Real-Time Measurement of the Daily Total Locomotor Behavior in Calves Reared in an Intensive Management System for the Possible Application in Precision Livestock Farming
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Locomotor Activity Recording
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wurtz, K.; Camerlink, I.; D’Eath, R.B.; Fernández, A.P.; Norton, T.; Steibel, J.; Siegford, J. Recording behaviour of indoor-housed farm animals automatically using machine vision technology: A systematic review. PLoS ONE 2019, 14, e0226669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirmer, A.; Hoffmann, J.; Eccard, J.A.; Dammhahn, M. Supplementary material from “My niche: Individual spatial niche specialization affects within- and between-species interactions”. Proc. R. Soc. 2019, 287, 20192211. [Google Scholar] [CrossRef] [Green Version]
- Bewley, J.M.; Robertson, L.M.; Eckelkamp, E.A. A 100-year review: Lactating dairy cattle housing management. J. Dairy Sci. 2017, 100, 10418–10431. [Google Scholar] [CrossRef] [PubMed]
- Kolver, E.; Muller, L.D.; Varga, G.A.; Cassidy, T.J. Synchronization of ruminal degradation of supplemental carbohydrate with pasture nitrogen in lactating dairy cows. J. Dairy Sci. 1998, 81, 2017–2028. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Kuroda, K. Behavioural characteristics of artificially reared calves. J. Anim. Sci. Technol. 1993, 64, 593–598. [Google Scholar]
- Mason, G.J.; Cooper, J.; Clarebrough, C. Frustrations of fur-farmed mink. Nature 2001, 410, 35–36. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Wang, Q.J.; Zhang, K.H.; Yao, C.Y.; Huang, J.; Li, Q.; Liu, Z.Y.; Zhang, Y.; Shan, C.H.; Liu, P.; et al. Night-restricted feeding improves locomotor activity rhythm and modulates nutrient utilization to accelerate growth in rabbits. FASEB J. 2021, 35, e21166. [Google Scholar] [CrossRef]
- Piccione, G.; Giannetto, C.; Schembari, A.; Gianesella, M.; Morgante, M. A comparison of daily total locomotor activity between the lactation and the dry period in dairy cattle. Res. Vet. Sci. 2011, 91, 289–293. [Google Scholar] [CrossRef]
- Tolkamp, B.J.; Schweitzer, D.P.N.; Kyriazakis, I. The biologically relevant unit for the analysis of short-term feeding behaviour of dairy cows. J. Dairy Sci. 2000, 83, 2057–2068. [Google Scholar] [CrossRef]
- Wagner-Storch, A.M.; Palmer, R.W. Feeding behaviour, milking behaviour, and milk yields of cows milked in a parlor versus an automatic milking system. J. Dairy Sci. 2003, 86, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Piccione, G.; Giannetto, C.; Casella, S.; Caola, G. Daily locomotor activity in five domestic animals. Anim. Biol. 2010, 60, 15–24. [Google Scholar]
- Piccione, G.; Giannetto, C.; Fazio, F.; Pennisi, P.; Caola, G. Evaluation of total locomotor activity and oxidative markers daily rhythms in sheep. Biol. Rhythm. Res. 2010, 41, 433–439. [Google Scholar] [CrossRef]
- Giannetto, C.; Fazio, F.; Assenza, A.; Caola, G.; Pennisi, P.; Piccione, G. Circadian rhythms of redox states and total locomotor activity in dairy cattle. Czech J. Anim. Sci. 2010, 55, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Giannetto, C.; Giudice, E.; Acri, G.; Fazio, F.; Piccione, G. Interspecies comparison of daily total locomotor activity monitoring in different management conditions. J. Vet. Behav. 2018, 23, 97–100. [Google Scholar] [CrossRef]
- Steensels, M.; Bahr, C.; Berckmans, D.; Halahmi, I.; Antler, A.; Maltz, E. Lying patterns of high producing healthy dairy cows after calving I commercial herds as affected by age, environmental conditions and production. Appl. Anim. Behav. Sci. 2012, 136, 88–95. [Google Scholar] [CrossRef]
- Brzozowska, A.; Łukaszewicz, M.; Sender, G.; Kolasińska, D.; Oprądek, J. Locomotor activity of dairy cows I relation to season. Appl. Anim. Behav. Sci. 2014, 156, 6–11. [Google Scholar] [CrossRef]
- Aschoff, J. Spontane lokomotorische aktivitat. Hand. Zool. 1962, 11, 1–74. [Google Scholar]
- Berger, A. Untersuchungen zum Tagesrhythmus beim Przewalskipferd (Equus Prezwalsii Poljakov, 1881) im Winter; Diplomarbeit HU: Berlin, Germany, 1993. [Google Scholar]
- Piccione, G.; Giannetto, C.; Marafioti, S.; Casella, S.; Assenza, A.; Fazio, F. Effect of different farming management on daily total locomotor activity in sheep. J. Vet. Behav. 2011, 6, 243–247. [Google Scholar] [CrossRef]
- Munoz-Delgrado, J.; Corsi-Cabrera, M.; Canales-Espinosa, D.; Santillan-Doherty, A.M.; Erket, H.G. Astronomical and meteorological parameters and rest-activity rhythm in the spider monkey, Ateletes geoffroyi. Physiol. Behav. 2004, 83, 101–117. [Google Scholar]
- Mann, T.M.; Williams, K.E.; Pearce, P.C.; Scott, E.A. A novel method for activity monitoring in small non-human primates. Lab. Anim. 2005, 39, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Müller, R.; Schrader, L. A new method to measure behavioural activity levels in dairy cows. Appl. Anim. Behav. Sci. 2003, 83, 247–258. [Google Scholar] [CrossRef]
- Nelson, K.; Tong, J.L.; Lee, J.K.; Halbrg, F. Methods for cosinor rhythmometry. Chronobiologia 1979, 6, 305–323. [Google Scholar] [PubMed]
- Refinetti, R. Non-stationary time series and the robustness of circadian rhythms. J. Theor. Biol. 2004, 227, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Metz, J.H.M.; Wierenga, H.K. Behavioral criteria for the design of housingsystems for cattle. In Cattle Housing Systems, Lameness and Behaviour; Wierengaand, H.K., Peterse, D.J., Eds.; Martinus Niihoff Publishers: Amsterdam, The Netherlands, 1987; pp. 14–15. [Google Scholar]
- Bavera, G.; Rodríguez, E.; Beguet, H.; Bocco, O.; Sanchez, J. Manual de Aguas y Aguadas Para el Ganado; Sur, H., Aires, B., Eds.; Hemisferio. Sur, Buenos Aires: Capital Federal, Argentina, 2001; p. 124. [Google Scholar]
- Piccione, G.; Borruso, M.; Fazio, F.; Giannetto, C.; Caola, G. Physiological parameters in lambs during the first 30 days post partum. Small Rum. Res. 2007, 72, 57–60. [Google Scholar] [CrossRef]
- Vannucchi, C.I.; Silva, L.C.; Lúcio, C.F.; Regazzi, F.M.; Veiga, G.A.; Angrimani, D.S. Prenatal and neonatal adaptations with a focus on the respiratory system. Reprod. Domest. Anim. 2012, 47, 177–181. [Google Scholar] [CrossRef]
- Mistlberger, R.; Rusak, B. Palatable daily meals entrain anticipatory activity rhythms in free-feeding rats: Dependence on meal size and nutrient content. Physiol. Behav. 1987, 41, 219–226. [Google Scholar] [CrossRef]
- Piccione, G.; Bertolucci, C.; Caola, G.; Foà, A. Effects of restricted feeding on circadian activity rhythm of sheep-a brief report. Appl. Anim. Behav. Sci. 2007, 107, 233–238. [Google Scholar] [CrossRef]
- Giannetto, C.; Casella, S.; Caola, G.; Piccione, G. Photic and non-photic entrainment on daily rhythm of locomotor activity in goats. Anim. Sci. J. 2010, 81, 122–128. [Google Scholar] [CrossRef]
- Refinetti, R. Circadian Physiology, 2nd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
Mesor (Arbitrary Unit) | Amplitude (Arbitrary Unit) | Acrophase (hh:mm) | Robustness (%) | |
---|---|---|---|---|
Day 1 | 1149.10 ± 134.94 | 376.59 ± 199.50 | 13:45 ± 45 min | 23.88 ± 10.39 |
Day 2 | 1184.03 ± 120.63 | 739.17 ± 165.22 | 13:35 ± 40 min | 25.23 ± 13.56 |
Day 3 | 1022.05 ± 135.80 | 466.87 ± 143.67 | 13:45 ± 3 h 01 min | 8.58 ± 3.59 |
Day 4 | 843.25 ± 127.25 | 273.64 ± 118.11 | 13:50 ± 2 h 20 min | 6.13 ± 1.86 |
Day 5 | 516.23 ± 101.71 | 254.97 ± 121.14 | 11:10 ± 1 h 30 min | 10.25 ± 8.53 |
Day 6 | 721.79 ± 433.64 | 393.96 ± 343.06 | 12:15 ± 4 h 45 min | 17.96 ± 16.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannetto, C.; Cerutti, R.D.; Scaglione, M.C.; Arfuso, F.; Pennisi, M.; Giudice, E.; Piccione, G.; Zumbo, A. Real-Time Measurement of the Daily Total Locomotor Behavior in Calves Reared in an Intensive Management System for the Possible Application in Precision Livestock Farming. Vet. Sci. 2023, 10, 64. https://doi.org/10.3390/vetsci10010064
Giannetto C, Cerutti RD, Scaglione MC, Arfuso F, Pennisi M, Giudice E, Piccione G, Zumbo A. Real-Time Measurement of the Daily Total Locomotor Behavior in Calves Reared in an Intensive Management System for the Possible Application in Precision Livestock Farming. Veterinary Sciences. 2023; 10(1):64. https://doi.org/10.3390/vetsci10010064
Chicago/Turabian StyleGiannetto, Claudia, Raul Delmar Cerutti, Maria Cristina Scaglione, Francesca Arfuso, Melissa Pennisi, Elisabetta Giudice, Giuseppe Piccione, and Alessandro Zumbo. 2023. "Real-Time Measurement of the Daily Total Locomotor Behavior in Calves Reared in an Intensive Management System for the Possible Application in Precision Livestock Farming" Veterinary Sciences 10, no. 1: 64. https://doi.org/10.3390/vetsci10010064
APA StyleGiannetto, C., Cerutti, R. D., Scaglione, M. C., Arfuso, F., Pennisi, M., Giudice, E., Piccione, G., & Zumbo, A. (2023). Real-Time Measurement of the Daily Total Locomotor Behavior in Calves Reared in an Intensive Management System for the Possible Application in Precision Livestock Farming. Veterinary Sciences, 10(1), 64. https://doi.org/10.3390/vetsci10010064