Detailed Landslide Traces Database of Hancheng County, China, Based on High-Resolution Satellite Images Available on the Google Earth Platform
Abstract
:1. Introduction
2. Study Area
3. Data and Method
3.1. Data
3.2. Method
4. Results and Analysis
4.1. Typical Landslide Display
4.2. Landslide Database
4.3. Landslide Analysis
5. Discussion
5.1. Comparison with Landslide Databases in Other Parts of the Loess Plateau in China
5.2. Advantages and Limitations of Study Methods
5.3. Future Outlook
- (1)
- We did not explore the reasons for the concentrated distribution of landslides (as shown in Figure 6). In the future, we can study these landslide clusters to better understand the formation and evolution of landslides in Hancheng County.
- (2)
- In this study, we did not classify the landslide types in detail, and we used the term “landslide traces” to cover all types of mass movement, including landslides, flows, debris flows, etc. [69]. The landslides we interpreted were only landslides with signs of sliding, including all landslide types such as rainfall landslides and earthquake landslides, and the landslides can be classified based on this research result.
- (3)
- At present, the landslide traces established in this study only include the boundary information of landslides, and we will superimpose the topographic and geological information (such as slope, aspect, etc.) of Hancheng County into each landslide attribute to analyze the spatial distribution of landslides in the region.
- (4)
- In this study, only landslides that occurred in Hancheng County were studied, and other types of disasters were not studied. Therefore, in the future, disaster analysis in the Hancheng area should further carry out risk assessment for various disasters (collapse, landslide, debris flow, etc.), fully study and improve understanding of the characteristics of geological disasters in the Hancheng area, and lay the foundation for disaster prevention and mitigation in the area.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, X.; Xu, C. Natural Hazards Research: An eternal subject of human survival and development. Nat. Hazards Res. 2021, 1, 1–3. [Google Scholar] [CrossRef]
- Huang, R. Large-scale landslides in China since the 20th century and their occurrence mechanisms. Chin. J. Rock Mech. Eng. 2007, 26, 433–454. [Google Scholar]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides; US Geological Survey: Reston, Virginia, 2008. [Google Scholar]
- Cheng, Y. Current status and dynamics of landslide research in China in the past 20 years. Geol. Hazard Environ. Prot. 2003, 14, 1–5. [Google Scholar]
- Wang, X.; Wang, Y.; Lin, Q.; Li, N.; Zhang, X.; Zhou, X. Population risk assessment of landslide disasters in China under climate change. Clim. Chang. Res. 2022, 18, 166. [Google Scholar]
- Wang, T.; Liu, J.; Li, Z.; Xin, P.; Shi, J.; Wu, S. Risk Assessment of Earthquake Landslides in China and Its Impact on Territorial Spatial Planning. Geol. China 2021, 48, 21–39. [Google Scholar]
- Lv, Z.; Yang, T.; Lei, T.; Zhou, W.; Zhang, Z.; You, Z. Spatial-Spectral Similarity based on Adaptive Region for Landslide Inventory Mapping with Remote Sensed Images. In IEEE Transactions on Geoscience and Remote Sensing; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar]
- Zhang, X.; Jing, Y.; Wang, Y.; Qi, Z.; Wang, Y. Evaluation of landslide susceptibility based on multi-objective optimization method. J. Soil Water Conserv. 2024, 38, 104–112. [Google Scholar]
- Shan, X.; Ye, H.; Li, Z.; Chen, G. remote sensing, GIS combination and regional natural landslide investigation. Geol. Rev. 2001, 47, 648–652. [Google Scholar]
- Mandal, B.; Mondal, S.; Mandal, S. Modelling and mapping landslide susceptibility of Darjeeling Himalaya using geospatial technology. In Applied Geomorphology and Contemporary Issues; Springer: Berlin/Heidelberg, Germany, 2022; pp. 565–585. [Google Scholar]
- Harp, E.L.; Keefer, D.K.; Sato, H.P.; Yagi, H. Landslide inventories: The essential part of seismic landslide hazard analyses. Eng. Geol. 2011, 122, 9–21. [Google Scholar] [CrossRef]
- Pennington, C.; Freeborough, K.; Dashwood, C.; Dijkstra, T.; Lawrie, K. The National Landslide Database of Great Britain: Acquisition, communication and the role of social media. Geomorphology 2015, 249, 44–51. [Google Scholar] [CrossRef]
- Taylor, F.E.; Malamud, B.D.; Freeborough, K.; Demeritt, D. Enriching Great Britain's National Landslide Database by searching newspaper archives. Geomorphology 2015, 249, 52–68. [Google Scholar] [CrossRef]
- Rabby, Y.W.; Li, Y. Landslide inventory (2001–2017) of Chittagong hilly areas, Bangladesh. Data 2019, 5, 4. [Google Scholar] [CrossRef]
- Bejenaru, A.; Niculiţă, M. Landslide inventory of the Crasna catchment, Moldavian Plateau, Romania. In Proceedings of the Romanian Geomorphology Symposium, Iasi, Romania, 11–14 May 2017. [Google Scholar]
- Fusco, F.; Tufano, R.; De Vita, P.; Di Martire, D.; Di Napoli, M.; Guerriero, L.; Mileti, F.A.; Terribile, F.; Calcaterra, D. A revised landslide inventory of the Campania region (Italy). Sci. Data 2023, 10, 355. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Xu, X.; Shyu JB, H.; Gao, M.; Tan, X.; Ran, Y.; Zheng, W. Landslides triggered by the 20 April 2013 Lushan, China, Mw 6.6 earthquake from field investigations and preliminary analyses. Landslides 2015, 12, 365–385. [Google Scholar] [CrossRef]
- Pan, J. Identification and distribution of paleolandslides in the eastern section of the Jiangnan Orogenic Belt. Fujian Build. Mater. 2022, 3, 30–32+36. [Google Scholar]
- Huang, Y.; Xie, C.; Li, T.; Xu, C.; He, X.; Shao, X.; Xu, X.; Zhan, T.; Chen, Z. An open-accessed inventory of landslides triggered by the MS 6.8 Luding earthquake, China on 5 September 2022. Earthq. Res. Adv. 2023, 3, 100181. [Google Scholar] [CrossRef]
- Hong, J.; Wu, S.; Mu, X. Establishment of landslide database and geological characteristics of landslide regional distribution in Gansu Province. J. Gansu Acad. Sci. 1991, 3, 54–60. [Google Scholar]
- Lin, B.; Zhao, F.; Xie, X.; Song, F. Spatial distribution characteristics and causes of urban geological disasters in Hancheng County. J. Eng. Geol. 2004, 12, 162–165. [Google Scholar]
- Cui, Z.; Li, S.; Yang, Z. Deformation Mechanism and Stability Analysis of Slope of Hancheng Power Plant. J. Catastrophology 1994, 9, 50–54. [Google Scholar]
- He, X.; Wang, Z.; Zhong, J.; Liu, X. Deep monitoring and deformation analysis of landslide in Hancheng Power Plant. J. Nat. Disasters 2014, 3, 119–124. [Google Scholar]
- Zhang, X.; Tao, F. Analysis of the Genesis Mechanism and Stability of Loess Landslide in Weibei Plateau Area: A Case Study of Loess Landslide in Chengbei Village, Hancheng County. Geol. Hazard Environ. Prot. 2015, 2, 3–8. [Google Scholar]
- Lin, B.; Zhao, F.; Shi, B. Spatial distribution and prevention of geological disasters in Hancheng City, Shaanxi Province. J. Catastrophology 2004, 19, 35–39. [Google Scholar]
- Jiang, S.; Zhou, L.; Ma, H.; Zhu, W.; Ni, J.; Ma, S.; Zhang, J.; Xun, H. Analysis of Coastline Change in Dalian City Based on Historical Google Earth Imagery. Geol. Resour. 2024, 33, 56–64. [Google Scholar]
- Zeng, T.; Wang, L.; Zhang, Y.; Cheng, P.; Wu, F. Modeling and Interpretability of Landslide Susceptibility Based on CatBoost-SHAP Model. Chin. J. Geol. Hazard Control. 2024, 35, 37–50. [Google Scholar]
- Harvey, E.; Rosser, N.; Kincey, M.; Densmore, A.; Shrestha, R.; Pujara, D.; Dunant, A.; de Vries Max Van Wyk Arrell, K. Using Google Earth Engine to map landslide hazard and exposure across Nepal. In Proceedings of the Copernicus Meetings, Vienna, Austria, 14–19 April 2024. EGU24-15272. [Google Scholar]
- Wang, Y.; Ren, G.; Wang, J.; Wang, M.; Yu, T. A review of remote sensing interpretation of landslides. Northwest Hydropower 2017, 1, 17–21. [Google Scholar]
- Fiorucci, F.; Ardizzone, F.; Mondini, A.C.; Viero, A.; Guzzetti, F. Visual interpretation of stereoscopic NDVI satellite images to map rainfall-induced landslides. Landslides 2019, 16, 165–174. [Google Scholar] [CrossRef]
- Liu, P.; Wei, Y.; Wang, Q.; Xie, J.; Chen, Y.; Li, Z.; Zhou, H. A research on landslides automatic extraction model based on the improved mask R-CNN. ISPRS Int. J. Geo-Inf. 2021, 10, 168. [Google Scholar] [CrossRef]
- Dai, F.C.; Xu, C.; Yao, X.; Xu, L.; Tu, X.B.; Gong, Q.M. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J. Asian Earth Sci. 2011, 40, 883–895. [Google Scholar] [CrossRef]
- Huang, F.; Tao, S.; Chang, Z.; Huang, J.; Fan, X.; Jiang, S.-H.; Li, W. Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments. Landslides 2021, 18, 3715–3731. [Google Scholar] [CrossRef]
- Cai, J.; Ming, D.; Zhao, W.; Lin, X.; Zhang, Y.; Zhang, X. Identification of Landslide Hazards and Disaster Mechanism Analysis in Chayu County Based on Integrated Remote Sensing. Remote Sens. Nat. Resour. 2024, 36, 128–136. [Google Scholar]
- Dias, H.C.; Grohmann, C.H. Standards for shallow landslide identification in Brazil: Spatial trends and inventory mapping. J. South Am. Earth Sci. 2024, 135, 104805. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Shao, X.; Xu, C.; Li, L.; Yang, Z.; Yao, X.; Shao, B.; Liang, C.; Xue, Z.; Xu, X. Spatial analysis and hazard assessment of Large-scale ancient landslides around the reservoir area of Wudongde Hydropower Station, China. Nat. Hazards 2024, 120, 87–105. [Google Scholar] [CrossRef]
- Yu, B.; Xu, C.; Chen, F.; Wang, N.; Wang, L. HADeenNet: A hierarchical-attention multi-scale deconvolution network for landslide detection. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102853. [Google Scholar] [CrossRef]
- Sreelakshmi, S.; Chandra, S.S.V. Visual saliency-based landslide identification using super-resolution remote sensing data. Results Eng. 2023, 21, 101656. [Google Scholar] [CrossRef]
- Klimeš, J.; Novotný, J.; Balek, J.; Rosario, A.M.; Torres-Lázaro, J.C.; Vargas, R.; López, D.; Obispo, Y.; Roldán-Minaya, E.; Caballero, A. Landslide hazard assessment and risk reduction in the rural community of Rampac Grande, Cordillera Negra, Peru. Environ. Earth Sci. 2024, 83, 27. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Xiao, D. Application of Machine Learning Model in Landslide Vulnerability Assessment. Chin. J. Geol. Hazard Control. 2021, 32, 98–106. [Google Scholar]
- Zhang, Z.; Deng, M.; Xu, S.; Zhang, Y.; Fu, H.; Li, Z. Comparative study on landslide susceptibility evaluation model in Zhenkang County. Chin. J. Rock Mech. Eng. 2022, 41, 157–171. [Google Scholar]
- Sajwan, A.; Mhaski, S.; Pandey, A.; Vangla, P.; Ramana, G.V. A multi-scale approach for deterministic analysis of landslide triggering and mass flow mechanism at Kaliasaur (Rudraprayag). Landslides 2024, 21, 393–409. [Google Scholar] [CrossRef]
- Jiang, T.; Cui, S.; Ran, Y. Analysis of landslide mechanism induced by coupling excavation and rainfall. Chin. J. Geol. Hazard Control. 2023, 34, 20–30. [Google Scholar]
- Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F.; Quesada-Román, A.; Apolo-Masache, B. Worldwide research trends in landslide science. Int. J. Environ. Res. Public Health 2021, 18, 9445. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, G.; Fang, Z.; Li, P. Prediction of Disaster Occurrence of Global-scale Landslide Disasters Based on Automated Machine Learning. Resour. Environ. Eng. 2022, 18, 1–90. [Google Scholar]
- Felsberg, A.; Poesen, J.; Bechtold, M.; Vanmaercke De Lannoy, G.J.M. Estimating global landslide susceptibility and its uncertainty through ensemble modelling. Nat. Hazards Earth Syst. Sci. Discuss. 2021, 2021, 3063–3082. [Google Scholar]
- Santangelo, M.; Althuwayne, O.; Alvioli, M.; Ardizzone, F.; Bianchi, C.; Bornaetxea, T.; Brunetti, M.; Bucci, F.; Cardinali, M.; Donnini, M.; et al. Inventory of landslides triggered by an extreme rainfall event in Marche-Umbria, Italy, on 15 September 2022. Sci. Data 2023, 10, 427. [Google Scholar] [CrossRef] [PubMed]
- Devoto, S.; Hastewell, L.J.; Prampolini, M.; Furlani, S. Dataset of gravity-induced landforms and sinkholes of the northeast coast of Malta (Central Mediterranean Sea). Data 2021, 6, 81. [Google Scholar] [CrossRef]
- Mirus, B.B.; Jones, E.S.; Baum, R.L.; Godt, J.W.; Slaughter, S.; Crawford, M.M.; Lancaster, J.; Stanley, T.; Kirschbaum, D.B.; Burns, W.J. Landslides across the USA: Occurrence, susceptibility, and data limitations. Landslides 2020, 17, 2271–2285. [Google Scholar] [CrossRef]
- Zamanialavijeh, N.; Hosseinzadehsabeti, E.; Ferré, E.C.; Hacker, D.B.; Biedermann, A.R.; Biek, R.F. Kinematics of frictional melts at the base of the world's largest terrestrial landslide: Markagunt gravity slide, southwest Utah, United States. J. Struct. Geol. 2021, 153, 104448. [Google Scholar] [CrossRef]
- Fleming, R.W.; Taylor, F.A. Estimating the costs of landslide damage in the United States; US Department of the Interior, Geological Survey: Reston, VA, USA, 1980. [Google Scholar]
- Basharat, M.; Riaz, M.T.; Jan, M.Q.; Xu, C.; Riaz, S. A review of landslides related to the 2005 Kashmir Earthquake: Implication and future challenges. Nat. Hazards 2021, 108, 1–30. [Google Scholar] [CrossRef]
- Cheaib, A.; Lacroix, P.; Zerathe, S.; Jongmans, D.; Ajorlou, N.; Doin, M.-P.; Hollingsworth, J.; Abdallah, C. Landslides induced by the 2017 Mw7. 3 Sarpol Zahab earthquake (Iran). Landslides 2022, 19, 603–619. [Google Scholar] [CrossRef]
- Qiu, H.; Su, L.; Tang, B.; Yang, D.; Ullah, M.; Zhu, Y.; Kamp, U. The effect of location and geometric properties of landslides caused by rainstorms and earthquakes. Earth Surf. Process. Landf. 2024; Early View. [Google Scholar]
- Ling, S.; Chigira, M. Characteristics and triggers of earthquake-induced landslides of pyroclastic fall deposits: An example from Hachinohe during the 1968 M7. 9 tokachi-Oki earthquake, Japan. Eng. Geol. 2020, 264, 105301. [Google Scholar] [CrossRef]
- Ito, Y.; Yamazaki, S.; Kurahashi, T. Geological features of landslides caused by the 2018 Hokkaido Eastern Iburi Earthquake in Japan. Geol. Soc. 2021, 501, 171–183. [Google Scholar] [CrossRef]
- Perrone, A.; Canora, F.; Calamita, G.; Bellanova, J.; Serlenga, V.; Panebianco, S.; Tragni, N.; Piscitelli, S.; Vignola, L.; Doglioni, A. A multidisciplinary approach for landslide residual risk assessment: The Pomarico landslide (Basilicata Region, Southern Italy) case study. Landslides 2021, 18, 353–365. [Google Scholar] [CrossRef]
- D’Ippolito, A.; Lupiano, V.; Rago, V.; Terranova, O.G.; Iovine, G. Triggering of rain-induced landslides, with applications in southern Italy. Water 2023, 15, 277. [Google Scholar] [CrossRef]
- Chiarelli, D.D.; Galizzi, M.; Bocchiola, D.; Rosso, R.; Rulli, M.C. Modeling snowmelt influence on shallow landslides in Tartano valley, Italian Alps. Sci. Total Environ. 2023, 856, 158772. [Google Scholar] [CrossRef] [PubMed]
- Pigazzi, E.; Bersezio, R.; Marotta, F.; Apuani, T. Mapping landscape evolution in 3D: Climate change, natural hazard and human settlements across the 1618 Piuro landslide in the Italian Central Alps. Earth Surf. Process. Landf. 2024, 49, 837–854. [Google Scholar] [CrossRef]
- Leonelli, G.; Chelli, A. Spatial distribution patterns of dated landslide events in the Northern Apennines in response to Holocene regional climatic changes. Catena 2024, 236, 107705. [Google Scholar] [CrossRef]
- Xiong, L.; Tang, G. Research progress and prospect of geomorphological development and evolution of gullies on the Loess Plateau. J. Geo-Inf. Sci. 2020, 22, 816–826. [Google Scholar]
- Xu, Y.; Allen, M.B.; Zhang, W.; Li, W.; He, H. Landslide characteristics in the Loess Plateau, northern China. Geomorphology 2020, 359, 107150. [Google Scholar] [CrossRef]
- Li, L.; Xu, C.; Xu, X.; Zhang, Z.; Cheng, J. Inventory and Distribution Characteristics of Large-Scale Landslides in Baoji City, Shaanxi Province, China. ISPRS Int. J. Geo-Inf. 2022, 11, 10. [Google Scholar] [CrossRef]
- Chen, J.; Li, L.; Xu, C.; Huang, Y.; Luo, Z.; Xu, X.; Lyu, Y. Freely accessible inventory and spatial distribution of large-scale landslides in Xianyang City, Shaanxi Province, China. Earthq. Res. Adv. 2023, 3, 100217. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Q.; Lv, Y.; Su, S.; Zhou, Z. Study on the relationship between the distribution characteristics and seismic activity of paleo landslides in the northern foot of the Qinling Mountains. J. Geol. 2020, 28, 1259–1271. [Google Scholar]
- Zhang, X.; Lei, L.; Xu, C. Large-scale landslide inventory and their mobility in Lvliang City, Shanxi Province, China. Nat. Hazards Res. 2022, 2, 111–120. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
Landslide Identification Signs | Description |
---|---|
morphology | The distribution of the landslide body is irregular and staircase-like, and there are cracks in it, mainly located in the middle and the leading edge, which are important markers of landslide activity. |
color | Newly formed landslides may show a different color from surrounding features, such as the color of exposed soil, rocks, or weeds. |
vegetation | The vegetation texture is discontinuous, and the vegetation on the landslide body presents the pattern of saber trees and drunken forests. |
No. | Location | Landslide Number | Landslide Area (km2) | Area of the Study Area (km2) | Landslide Point Density (km−2) | Source |
---|---|---|---|---|---|---|
1 | Loess Plateau | 80,000 | \ | 300,000 | 0.27 | [64] |
2 | Baoji City, Shaanxi Province, China | 3422 | 360.7 | 18,100 | 0.19 | [65] |
3 | Xianyang City, Shaanxi Province, China | 2924 | 228.66 | 10,196 | 0.29 | [66] |
4 | The northern foothills of the Qinling Mountains in China | 43 | 16.57 | 700 | 0.06 | [67] |
5 | Luliang City, Shanxi Province, China | 12,110 | \ | 21,000 | 0.58 | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Xu, C.; Huang, X. Detailed Landslide Traces Database of Hancheng County, China, Based on High-Resolution Satellite Images Available on the Google Earth Platform. Data 2024, 9, 63. https://doi.org/10.3390/data9050063
Zhao J, Xu C, Huang X. Detailed Landslide Traces Database of Hancheng County, China, Based on High-Resolution Satellite Images Available on the Google Earth Platform. Data. 2024; 9(5):63. https://doi.org/10.3390/data9050063
Chicago/Turabian StyleZhao, Junlei, Chong Xu, and Xinwu Huang. 2024. "Detailed Landslide Traces Database of Hancheng County, China, Based on High-Resolution Satellite Images Available on the Google Earth Platform" Data 9, no. 5: 63. https://doi.org/10.3390/data9050063
APA StyleZhao, J., Xu, C., & Huang, X. (2024). Detailed Landslide Traces Database of Hancheng County, China, Based on High-Resolution Satellite Images Available on the Google Earth Platform. Data, 9(5), 63. https://doi.org/10.3390/data9050063