Dataset for Electronics and Plasmonics in Graphene, Silicene, and Germanene Nanostrips
Abstract
:1. Introduction
2. Theoretical Framework
- GNRs of the same width order have been synthesized in [20] using high-quality chemical vapor deposited (CVD) graphene on Al2O3 substrates;
- Minimize the effects of quantum confinement. For instance, it has been reported by Yang et al. [33] that GNRs with widths less than 57 nm exhibit pronounced sensitivity to quantum confinement. In our present study, our systems are nearly four times larger than the threshold where such effects become prominent, ensuring that the semi-analytical model can be applied without constraints.
2.1. Semi-Analytical Framework
- is the energy of the charge carrier as a function of the wave vector k;
- is the reduced Planck constant;
- is the Fermi velocity of electrons/holes;
- is the magnitude of the wave vector k, representing the momentum of the charge carrier.
2.2. DFT-GW Approach
3. Data Description
3.1. Data Generation
3.2. Electronics Properties: Freestanding Systems
3.3. Electronic Properties: Freestanding Ribbon Systems
3.4. Plasmonic Properties: Freestanding Ribbon Systems
3.5. Comparison with the Literature
4. Conclusions
- Freestanding graphene, silicene, and germanene all exhibit linear band dispersion, with higher Fermi velocities obtained from GW calculations compared to LDA calculations;
- The Fermi velocity for freestanding graphene, silicene, and germanene was determined to be m/s, m/s, and m/s, respectively;
- As we move up the periodic table, we observe a reduction in both Fermi velocity and bandgap, highlighting the influence of the atomic number on these electronic properties;
- The bandgap of nanoribbons (GNRs, SiNRs, and GeNRs) can be significantly adjusted by changing the ribbon width, showing potential applications in optoelectronics and current semiconductor technology.
- Plasmon frequencies were investigated for GNRs, SiNRs, and GeNRs at various excitation angles and momentum values. GNRs exhibited a pronounced plasmon frequency variation with angle and momentum, while SiNRs and GeNRs showed lower maximum frequencies;
- The plasmon frequency can be controlled by adjusting charge density, making these materials suitable for biosensing applications;
- The plasmon frequency can be enhanced by increasing charge density or modifying the substrate, demonstrating their adaptability for specific applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, J.M.; Zatovsky, I.V.; Gu, Z.Y.; Yang, J.L.; Zhao, X.X.; Guo, J.Z.; Haiyang, X.; Wu, X.L. Two-dimensional MXene with Multidimensional Carbonaceous Matrix: A Platform for General-Purpose Functional Materials. Prog. Mater. Sci. 2023, 135, 101105. [Google Scholar] [CrossRef]
- Elbanna, A.; Jiang, H.; Fu, Q.; Zhu, J.F.; Liu, Y.; Zhao, M.; Liu, D.; Lai, S.; Chua, X.W.; Pan, J.; et al. 2D material infrared photonics and plasmonics. ACS Nano 2023, 17, 4134–4179. [Google Scholar] [CrossRef]
- Zia, A.; Cai, Z.-P.; Naveed, A.B.; Chen, J.-S.; Wang, K.-X. MXene, silicene and germanene: Preparation and energy storage applications. Mater. Today Energy 2022, 30, 1011144. [Google Scholar] [CrossRef]
- Kremer, L.F.; Baierle, R.J. Stability, electronic and optical properties of group IV graphenylene-like materials. An ab initio investigation. Diam. Relat. Mater. 2024, 141, 110689. [Google Scholar] [CrossRef]
- Yang, G.; Li, L.; Lee, W.B.; Ng, M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater. 2018, 19, 613–648. [Google Scholar] [CrossRef]
- Trivedi, S.; Anurag, S.; Rajnish, K. Silicene and germanene: A first principle study of electronic structure and effect of hydrogenation-passivation. J. Comput. Theor. Nanosci. 2014, 11, 781–788. [Google Scholar] [CrossRef]
- Davis, J.M.; Gustavo, S.; Orozco, G.; Barraza-Lopez, S. Thermally driven phase transitions in freestanding low-buckled silicene, germanene, and stanene. Phys. Rev. Mater. 2023, 7, 054008. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef]
- Kurpas, M.; Faria, P.E.; Gmitra, M.; Jaroslav, F. Spin-orbit coupling in elemental two-dimensional materials. Phys. Rev. B 2019, 100, 125422. [Google Scholar] [CrossRef]
- Ezawa, M. Monolayer topological insulators: Silicene, germanene, and stanene. J. Phys. Soc. Jpn. 2015, 84, 121003. [Google Scholar] [CrossRef]
- Chaves, A.; Azadani, J.G.; Alsalman, H.; Da Costa, D.R.; Frisenda, R.; Chaves, A.J.; Song, H.S.; Kim, Y.D.; He, D.; Zhou, J.; et al. Bandgap engineering of two-dimensional semiconductor materials. Npj 2D Mater. Appl. 2020, 4, 29. [Google Scholar] [CrossRef]
- An, J.; Zhao, X.; Zhang, Y.; Liu, M.; Yuan, J.; Sun, X.; Zhang, Z.; Wang, B.; Li, S.; Liet, D. Perspectives of 2D materials for optoelectronic integration. Adv. Funct. Mater. 2022, 32, 2110119. [Google Scholar] [CrossRef]
- Tene, T.; Guevara, M.; Moreano, G.; Calderón, E.; García, N.B.; Gomez, C.V.; Bellucci, S. Modeling Plasmonics and Electronics in Semiconducting Graphene Nanostrips. Emerg. Sci. J. 2023, 7, 1459–1477. [Google Scholar] [CrossRef]
- Sung, Y.; Vejayan, H.; Baddeley, C.J.; Richardson, N.V.; Grillo, F.; Schaubet, R. Surface confined hydrogenation of graphene nanoribbons. ACS Nano 2022, 16, 10281–10291. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Peng, F.; Yan, Z.; Yang, Z.; Chen, S.; Chang, Z.; Wang, Y.; Liu, Z.; Huanget, X. Plasmon-enhanced infrared absorption in graphene nanodot array. Plasmonics 2023, 18, 2205–2212. [Google Scholar] [CrossRef]
- Sindona, A.; Pisarra, M.; Belluci, S.; Tene, T.; Guevara, M.; Vacacela Gomez, C. Plasmon oscillations in two-dimensional arrays of ultranarrow graphene nanoribbons. Phys. Rev. B 2019, 100, 235422. [Google Scholar] [CrossRef]
- Nekuee, S.; Khavasi, A. A Novel Method for Fast and Accurate Extraction of Surface Plasmon Modes in Periodic Arrays of Graphene Nanoribbons. IEEE Photonics Technol. Lett. 2024, 36, 297–300. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, D.; Zhai, X.; Wang, L.; Wen, S. Phase-controlled topological plasmons in 1D graphene nanoribbon array. Appl. Phys. Lett. 2023, 123, 101102. [Google Scholar] [CrossRef]
- Khaliji, K.; Biswas, S.R.; Hu, H.; Yang, X.; Dai, Q.; Oh, S.; Avouris, P.; Low, T. Plasmonic gas sensing with graphene nanoribbons. Phys. Rev. Appl. 2020, 13, 011002. [Google Scholar] [CrossRef]
- Fei, Z.; Goldflam, M.D.; Wu, J.-S.; Dai, S.; Wagner, M.; McLeod, A.S.; Liu, M.K.; Post, K.W.; Zhu, S.; Janssen, G.C.A.M.; et al. Edge and surface plasmons in graphene nanoribbons. Nano Lett. 2015, 15, 8271–8276. [Google Scholar] [CrossRef]
- Moon, H.; Yun, J.; Kim, K.H.; Jangd, S.S.; Lee, S.G. Investigations of the band structures of edge-defect zigzag graphene nanoribbons using density functional theory. RSC Adv. 2016, 6, 39587–39594. [Google Scholar] [CrossRef]
- Pengfei, L.; Shi, R.; Lin, P.; Ren, X. First-principles calculations of plasmon excitations in graphene, silicene, and germanene. Phys. Rev. B 2023, 107, 035433. [Google Scholar] [CrossRef]
- Despoja, V.; Mowbray, D.J.; Vlahović, D.; Marušić, L. TDDFT study of time-dependent and static screening in graphene. Phys. Rev. B 2012, 86, 195429. [Google Scholar] [CrossRef]
- Souto, A.; Cunha, D.; Vasilevskiy, M. Modeling of a Plasmonic Biosensor Based on a Graphene Nanoribbon Superlattice. Phys. Status Solidi (B) 2022, 259, 2200055. [Google Scholar] [CrossRef]
- Popov, V.V.; Bagaeva, T.Y.; Otsuji, T.; Ryzhii, V. Oblique terahertz plasmons in graphene nanoribbon arrays. Phys. Rev. B 2010, 81, 073404. [Google Scholar] [CrossRef]
- Hwang, C.; Siegel, D.A.; Mo, S.-K.; Regan, W.; Ismach, A.; Zhang, Y.; Zettl, A.; Lanzara, A. Fermi velocity engineering in graphene by substrate modification. Sci. Rep. 2012, 2, 590. [Google Scholar] [CrossRef]
- Tene, T.; Guevara, M.; Viteri, E.; Maldonado, A.; Pisarra, M.; Sindona, A.; Vacacela Gomez, C.; Bellucci, S. Calibration of Fermi Velocity to Explore the Plasmonic Character of Graphene Nanoribbon Arrays by a Semi-Analytical Model. Nanomaterials 2022, 12, 2028. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef]
- Tene, T.; Guevara, M.; Svozilík, J.; Coello-Fiallos, D.; Briceño, J.; Vacacela Gomez, C. Proving Surface Plasmons in Graphene Nanoribbons Organized as 2D Periodic Arrays and Potential Applications in Biosensors. Chemosensors 2022, 10, 514. [Google Scholar] [CrossRef]
- Tene, T.; Guevara, M.; Cevallos, Y.; Sáez Paguay, M.Á.; Bellucci, S.; Vacacela Gomez, C. THz Surface Plasmons in Wide and Freestanding Graphene Nanoribbon Arrays. Coatings 2023, 13, 28. [Google Scholar] [CrossRef]
- Tene, T.; Guevara, M.; Borja, M.; Mendoza Salazar, M.J.; Palacios Robalino, M.; Vacacela Gomez, C.; Bellucci, S. Modeling semiconducting silicene nanostrips: Electronics and THz plasmons. Front. Phys. 2023, 11, 1198214. [Google Scholar] [CrossRef]
- Tene, T.; Guevara, M.; Tubon-Usca, G.; Villacrés Cáceres, O.; Moreano, G.; Vacacela Gomez, C.; Bellucci, S. THz plasmonics and electronics in germanene nanostrips. J. Semicond. 2023, 44, 102001. [Google Scholar] [CrossRef]
- Yang, Y.; Murali, R. Impact of size effect on graphene nanoribbon transport. IEEE Electron. Device Lett. 2010, 31, 237–239. [Google Scholar] [CrossRef]
- Gonze, X.; Amadon, B.; Antonius, G.; Arnardi, F.; Baguet, L.; Beuken, J.-M.; Bieder, J.; Bottin, F.; Bouchet, J.; Bousquet, E.; et al. The ABINIT project: Impact, environment and recent developments. Comput. Phys. Commun. 2020, 248, 107042. [Google Scholar] [CrossRef]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048. [Google Scholar] [CrossRef]
- Troullier, N.; Martins, J.L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Aryasetiawan, F.; Gunnarsson, O. The GW method. Rep. Prog. Phys. 1998, 61, 237. [Google Scholar] [CrossRef]
- Golze, D.; Wilhelm, J.; Van Setten, M.J.; Rinke, P. Core-level binding energies from GW: An efficient full-frequency approach within a localized basis. J. Chem. Theory Comput. 2018, 14, 4856–4869. [Google Scholar] [CrossRef]
- Kiraly, B.; Mannix, A.J.; Jacobberger, R.M.; Fisher, B.L.; Arnold, M.S.; Hersam, M.C.; Guisinger, N.P. Sub-5 nm, globally aligned graphene nanoribbons on Ge (001). Appl. Phys. Lett. 2016, 108, 213101. [Google Scholar] [CrossRef]
- Li, Z.-T.; Li, X.; Liu, G.-D.; Wang, L.-L.; Linet, Q. Analytical investigation of unidirectional reflectionless phenomenon near the exceptional points in graphene plasmonic system. Opt. Express 2023, 31, 30458–30469. [Google Scholar] [CrossRef] [PubMed]
- Nejad, H.E.; Lorestaniweiss, Z.; Farmani, A.; Talebzadeh, R. First designing of a silicene-based optical MOSFET with outstanding performance. Sci. Rep. 2023, 13, 6563. [Google Scholar] [CrossRef] [PubMed]
- Shirkani, H.; Sadeghi, Z.; Yektaparast, B.; Fadaei, N. Design and study of phosphorene nanoribbons as a perfect absorber and polarizer in mid-IR range. Phys. E Low-Dimens. Syst. Nanostruct. 2022, 137, 115066. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, Y.; Xie, Y.; Cai, Y. Squeezed metallic droplet with tunable Kubo gap and charge injection in transition metal dichalcogenides. Proc. Natl. Acad. Sci. USA 2020, 117, 6362–6369. [Google Scholar] [CrossRef] [PubMed]
- Hancock, Y.; Uppstu, A.; Saloriutta, K.; Harju, A.; Puska, M.J. Generalized tight-binding transport model for graphene nanoribbon-based systems. Phys. Rev. B 2010, 81, 245402. [Google Scholar] [CrossRef]
- Song, Y.-L.; Zhang, Y.; Zhang, J.M.; Lu, D.-B. Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons. Appl. Surf. Sci. 2010, 256, 6313–6317. [Google Scholar] [CrossRef]
- Han, M.Y.; Ozyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805. [Google Scholar] [CrossRef]
- Yang, L.; Park, C.H.; Son, Y.W.; Cohen, M.L.; Louie, S.G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801. [Google Scholar] [CrossRef]
Material | Lattice Constant () | Buckling () |
---|---|---|
Graphene | 2.46 | 0.00 |
Silicene | 3.82 | 0.45 |
Germanene | 4.01 | 0.64 |
Material | (m/s) (106) | (10−3) | (meV) |
---|---|---|---|
GrapheneGW | 1.118 | 1.627 | 23.118 |
SiliceneGW | 0.742 | 2.451 | 15.343 |
GermaneneGW | 0.702 | 2.590 | 14.516 |
Material | Variation (, %) | (m/s) (106) | (10−3) |
---|---|---|---|
GrapheneGW | 25 | 1.398 | 1.301 |
50 | 1.677 | 1.084 | |
75 | 1.957 | 0.929 | |
SiliceneGW | 25 | 0.928 | 1.961 |
50 | 1.113 | 1.634 | |
75 | 1.299 | 1.400 | |
GermaneneGW | 25 | 0.878 | 2.072 |
50 | 1.053 | 1.727 | |
75 | 1.229 | 1.480 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tene, T.; Bonilla García, N.; Sáez Paguay, M.Á.; Vera, J.; Guevara, M.; Vacacela Gomez, C.; Bellucci, S. Dataset for Electronics and Plasmonics in Graphene, Silicene, and Germanene Nanostrips. Data 2024, 9, 26. https://doi.org/10.3390/data9020026
Tene T, Bonilla García N, Sáez Paguay MÁ, Vera J, Guevara M, Vacacela Gomez C, Bellucci S. Dataset for Electronics and Plasmonics in Graphene, Silicene, and Germanene Nanostrips. Data. 2024; 9(2):26. https://doi.org/10.3390/data9020026
Chicago/Turabian StyleTene, Talia, Nataly Bonilla García, Miguel Ángel Sáez Paguay, John Vera, Marco Guevara, Cristian Vacacela Gomez, and Stefano Bellucci. 2024. "Dataset for Electronics and Plasmonics in Graphene, Silicene, and Germanene Nanostrips" Data 9, no. 2: 26. https://doi.org/10.3390/data9020026
APA StyleTene, T., Bonilla García, N., Sáez Paguay, M. Á., Vera, J., Guevara, M., Vacacela Gomez, C., & Bellucci, S. (2024). Dataset for Electronics and Plasmonics in Graphene, Silicene, and Germanene Nanostrips. Data, 9(2), 26. https://doi.org/10.3390/data9020026