Tetracycline, Sulfonamide, and Erythromycin Residues in Beef, Eggs, and Honey Sold as “Antibiotic-Free” Products in East Tennessee (USA) Farmers’ Markets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Area, and Sample Collection
2.2. Sample Preparation for Detecting Tetracycline Residue
2.2.1. Processing of Beef and Egg Products for the Tetracycline cELISA
2.2.2. Processing of Honey Products for the Tetracycline cELISA
2.3. Sample Preparation for Detecting Sulfonamide Residue
2.3.1. Processing of Beef Products for the Sulfonamide cELISA
2.3.2. Processing of Egg Products for the Sulfonamide cELISA
2.4. Sample Preparation for Detecting Erythromycin Residue
2.4.1. Processing of Beef Products for the Erythromycin cELISA
2.4.2. Processing of Honey Products for the Erythromycin cELISA
2.5. Competitive ELISA Steps
2.6. Data Analysis
3. Results
Level of Antibiotics Residue in the Foods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Cordle, M.K. USDA Regulation of Residues in Meat and Poultry Products. J. Anim. Sci. 1988, 66, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf. Health 2021, 3, 32–38. [Google Scholar] [CrossRef]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.; Van Boeckel, T. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration (FDA). Center for Veterinary Medicine. 2018 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Available online: https://www.fda.gov/media/133411/download (accessed on 1 May 2021).
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, S.N.; Kaneene, J.B.; Lloyd, J.W. Patterns of chemical residues detected in US beef carcasses between 1991 and 1993. J. Am. Vet. Med. Assoc. 1996, 209, 589–593. [Google Scholar]
- Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Lee, M.H.; Lee, H.J.; Ryu, P.D. Public Health Risks: Chemical and Antibiotic Residues—Review. Asian-Australas. J. Anim. Sci. 2001, 14, 402–413. [Google Scholar] [CrossRef]
- Muaz, K.; Riaz, M.; Akhtar, S.; Park, S.; Ismail, A. Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review. J. Food Prot. 2018, 81, 619–627. [Google Scholar] [CrossRef]
- Menkem, Z.E.; Ngangom, B.L.; Tamunjoh, S.S.A.; Boyom, F.F. Antibiotic residues in food animals: Public health concern. Acta Ecol. Sin. 2018, 39, 411–415. [Google Scholar] [CrossRef]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2015, 57, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- U.S. Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Healthcare Quality Promotion (DHQP). about Antimicrobial Resistance. Available online: https://www.cdc.gov/drugresistance/about.html (accessed on 29 December 2022).
- FDA, U.S. Guidance for Industry# 213, New Animal Drugs and New Animal Drug Combination Products Administered in or on Medicated Feed or Drinking Water of Food-Producing Animals: Recommendations for Drug Sponsors for Voluntarily Aligning Product Use Conditions with GFI# 209. Center for Veterinary Medicine: Rockville, MD, USA. Available online: https://www.fda.gov/media/83488/download (accessed on 28 May 2022).
- Ekakoro, J.E.; Caldwell, M.; Strand, E.B.; Okafor, C.C. Perceptions of Tennessee cattle producers regarding the Veterinary Feed Directive. PLoS ONE 2019, 14, e0217773. [Google Scholar] [CrossRef]
- Dillon, M.E. The Impact of Restricting Antibiotic Use in Livestock: Using a ‘One Health’ Approach to Analyze Effects of the Veterinary Feed Directive. Master’s Thesis, Harvard Extension School, Harvard University, Cambridge, MA, USA, 2020. [Google Scholar]
- National Farmers Market Managers 2019 Summary (August 2020). USDA, National Agricultural Statistics Service. Available online: https://usda.library.cornell.edu/concern/publications/pz50hd694?locale=en (accessed on 2 March 2021).
- Eastwood, D.B.; Brooker, J.R.; Gray, M.D. Location and other market attributes affecting farmer’s market patronage: The case of Tennessee. J. Food Distrib. Res. 1999, 30, 63–72. [Google Scholar]
- Phillips, E. Chapter Ten. The Growing Trend of Farmers’ Markets in the United States (6–10). In Case Studies in Food Policy for Developing Countries; Cornell University Press: Ithaca, NY, USA, 2019; pp. 119–132. [Google Scholar] [CrossRef]
- USDA. National Count of Farmers Market Directory Listings; US Department of Agriculture, Agricultural Marketing Service: Washington, DC, USA, 2019. [Google Scholar]
- USDA. Economic Research Service using data from USDA, Agricultural Marketing Service, National Agricultural Statistics Service, Farmers Markets and National Farmers Market Directory. Available online: https://www.ers.usda.gov/data-products/charts-of-note/charts-of-note/?topicId=f5a7d42d-5209-47db-abbb-2e2cc3634cde (accessed on 6 July 2022).
- Byker, C.; Shanks, C.B.; Misyak, S.; Serrano, E. Characterizing Farmers’ Market Shoppers: A Literature Review. J. Hunger. Environ. Nutr. 2012, 7, 38–52. [Google Scholar] [CrossRef]
- Conner, D.S.; Montri, A.D.; Montri, D.N.; Hamm, M.W. Consumer demand for local produce at extended season farmers’ markets: Guiding farmer marketing strategies. Renew. Agric. Food Syst. 2009, 24, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Velasquez, C.; Eastman, C.; Masiunas, J. An assessment of Illinois farmers’ market patrons’ perceptions of locally-grown vegetables. J. Veg. Sci. 2005, 11, 17–26. [Google Scholar] [CrossRef]
- Feldmann, C.; Hamm, U. Consumers’ perceptions and preferences for local food: A review. Food Qual. Prefer. 2015, 40, 152–164. [Google Scholar] [CrossRef]
- Harvey, R.R.; Zakhour, C.M.; Gould, L.H. Foodborne Disease Outbreaks Associated with Organic Foods in the United States. J. Food Prot. 2016, 79, 1953–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, M.M.; Spittler, A.; Ahern, J. A profile of farmers’ market consumers and the perceived advantages of produce sold at farmers’ markets. J. Food Distrib. Res. 2005, 36, 192–201. [Google Scholar]
- Yu, H.; Gibson, K.E.; Wright, K.G.; Neal, J.A.; Sirsat, S.A. Food safety and food quality perceptions of farmers’ market consumers in the United States. Food Control 2017, 79, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Bellemare, M.F.; Nguyen, N. Farmers markets and food-borne illness. Am. J. Agric. Econ. 2018, 100, 676–690. [Google Scholar] [CrossRef]
- U.S. National Residue Program. 2019. Available online: https://www.fsis.usda.gov/node/1982 (accessed on 10 September 2021).
- Paige, J.C.; Chaudry, M.H.; Pell, F.M. Federal surveillance of veterinary drugs and chemical residues (with recent data). Vet. Clin. N. Am. Food Anim. Pract. 1999, 15, 45–61. [Google Scholar] [CrossRef]
- Food Safety and Inspection Service Labeling Guideline on Documentation Needed to Substantiate Animal Raising Claims for Label Submissions. December 2019. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/2021-02/RaisingClaims.pdf (accessed on 21 March 2023).
- USDA FSIS Office of Public Health Science, United States National Residue Program for Meat, Poultry, and Egg Products, 2019 Residue Sampling Plans. 1 October 1 2018 to 30 September 2019. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/2020-07/fy2019-red-book.pdf (accessed on 10 September 2021).
- Cornejo, J.; Pokrant, E.; Figueroa, F.; Riquelme, R.; Galdames, P.; Di Pillo, F.; Jimenez-Bluhm, P.; Hamilton-West, C. Assessing Antibiotic Residues in Poultry Eggs from Backyard Production Systems in Chile, First Approach to a Non-Addressed Issue in Farm Animals. Animals 2020, 10, 1056. [Google Scholar] [CrossRef]
- Cleophas, T.J.; Zwinderman, A.H. Non-parametric tests for Three or more samples (friedman and kruskal-Wallis). In Clinical Data Analysis on a Pocket Calculator; Springer: Berlin/Heidelberg, Germany, 2016; pp. 193–197. [Google Scholar]
- Hochberg, Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 1988, 75, 800–802. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 16; StataCorp LLC.: College Station, TX, USA, 2019. [Google Scholar]
- Price, L.B.; Rogers, L.; Lo, K. Policy reforms for antibiotic use claims in livestock. Science 2022, 376, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Dipeolu, M.A.; Eruvbetine, D.; Oguntona, E.B.; Bankole, O.O.; Sowunmi, K.S. Comparison of effects of antibiotics and enzyme inclusion in diets of laying birds. Arch. Zootec. 2005, 54, 3–11. [Google Scholar]
- Patel, S.J.; Wellington, M.; Shah, R.M.; Ferreira, M.J. Antibiotic Stewardship in Food-producing Animals: Challenges, Progress, and Opportunities. Clin. Ther. 2020, 42, 1649–1658. [Google Scholar] [CrossRef]
- Reybroeck, W.; Daeseleire, E.; De Brabander, H.F.; Herman, L. Antimicrobials in beekeeping. Vet. Microbiol. 2012, 158, 1–11. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Meyer, M.T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci. Total. Environ. 2006, 361, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Kimosop, S.J.; Getenga, Z.M.; Orata, F.; Okello, V.A.; Cheruiyot, J.K. Residue levels and discharge loads of antibiotics in wastewater treatment plants (WWTPs), hospital lagoons, and rivers within Lake Victoria Basin, Kenya. Environ. Monit. Assess. 2016, 188, 532. [Google Scholar] [CrossRef] [PubMed]
- Bonerba, E.; Panseri, S.; Arioli, F.; Nobile, M.; Terio, V.; Di Cesare, F.; Tantillo, G.; Chiesa, L.M. Determination of antibiotic residues in honey in relation to different potential sources and relevance for food inspection. Food Chem. 2021, 334, 127575. [Google Scholar] [CrossRef] [PubMed]
- Rothrock, M.J.; Min, B.R.; Castleberry, L.; Waldrip, H.; Parker, D.; Brauer, D.; Pitta, D.; Nagaraju, I. Antibiotic resistance, antimicrobial residues and bacterial community diversity in pasture-raised poultry, swine and beef cattle manures. J. Anim. Sci. 2021, 99, skab144. [Google Scholar] [CrossRef] [PubMed]
- Savarino, A.; Terio, V.; Barrasso, R.; Ceci, E.; Panseri, S.; Chiesa, L.M.; Bonerba, E. Occurrence of antibiotic residues in Apulian honey: Potential risk of environmental pollution by antibiotics. Ital. J. Food Saf. 2020, 9, 8678. [Google Scholar] [CrossRef] [Green Version]
- Hanna, N.; Sun, P.; Sun, Q.; Li, X.; Yang, X.; Ji, X.; Zou, H.; Ottoson, J.; Nilsson, L.E.; Berglund, B.; et al. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environ. Int. 2018, 114, 131–142. [Google Scholar] [CrossRef]
- Braykov, N.P.; Eisenberg, J.N.S.; Grossman, M.; Zhang, L.; Vasco, K.; Cevallos, W.; Muñoz, D.; Acevedo, A.; Moser, K.A.; Marrs, C.F.; et al. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador. Msphere 2016, 1, e00021-15. [Google Scholar] [CrossRef] [Green Version]
- Lambert, O.; Piroux, M.; Puyo, S.; Thorin, C.; L’Hostis, M.; Wiest, L.; Buleté, A.; Delbac, F.; Pouliquen, H. Widespread Occurrence of Chemical Residues in Beehive Matrices from Apiaries Located in Different Landscapes of Western France. PLoS ONE 2013, 8, e67007. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Baggio, A.; Gallina, A.; Benetti, C.; Mutinelli, F. Residues of antibacterial drugs in honey from the Italian market. Food Addit. Contam. Part B 2009, 2, 52–58. [Google Scholar] [CrossRef]
- Galarini, R.; Saluti, G.; Giusepponi, D.; Rossi, R.; Moretti, S. Multiclass determination of 27 antibiotics in honey. Food Control. 2015, 48, 12–24. [Google Scholar] [CrossRef]
- Er Demirhan, B.; Demirhan, B. Detection of antibiotic residues in blossom honeys from different regions in Tur-key by LC-MS/MS method. Antibiotics 2022, 11, 357. [Google Scholar] [CrossRef]
- Kim, D.-B.; Song, N.-E.; Nam, T.G.; Jung, Y.S.; Yoo, M. Investigation and human health risk assessment of multi-class veterinary antibiotics in honey from South Korea. J. Food Compos. Anal. 2021, 102, 104040. [Google Scholar] [CrossRef]
- Korkmaz, S.D.; Kuplulu, O.; Cil, G.I.; Akyuz, E. Detection of sulfonamide and tetracycline antibiotic residues in Turkish pine honey. Int. J. Food Prop. 2017, 20, S50–S55. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Gill, J.; Bedi, J.; Chhuneja, P. Residues of antibiotics in raw honeys from different apiaries of Northern India and evaluation of human health risks. Acta Aliment. 2020, 49, 314–320. [Google Scholar] [CrossRef]
- Kumar, A.; Gill, J.P.S.; Bedi, J.S.; Chhuneja, P.K.; Kumar, A. Determination of antibiotic residues in Indian honeys and assessment of potential risks to consumers. J. Apic. Res. 2020, 59, 25–34. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Norian, R.; Pajohi-Alamoti, M. Antibiotic Residues in Iranian Honey by Elisa. Int. J. Food Prop. 2014, 17, 2367–2373. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, X.; Han, M.; Yang, Z.; Wang, Y.; Qian, L.; Huang, M.; Luo, B.; Wang, H.; Chen, Y.; et al. Antibiotic residues in honey in the Chinese market and human health risk assessment. J. Hazard. Mater. 2022, 440, 129815. [Google Scholar] [CrossRef]
- Ahmed, M.B.M.; Taha, A.A.; Mehaya, F.M.S. Method validation and risk assessment for sulfonamides and tetracyclines in bees’ honey from Egypt, Libya, and Saudi Arabia. Environ. Geochem. Health 2022, 45, 997–1011. [Google Scholar] [CrossRef]
- Orso, D.; Floriano, L.; Ribeiro, L.C.; Bandeira, N.M.G.; Prestes, O.D.; Zanella, R. Simultaneous Determination of Multiclass Pesticides and Antibiotics in Honey Samples Based on Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods 2015, 9, 1638–1653. [Google Scholar] [CrossRef]
- Fahim, H.M.; Shaltout, F.; El Shatter, M.A. Evaluate antibiotic residues in beef and effect of cooking and freezing on it. Benha Vet. Med. J. 2019, 36, 109–116. [Google Scholar] [CrossRef]
- Saleh, S.M.K.; Mussaed, A.M.; Al-Hariri, F.M. Determination of Tetracycline and Oxytetracycline Residues in Honey by High Performance Liquid Chromatography. J. Agric. Sci. Technol. B 2016, 6. [Google Scholar] [CrossRef]
- Molino, F.; Lázaro, R.; Pérez, C.; Bayarri, S.; Corredera, L.; Herrera, A. Effect of pasteurization and storage on tetracycline levels in honey. Apidologie 2011, 42, 391–400. [Google Scholar] [CrossRef] [Green Version]
- U.S. Residue Limits for Veterinary Drugs, Food Additives, and Unavoidable Contami-Nants in Meat, Poultry, and Egg Products. Available online: https://www.fsis.usda.gov/wps/wcm/connect/2fe2afb9-b935-4a74-83e0-587c41b2f784/2001_Residue_Limits_Veterinary_Drugs_App4.pdf?MOD=AJPERES (accessed on 20 December 2020).
- Baghani, A.; Mesdaghinia, A.; Rafieiyan, M.; Soltan Dallal, M.M.; Douraghi, M. Tetracycline and ciprofloxacin multiresidues in beef and chicken meat samples using indirect com-petitive ELISA. J. Immunoass. Immunochem. 2019, 40, 328–342. [Google Scholar] [CrossRef] [PubMed]
- Nisha, A.R. Antibiotic Residues—A Global Health Hazard. Vet. World 2008, 2, 375–377. [Google Scholar] [CrossRef]
- Yorke, J.; Froc, P. Quantitation of nine quinolones in chicken tissues by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A 2000, 882, 63–77. [Google Scholar] [CrossRef]
- Cerniglia, C.E.; Kotarski, S. Evaluation of Veterinary Drug Residues in Food for Their Potential to Affect Human Intestinal Microflora. Regul. Toxicol. Pharmacol. 1999, 29, 238–261. [Google Scholar] [CrossRef]
- Riley, L.W.; Raphael, E.; Faerstein, E. Obesity in the United States–dysbiosis from exposure to low-dose antibiotics? Front. Public Health 2013, 1, 69. [Google Scholar] [CrossRef] [Green Version]
- Ramatla, T.; Ngoma, L.; Adetunji, M.; Mwanza, M. Evaluation of Antibiotic Residues in Raw Meat Using Different Analytical Methods. Antibiotics 2017, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Combs, M.T.; Boyd, S.; Ashraf-Khorassani, M.; Taylor, L.T. Quantitative Recovery of Sulfonamides from Chicken Liver, Beef Liver, and Egg Yolk via Modified Supercritical Carbon Dioxide. J. Agric. Food Chem. 1997, 45, 1779–1783. [Google Scholar] [CrossRef]
- O’Hara, J.K.; Woods, T.A.; Dutton, N.; Stavely, N. COVID-19′s impact on farmers market sales in the Washington, DC, area. J. Agric. Appl. Econ. 2021, 53, 94–109. [Google Scholar] [CrossRef]
Type of Sample | Total Samples | x/n | Tetracycline | ||||
---|---|---|---|---|---|---|---|
Concentrations (µg/kg) | MRL ¥ (µg/kg) | MRL € (µg/kg) | Exceed MRL (U.S. FDA) n (%) | p-Value | |||
Median (IQR) | |||||||
Beef | 9 | 9/9 | 51.75 (48.34, 56.61) | 200 | 100 | 0 (0) | 0.0315 a |
Egg | 18 | 18/18 | 30.25 (12.22, 51.63) | 200 | 200 | 0 (0) | |
Honey | 9 | 9/9 | 77.86 (23.34, 161.05) | NA | NA | NA | |
Sulfonamide | |||||||
Beef | 9 | 9/9 | 3.50 (3.08, 4.40) | 100 | 100 | ||
Egg | 18 | 11/18 | 1.22 (0.00, 3.55) | 100 | NA | 0.0260 b | |
Erythromycin | |||||||
Beef | 9 | 9/9 | 3.67 (3.41, 5.88) | 100 | 200 | 0 (0) | |
Honey | 9 | 9/9 | 0.68 (0.40, 2.54) | NA | NA | NA | 0.0004 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, S.; Souza, M.J.; Martin-Jimenez, T.; Abouelkhair, M.A.; Kania, S.A.; Okafor, C.C. Tetracycline, Sulfonamide, and Erythromycin Residues in Beef, Eggs, and Honey Sold as “Antibiotic-Free” Products in East Tennessee (USA) Farmers’ Markets. Vet. Sci. 2023, 10, 243. https://doi.org/10.3390/vetsci10040243
Sarkar S, Souza MJ, Martin-Jimenez T, Abouelkhair MA, Kania SA, Okafor CC. Tetracycline, Sulfonamide, and Erythromycin Residues in Beef, Eggs, and Honey Sold as “Antibiotic-Free” Products in East Tennessee (USA) Farmers’ Markets. Veterinary Sciences. 2023; 10(4):243. https://doi.org/10.3390/vetsci10040243
Chicago/Turabian StyleSarkar, Shamim, Marcy J. Souza, Tomas Martin-Jimenez, Mohamed A. Abouelkhair, Stephen A. Kania, and Chika C. Okafor. 2023. "Tetracycline, Sulfonamide, and Erythromycin Residues in Beef, Eggs, and Honey Sold as “Antibiotic-Free” Products in East Tennessee (USA) Farmers’ Markets" Veterinary Sciences 10, no. 4: 243. https://doi.org/10.3390/vetsci10040243
APA StyleSarkar, S., Souza, M. J., Martin-Jimenez, T., Abouelkhair, M. A., Kania, S. A., & Okafor, C. C. (2023). Tetracycline, Sulfonamide, and Erythromycin Residues in Beef, Eggs, and Honey Sold as “Antibiotic-Free” Products in East Tennessee (USA) Farmers’ Markets. Veterinary Sciences, 10(4), 243. https://doi.org/10.3390/vetsci10040243