A Dataset of Two-Dimensional XBeach Model Set-Up Files for Northern California
Abstract
:1. Summary (Required)
2. Data Description
File Names and Descriptions
- bed.dep: bed/ground elevation (m) at grid nodes derived from recent topobathymetric digital elevation models [24]. Elevations below 0 m are negative (−), and elevations above 0 m are positive (+).
- bed_with_SLR: folder containing bed elevations (m) that incorporate coastal change due to SLR.
- bed_slrNNN.dep: bed/ground elevation (m) at grid nodes (as described for bed.dep) for a given SLR scenario; these bed elevations incorporate coastal changes due to shoreline change and cliff retreat [4,13] (Section 3.2). There are six SLR scenarios (50, 100, 150, 200, 300, and 500 cm) indicated by NNN (for example, bed_slr050.dep corresponds to the 50-cm SLR scenario). These files are within the bed_with_SLR folder.
- disch_loc_file.txt: in applicable domains only, the grid positions of fluvial discharge point sources. Columns 1 and 2 are x and y location (UTM 10), respectively. Columns 3 and 4 are also x and y location and are the same as columns 1 and 2 because the discharge is a point source (as opposed to a line). Multiple lines indicate multiple discharge sources in the domain, with each subsequent line corresponding to the same numbered line in rivers_info.txt and column in disch_timeseries_file.txt.;
- disch_timeseries_file.txt: in applicable domains only, time series of discharge at the source positions in dish_loc_file.txt. The first column is time in seconds, and each following column (one for each discharge source), is discharge (m3 s−1). The discharge time series are the same as described and included in [5].
- jonswapNN.txt: boundary wave conditions at locations annotated in loclist.txt; NN represents numerical identification of the location, which starts at 1 at the southern offshore end of the domain and increases northward across the domain. Columns are significant wave height (m), peak wave period (s), peak wave direction (degrees), peak wave enhancement factor, directional spreading coefficient, highest frequency used (s−1), and step size frequency (s−1) at each time step. Boundary conditions are derived from tier II simulations [5].
- loclist.txt: locations of the spatially and time-varying forcing within the domain. Columns 1 and 2 show x and y location (UTM 10), respectively; column 3 is the name of the corresponding jonswapNN.txt file. The x/y locations are the furthest offshore points of the cross-shore transects used in the model system architecture [5].
- nebed.sed: depth of mobile sediment (m) at each grid node (same size as the .grd files). Areas landward of back-beach boundaries and cliffs have mobile sediment depths set to 0.
- params.txt: text file outlining all model parameters including start and end time; see Section 3.1 for a description of parameters used. All model runs are referenced to a representative spring tide (starting 6 November 2010) [4].
- rivers_info.txt: where applicable, name of the discharge source(s) in the domain. The names are informal abbreviations of river/stream names and match those used in the tier II simulation parameters [5]. Multiple lines indicate multiple discharge sources.
- tide.txt: water level boundary conditions for both corners of the offshore boundary. Columns are time (s) and water elevation (m). All water level elevations are vertically referenced to NAVD88 (m) and are derived from tier II simulations [5].
- waterlevel_gridNN.ini: initial water level (m) at start of model simulation for each grid node (same size as the .grd files). NN corresponds to the numbered domain (for example, waterlevel_grid22.ini corresponds to domain 22). All water level elevations are vertically referenced to NAVD88 (m) and grid nodes with no water level values are set to −999. The use of this initial water level reduces model spin-up time.
- x.grd: x locations of model grid nodes (UTM 10).
- y.grd: y locations of model grid nodes (UTM 10).
3. Methods
3.1. 2D XBeach Domain Setup
3.2. Grid Node Elevations
3.3. Setup for Running Models in High-Performance Computing (HPC) Resources
3.4. Comparison to Previous 1D XBeach Methods
4. Conclusions and User Access
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
U.S. | United States |
USGS | United States Geological Survey |
UTM 10 | Universal Transverse Mercator Zone 10 |
1D | 1-dimensional |
2D | 2-dimensional |
CoNED | Coastal National Elevation Database |
CoSMoS | Coastal Storm Modeling System |
Hs | Significant wave height |
Hrms | Root mean square wave height |
JONSWAP | Joint North Sea Wave Project wave spectra |
m | meter |
NAVD88 | North American Vertical Datum of 1988 |
RMSE | Root Mean Squared Error |
SLR | Sea-level rise |
References
- Barnard, P.L.; van Ormondt, M.; Erikson, L.H.; Eshleman, J.; Hapke, C.; Ruggiero, P.; Adams, P.N.; Foxgrover, A.C. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts. Nat. Hazards 2014, 74, 1095–1125. [Google Scholar] [CrossRef]
- Barnard, P.L.; Erikson, L.H.; Foxgrover, A.C.; Finzi Hart, J.A.; Limber, P.; O’Neill, A.C.; van Ormondt, M.; Vitousek, S.; Wood, N.; Hayden, M.K.; et al. Dynamic flood modeling essential to assess the coastal impacts of climate change. Sci. Rep. 2019, 9, 4309. [Google Scholar] [CrossRef] [PubMed]
- Erikson, L.H.; Barnard, P.L.; O’Neill, A.C.; Wood, N.; Jones, J.; Finzi-Hart, J.; Vitousek, S.; Limber, P.W.; Fitzgibbon, M.; Hayden, M.; et al. Projected 21st Century coastal flooding in the Southern California Bight. Part 2: Tools for assessing climate change driven coastal hazards and socio-economic impacts. J. Mar. Sci. Eng. 2018, 6, 76. [Google Scholar] [CrossRef]
- O’Neill, A.C.; Erikson, L.H.; Barnard, P.L.; Limber, P.W.; Vitousek, S.; Warrick, J.A.; Foxgrover, A.C.; Lovering, J. Projected 21st Century Coastal Flooding in the Southern California Bight. Part 1: Development of the Third Generation CoSMoS Model. J. Mar. Sci. Eng. 2018, 6, 59. [Google Scholar] [CrossRef]
- Barnard, P.L.; Erikson, L.H.; Foxgrover, A.C.; Limber, P.L.; O’Neill, A.C.; Thomas, J.A.; Vitousek, S. Coastal Storm Modeling System (CoSMoS) for Northern California 3.2 (Ver. 1e, October 2024); U.S. Geological Survey Data Release: Santa Cruz, CA, USA, 2022. [CrossRef]
- Barnard, P.L.; Erikson, L.H.; Foxgrover, A.C.; Limber, P.L.; O’Neill, A.C.; Vitousek, S. Coastal Storm Modeling System (CoSMoS) for Southern California v3.0, Phase 2 (Ver. 1g, May 2018); U.S. Geological Survey Data Release: Santa Cruz, CA, USA, 2018. [CrossRef]
- Barnard, P.L.; Erikson, L.H.; Foxgrover, A.C.; Limber, P.L.; O’Neill, A.C.; Vitousek, S. Coastal Storm Modeling System (CoSMoS) for Central California v3.1 (Ver. 1h, March 2021); U.S. Geological Survey Data Release: Santa Cruz, CA, USA, 2021. [CrossRef]
- Bertin, X.; de Bakker, A.; van Dongeren, A.; Coco, G.; André, G.; Ardhuin, F.; Bonneton, P.; Bouchette, F.; Castelle, B.; Crawford, W.; et al. Infragravity waves: From driving mechanisms to impacts. Earth Sci. Rev. 2018, 177, 774–799. [Google Scholar] [CrossRef]
- Bolle, A.; Mercelis, P.; Roelvink, D.; Haerens, P.; Trouw, K. Application and Validation of XBeach for Three Different Field Sites. In Coastal Engineering, Proceedings of the 32nd International Conference on Coastal Engineering, Shanghai, China, 30 June–5 July 2010; Curran Associates, Inc.: Red Hook, NY, USA, 2011; Volume 1. [Google Scholar] [CrossRef]
- Bosserelle, C.; Gallop, S.L.; Haigh, I.D.; Pattiaratchi, C.B. The Influence of Reef Topography on Storm-Driven Sand Flux. J. Mar. Sci. Eng. 2021, 9, 272. [Google Scholar] [CrossRef]
- Gaido Lasserre, C.; Nederhoff, K.; Storlazzi, C.D.; Reguero, B.G.; Beck, M.W. Improved Efficient Physics-Based Computational Modeling of Regional Wave-Driven Coastal Flooding for Reef-Lined Coastlines; Zenodo: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- Quataert, E.; Storlazzi, C.D.; van Dongeren, A.; McCall, R. Model Parameter Input Files to Compare Wave-Averaged versus Wave-Resolving XBeach Coastal Flooding Models for Coral Reef-Lined Coasts; U.S. Geological Survey Data Release: Santa Cruz, CA, USA, 2020. [CrossRef]
- Erikson, L.H.; O’Neill, A.; Barnard, P.L.; Vitousek, S.; Limber, P.W. Climate change-driven cliff and beach evolution at decadal to centennial time scales. In Proceedings of the 8th International Conference on Coastal Dynamics 2017, Helsingor, Denmark, 12–16 June 2017. Paper No. 210. [Google Scholar]
- Roelvink, D.; Reniers, A.; Van Dongeren, A.; van Thiel de Vries, J.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; Van Dongeren, A.; van Thiel de Vries, J.; Lescinski, J.; McCall, R. XBeach Model Description and Manual, Report; Unesco-IHE Institute for Water Education, Deltares and Delft University of Tecnhology: Delft, The Netherlands, 2010. [Google Scholar]
- Roelvink, D.; McCall, R.; Mehvar, S.; Nederhoff, K.; Dastgheib, A. Improving predictions of swash dynamics in XBeach: The role of groupiness and incident-band runup. Coast. Eng. 2017, 134, 103–123. [Google Scholar] [CrossRef]
- Deltares, XBeach Online Manual Documentation. Available online: https://xbeach.readthedocs.io (accessed on 1 February 2024).
- Erikson, L.H.; Espejo, A.; Barnard, P.L.; Serafin, K.A.; Hegermiller, C.A.; O’Neill, A.C.; Ruggiero, P.; Limber, P.W.; Mendez, F.J. Identification of storm events and contiguous coastal sections for deterministic modeling of extreme coastal flood events in response to climate change. Coast. Eng. 2018, 140, 316–330. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Limber, P.; Erikson, L.H.; Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 2017, 122, 782–806. [Google Scholar] [CrossRef]
- Vitousek, S.; Vos, K.; Splinter, K.; O’Neill, A.C.; Foxgrover, A.C.; Hayden, M.K.; Barnard, P.L.; Erikson, L.H. Projections of Shoreline Change for California due to 21st Century Sea-Level Rise; U.S. Geological Survey Data Release: Santa Cruz, CA, USA, 2023. [CrossRef]
- Vitousek, S.; Vos, K.D.; Splinter, K.D.; Erikson, L.H.; Barnard, P.L. A model integrating satellite-derived shoreline observations for predicting fine-scale shoreline response to waves and sea-level rise across large coastal regions. J. Geophys. Res.-Earth Surf. 2023, 128, e2022JF006936. [Google Scholar] [CrossRef]
- Limber, P.; Barnard, P.L.; Vitousek, S.; Erikson, L.H. A model ensemble for projecting multi-decadal coastal cliff retreat during the 21st century. J. Geophys. Res.-Earth Surf. 2018, 123, 1566–1589. [Google Scholar] [CrossRef]
- Limber, P.; Barnard, P.L.; O’Neill, A.C.; Foxgrover, A.C. Northern California 3.2 projections of coastal cliff retreat due to 21st century sea-level. In Coastal Storm Modeling System (CoSMoS) for Northern California 3.2 (Ver. 1b, December 2022); U.S. Geological Survey Data Release: Santa Cruz, CA, USA, 2022. [Google Scholar] [CrossRef]
- Tyler, D.J.; Danielson, J.J.; Hockenberry, R.J.; Beverly, S.D. Topobathymetric Model of Northern California, 1986 to 2019; U.S. Geological Survey Data Release: Reston, VA, USA, 2020. [CrossRef]
- Falgout, J.T.; Gordon, J.; Williams, B.; Davis, M.J. USGS Advanced Research Computing, USGS Denali Supercomputer; U.S. Geological Survey: Reston, VA, USA, 2024. [CrossRef]
- Rautenbach, C.; Trenham, C.; Benn, D.; Hoeke, R.; Bosserelle, C. Computing efficiency of XBeach hydro- and wave dynamics on Graphics Processing Units (GPUs). Environ. Model. Softw. 2022, 157, 105532. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA) Tides and Currents Online Database. Available online: https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels (accessed on 1 June 2022).
- Erikson, L.H.; Hanes, D.M.; Barnard, P.L.; Gibbs, A.E. Swash zone characteristics at Ocean Beach, San Francisco, CA. In Coastal Engineering, Proceedings of the 30th International Conference on Coastal Engineering, San Diego, CA, USA, 3–8 September 2006; Curran Associates, Inc.: Red Hook, NY, USA, 2007; Volume 5, pp. 909–921. [Google Scholar] [CrossRef]
Statistic | Segment 1 | Segment 2 | Segment 3 | Segment 4 | Segment 5 | Segment 6 | Segment 7 |
---|---|---|---|---|---|---|---|
Mean (std) (m) | 7.82 (0.93) | 8.68 (1.21) | 8.67 (0.34) | 8.11 (0.82) | 8.92 (0.79) | 10.53 (0.95) | 7.98 (1.37) |
Maximum (std) (m) | 8.24 (1.04) | 9.60 (1.67) | 9.23 (0.60) | 8.98 (1.00) | 10.01 (1.07) | 11.65 (1.11) | 8.79 (1.44) |
N | 85 | 21 | 26 | 34 | 199 | 307 | 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Neill, A.C.; Nederhoff, K.; Erikson, L.H.; Thomas, J.A.; Barnard, P.L. A Dataset of Two-Dimensional XBeach Model Set-Up Files for Northern California. Data 2024, 9, 118. https://doi.org/10.3390/data9100118
O’Neill AC, Nederhoff K, Erikson LH, Thomas JA, Barnard PL. A Dataset of Two-Dimensional XBeach Model Set-Up Files for Northern California. Data. 2024; 9(10):118. https://doi.org/10.3390/data9100118
Chicago/Turabian StyleO’Neill, Andrea C., Kees Nederhoff, Li H. Erikson, Jennifer A. Thomas, and Patrick L. Barnard. 2024. "A Dataset of Two-Dimensional XBeach Model Set-Up Files for Northern California" Data 9, no. 10: 118. https://doi.org/10.3390/data9100118
APA StyleO’Neill, A. C., Nederhoff, K., Erikson, L. H., Thomas, J. A., & Barnard, P. L. (2024). A Dataset of Two-Dimensional XBeach Model Set-Up Files for Northern California. Data, 9(10), 118. https://doi.org/10.3390/data9100118