Science and Volunteered Geographic Information: Overview and Typology of Participation. In Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice; Sui, D., Elwood, S., Goodchild, M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 105–122. ISBN 9789400745872. [Google Scholar] [CrossRef]
- Edwards, T.; Jones, C.B.; Perkins, S.E.; Corcoran, P. Passive citizen science: The role of social media in wildlife observations. PLoS ONE 2021, 16, e0255416. [Google Scholar] [CrossRef]
- Kisilevich, S.; Krstajic, M.; Keim, D.; Andrienko, N.; Andrienko, G. Event-Based Analysis of People’s Activities and Behavior Using Flickr and Panoramio Geotagged Photo Collections. In Proceedings of the 2010 14th International Conference Information Visualisation (IV), London, UK, 26–29 July 2010; pp. 289–296. [Google Scholar]
- Yin, J.; Chi, G. Characterizing People’s Daily Activity Patterns in the Urban Environment: A Mobility Network Approach with Geographic Context-Aware Twitter Data. Ann. Assoc. Am. Geogr. 2021, 111, 1967–1987. [Google Scholar] [CrossRef]
- Ratti, C.; Claudel, M. The City of Tomorrow; Yale University Press: New Haven, CT, USA, 2016. [Google Scholar]
- Girardin, F.; Calabrese, F.; Fiore, F.D.; Ratti, C.; Blat, J. Digital Footprinting: Uncovering Tourists with User-Generated Content. IEEE Pervasive Comput. 2008, 7, 36–43. [Google Scholar] [CrossRef]
- Highsnobiety. Available online: https://www.highsnobiety.com/p/social-media-impact-popularity/ (accessed on 19 May 2017).
- Tenkanen, H.; Di Minin, E.; Heikinheimo, V.; Hausmann, A.; Herbst, M.; Kajala, L.; Toivonen, T. Instagram, Flickr, or Twitter: Assessing the usability of social media data for visitor monitoring in protected areas. Sci. Rep. 2017, 7, 17615. [Google Scholar] [CrossRef] [PubMed]
- Statista 2022. Available online: https://www.statista.com/statistics/270860/urbanization-by-continent/ (accessed on 7 November 2023).
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Mouratidis, K. Built environment and social well-being: How does urban form affect social life and personal relationships? Cities 2018, 74, 7–20. [Google Scholar] [CrossRef]
- Sadeghi, A.R.; Ebadi, M.; Shams, F.; Jangjoo, S. Human-built environment interactions: The relationship between subjective well-being and perceived neighborhood environment characteristics. Sci. Rep. 2022, 12, 21844. [Google Scholar] [CrossRef]
- Kabisch, N.; Qureshi, S.; Haase, D. Human–environment interactions in urban green spaces—A systematic review of contemporary issues and prospects for future research. Environ. Impact Assess. Rev. 2015, 50, 25–34. [Google Scholar] [CrossRef]
- Kwon, O.H.; Hong, I.; Yang, J.; Wohn, D.Y.; Jung, W.S.; Cha, M. Urban green space and happiness in developed countries. EPJ Data Sci. 2021, 10, 28. [Google Scholar] [CrossRef]
- Stier, A.J.; Schertz, K.E.; Rim, N.W.; Cardenas-Iniguez, C.; Lahey, B.B.; Bettencourt, L.M.A.; Berman, M.G. Evidence and theory for lower rates of depression in larger US urban areas. Proc. Natl. Acad. Sci. USA 2021, 118, e2022472118. [Google Scholar] [CrossRef] [PubMed]
- Helbich, M. Toward dynamic urban environmental exposure assessments in mental health research. Environ. Res. 2018, 161, 129–135. [Google Scholar] [CrossRef]
- Dubey, A.; Naik, N.; Parikh, D.; Raskar, R.; Hidalgo, C.A. Deep Learning the City: Quantifying Urban Perception at a Global Scale. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 196–212. [Google Scholar]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, H.; Puig, X.; Xiao, T.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic Understanding of Scenes Through the ADE20K Dataset. Int. J. Comput. Vis. 2018, 127, 302–321. [Google Scholar] [CrossRef]
- Rhew, I.C.; Stoep, A.V.; Kearney, A.; Smith, N.L.; Dunbar, M.D. Validation of the Normalized Difference Vegetation Index as a Measure of Neighborhood Greenness. Ann. Epidemiol. 2011, 21, 946–952. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 0471152277. [Google Scholar]
- Dwivedi, R.S. Remote Sensing of Soils; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Li, D.; Zhou, X.; Wang, M. Analyzing and visualizing the spatial interactions between tourists and locals: A Flickr study in ten US cities. Cities 2018, 74, 249–258. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, J.; Liu, X.; Guo, Z. Reinterpreting activity space in tourism by mapping tourist-resident interactions in populated cities. Tour. Recreat. Res. 2022, 1–15. [Google Scholar] [CrossRef]
- Statistics Portugal, Estatísticas do Turismo, 2020; Instituto Nacional de Estatística: Lisbon, Portugal; ISBN 978-989-25-0569-5.
- Pernet, C.R.; Wilcox, R.; Rousselet, G.A. Robust Correlation Analyses: False Positive and Power Validation Using a New Open Source Matlab Toolbox. Front. Psychol. 2013, 3, 606. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D.; Fockenberg, D.A.; Lemmens, K.P.H.; Ham, J.; Midden, C.J.H. Brightness differences influence the evaluation of affective pictures. Cogn. Emot. 2013, 27, 1225–1246. [Google Scholar] [CrossRef]
- Harrison, W.J. Luminance and Contrast of Images in the THINGS Database. Perception 2022, 51, 244–262. [Google Scholar] [CrossRef] [PubMed]
- Ancora, L.A.; Blanco-Mora, D.A.; Alves, I.; Bonifácio, A.; Morgado, P.; Miranda, B. Cities and neuroscience research: A systematic literature review. Front. Psychiatry 2022, 13, 983352. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.H.; Jiang, B.; Wong, N.H.; Wong, J.J.; Webster, C.; Lee, T.M. The human posterior cingulate and the stress-response benefits of viewing green urban landscapes. NeuroImage 2021, 226, 117555. [Google Scholar] [CrossRef]
- Olszewska-Guizzo, A.; Sia, A.; Fogel, A.; Ho, R. Can Exposure to Certain Urban Green Spaces Trigger Frontal Alpha Asymmetry in the Brain?—Preliminary Findings from a Passive Task EEG Study. Int. J. Environ. Res. Public Health 2020, 17, 394. [Google Scholar] [CrossRef]
- Vahidnia, M.H.; Vahidi, H. Open Community-Based Crowdsourcing Geoportal for Earth Observation Products: A Model Design and Prototype Implementation. ISPRS Int. J. Geo-Inf. 2021, 10, 24. [Google Scholar] [CrossRef]
- De Longueville, B. Community-based geoportals: The next generation? Concepts and methods for the geospatial Web 2.0. Comput. Environ. Urban Syst. 2010, 34, 299–308. [Google Scholar] [CrossRef]
Category | Correlation Variables | Pearson Correlation | Bend Correlation | Spearman Correlation | |||
---|---|---|---|---|---|---|---|
r | p | r | p | r | p | ||
Images by Presumed Residents | Cell Image Density and Popularity | −0.069 | 0.546 | −0.061 | 0.588 | −0.039 | 0.731 |
Cell Image Density and Cell Green Index | −0.122 | 0.281 | −0.195 | 0.082 | −0.212 | 0.06 | |
Popularity and Cell Green Index | −0.037 | 0.744 | −0.098 | 0.387 | −0.121 | 0.284 | |
Images by Presumed Tourists | Cell Image Density and Popularity | −0.136 | 0.228 | −0.149 | 0.188 | −0.175 | 0.120 |
Cell Image Density and Cell Green Index | −0.092 | 0.419 | −0.107 | 0.345 | −0.040 | 0.724 | |
Popularity and Cell Green Index | −0.059 | 0.602 | −0.096 | 0.394 | −0.103 | 0.363 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, A.; Rodrigues, A.L.; Hoogstraten, S.; Blanco-Mora, D.A.; Miranda, B.; Morgado, P.; Meshi, D. An Urban Image Stimulus Set Generated from Social Media. Data 2023, 8, 184. https://doi.org/10.3390/data8120184
Kaur A, Rodrigues AL, Hoogstraten S, Blanco-Mora DA, Miranda B, Morgado P, Meshi D. An Urban Image Stimulus Set Generated from Social Media. Data. 2023; 8(12):184. https://doi.org/10.3390/data8120184
Chicago/Turabian StyleKaur, Ardaman, André Leite Rodrigues, Sarah Hoogstraten, Diego Andrés Blanco-Mora, Bruno Miranda, Paulo Morgado, and Dar Meshi. 2023. "An Urban Image Stimulus Set Generated from Social Media" Data 8, no. 12: 184. https://doi.org/10.3390/data8120184
APA StyleKaur, A., Rodrigues, A. L., Hoogstraten, S., Blanco-Mora, D. A., Miranda, B., Morgado, P., & Meshi, D. (2023). An Urban Image Stimulus Set Generated from Social Media. Data, 8(12), 184. https://doi.org/10.3390/data8120184