Supplementation with Rumen-Protected Methionine Reduced the Parasitic Effect of Haemonchus contortus in Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Management and Experimental Design
2.2. Animal Samples and Measurements
2.3. Chemical Analyses and Analytical Procedures
2.4. Statistical Analysis
3. Results
3.1. Experimental Diets and Growth Performance
3.2. Parasitological and Physiological Parameters
3.3. Serological and Blood Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charlier, J.; van der Voort, M.; Kenyon, F.; Skuce, P.; Vercruysse, J. Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol. 2014, 30, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Cameroon-Blake, N.; Malatji, M.P.; Chapwanya, A.; Mukaratirwa, S. Epidemiology, prevention and control of gastrointestinal helminths of small ruminants in the Caribbean region—A scoping review. Trop. Anim. Health Prod. 2022, 54, 372. [Google Scholar] [CrossRef] [PubMed]
- van Houtert, M.F.J.; Sykes, A.R. Implications of nutrition for the ability of ruminants to withstand gastrointestinal nematode infections. Int. J. Parasitol. 1996, 26, 1151–1167. [Google Scholar] [CrossRef]
- Adams, C.A. Nutrition-based health in animal production. Nutr. Res. Rev. 2006, 19, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Cei, W.; Salah, N.; Alexandre, G.; Bambou, J.C.; Archimede, H. Impact of energy and protein on the gastro-intestinal parasitism of small ruminants: A meta-analysis. Livest. Sci. 2018, 212, 34–44. [Google Scholar] [CrossRef]
- Athanasiadou, S.; Houdijk, J.G.M. Nutrition and Immunity in Animal Disease: Lessons from Parasitic Gastroenteritis; Watson, R.R., Zibadi, S., Preedy, V.R., Eds.; Humana Press Inc.: Totowa, NJ, USA, 2010; ISBN 978-1-60761-060-1. [Google Scholar]
- Lochmiller, R.L.; Deerenberg, C. Trade-offs in evolutionary immunology: Just what is the cost of immunity? Oikos 2000, 88, 87–98. [Google Scholar] [CrossRef]
- Colditz, I.G. Six costs of immunity to gastrointestinal nematode infections. Parasite Immunol. 2008, 30, 63–70. [Google Scholar] [CrossRef]
- Koski, K.G.; Scott, M.E. Gastrointestinal nematodes, trace elements, and immunity. J. Trace Elem. Exp. Med. 2003, 16, 237–251. [Google Scholar] [CrossRef]
- McClure, S.J. How minerals may influence the development and expression of immunity to endoparasites in livestock. Parasite Immunol. 2008, 30, 89–100. [Google Scholar] [CrossRef]
- Houdijk, J.G.M.; Kyriazakis, I.; Kidane, A.; Athanasiadou, S. Manipulating small ruminant parasite epidemiology through the combination of nutritional strategies. Vet. Parasitol. 2012, 186, 38–50. [Google Scholar] [CrossRef]
- Ceriac, S.; Archimede, H.; Feuillet, D.; Felicite, Y.; Giorgi, M.; Bambou, J.C. Supplementation with rumen-protected proteins induces resistance to Haemonchus contortus in goats. Sci. Rep. 2019, 9, 1237. [Google Scholar] [CrossRef]
- Crawford, C.D.; Mata-Padrino, D.J.; Belesky, D.P.; Bowdridge, S.A. Effects of supplementation containing rumen by-pass protein on parasitism in grazing lambs. Small Rumin. Res. 2020, 190, 106161. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G.Y. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Montout, L.; Poullet, N.; Bambou, J.-C. Systematic Review of the Interaction between Nutrition and Immunity in Livestock: Effect of Dietary Supplementation with Synthetic Amino Acids. Animals 2021, 11, 2813. [Google Scholar] [CrossRef] [PubMed]
- Dorny, P.; Vercruysse, J. Evaluation of a micro method for the routine determination of serum pepsinogen in cattle. Res. Vet. Sci. 1998, 65, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Bambou, J.C.; de la Chevrotiere, C.; Varo, H.; Arquet, R.; Kooyman, F.N.J.; Mandonnet, N. Serum antibody responses in Creole kids experimentally infected with Haemonchus contortus. Vet. Parasitol. 2008, 158, 311–318. [Google Scholar] [CrossRef]
- Bambou, J.C.; Larcher, T.; Cei, W.; Dumoulin, P.J.; Mandonnet, N. Effect of Experimental Infection with Haemonchus contortus on Parasitological and Local Cellular Responses in Resistant and Susceptible Young Creole Goats. Biomed. Res. Int. 2013, 2013, 902759. [Google Scholar] [CrossRef]
- Vansoest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 18th ed.; AOAC (Association of Official Analytical Chemists): Gaithersburgs, MD, USA, 2006. [Google Scholar]
- Coop, R.L.; Kyriazakis, I. Nutrition-parasite interaction. Vet. Parasitol. 1999, 84, 187–204. [Google Scholar] [CrossRef]
- Coop, R.L.; Kyriazakis, I. Influence of host nutrition on the development and consequences of nematode parasitism in ruminants. Trends Parasitol. 2001, 17, 325–330. [Google Scholar] [CrossRef]
- Mazinani, M.; Memili, E.; Rude, B.J. Harnessing the value of rumen protected amino acids to enhance animal performance. Ann. Anim. Sci. 2022, 22, 43–62. [Google Scholar] [CrossRef]
- Houdijk, J.G.M. Differential effects of protein and energy scarcity on resistance to nematode parasites. Small Rumin. Res. 2012, 103, 41–49. [Google Scholar] [CrossRef]
- Ayyat, M.S.; Al-Sagheer, A.; Noreldin, A.E.; Abd El-Hack, M.E.; Khafaga, A.F.; Abdel-Latif, M.A.; Swelum, A.A.; Arif, M.; Salem, A.Z.M. Beneficial effects of rumen-protected methionine on nitrogen-use efficiency, histological parameters, productivity and reproductive performance of ruminants. Anim. Biotechnol. 2021, 32, 51–66. [Google Scholar] [CrossRef]
- Waggoner, J.W.; Löest, C.A.; Mathis, C.P.; Hallford, D.M.; Petersen, M.K. Effects of rumen-protected methionine supplementation and bacterial lipopolysaccharide infusion on nitrogen metabolism and hormonal responses of growing beef steers. J. Anim. Sci. 2009, 87, 681–692. [Google Scholar] [CrossRef]
- Abdelrahman, M.M.; Hunaiti, D.A. The effect of dietary yeast and protected methionine on performance and trace minerals status of growing Awassi lambs. Livest. Sci. 2008, 115, 235–241. [Google Scholar] [CrossRef]
- Li, H.; Jiang, B.; Zhou, Y. Effects of rumen-protected methionine supplementation on growth performance, nitrogen balance, carcass characteristics, and meat quality of lambs fed diets containing buckwheat straw. Can. J. Anim. Sci. 2020, 100, 337–345. [Google Scholar] [CrossRef]
- Hoste, H.; Torres-Acosta, J.F.J.; Quijada, J.; Chan-Perez, I.; Dakheel, M.M.; Kommuru, D.S.; Mueller-Harvey, I.; Terrill, T.H. Interactions Between Nutrition and Infections with Haemonchus contortus and Related Gastrointestinal Nematodes in Small Ruminants. In Haemonchus Contortus and Haemonchosis—Past, Present and Future Trends; Gasser, R.B., Von Samson Himmelstjerna, G., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 93, pp. 239–351. ISBN 0065-308X978-0-12-810396-8; 978-0-12-810395-1. [Google Scholar]
- Muñoz-Caro, T.; Rubio R, M.C.; Silva, L.M.R.; Magdowski, G.; Gärtner, U.; McNeilly, T.N.; Taubert, A.; Hermosilla, C. Leucocyte-derived extracellular trap formation significantly contributes to Haemonchus contortus larval entrapment. Parasit. Vectors 2015, 8, 607. [Google Scholar] [CrossRef]
- Beriajaya; Copeman, D.B. Haemonchus contortus and Trichostrongylus colubriformis in pen-trials with Javanese thin tail sheep and Kacang cross Etawah goats. Vet. Parasitol. 2006, 135, 315–323. [Google Scholar] [CrossRef] [PubMed]
- McBean, D.; Nath, M.; Kenyon, F.; Zile, K.; Bartley, D.J.; Jackson, F. Faecal egg counts and immune markers in a line of Scottish Cashmere goats selected for resistance to gastrointestinal nematode parasite infection. Vet. Parasitol. 2016, 229, 1–8. [Google Scholar] [CrossRef]
- Cei, W.; Salah, N.; Paut, C.; Dumoulin, P.J.; Arquet, R.; Felicite, Y.; Alexandre, G.; Archimede, H.; Bambou, J.C. Impact of the post-weaning nutritional history on the response to an experimental Haemonchus contortus infection in Creole goats and Black Belly sheep. Vet. Parasitol. 2016, 218, 87–92. [Google Scholar] [CrossRef]
- Basripuzi, N.H.; Salisi, M.S.; Isa, N.M.M.; Busin, V.; Cairns, C.; Jenvey, C.; Stear, M.J. Boer goats appear to lack a functional IgA and eosinophil response against natural nematode infection. Vet. Parasitol. 2018, 264, 18–25. [Google Scholar] [CrossRef] [PubMed]
- de la Chevrotiere, C.; Bambou, J.C.; Arquet, R.; Jacquiet, P.; Mandonnet, N. Genetic analysis of the potential role of IgA and IgE responses against Haemonchus contortus in parasite resistance of Creole goats. Vet. Parasitol. 2012, 186, 337–343. [Google Scholar] [CrossRef] [PubMed]
Diet Composition | Control | Low Methionine | High Methionine |
---|---|---|---|
Ingredient composition (g/kg DM) | |||
Maize | 221.5 | 225 | 230 |
Soybean Meal | 103 | 96 | 83 |
Hay (Digitaria spp.) | 675 | 675 | 675 |
Methionine (Smartamine®) | 0 | 3.5 | 11.5 |
Mineral Mixture | 0.5 | 0.5 | 0.5 |
Nutrient composition (g/Kg) | |||
Dry Matter | 931.4 | 931.6 | 920.7 |
Organic Matter | 921.9 | 921.6 | 920.7 |
Crude Protein | 75.2 | 74.9 | 75.4 |
Neutral Detergent Fiber | 537.2 | 536.0 | 533.7 |
Acid Detergent Fiber | 304.9 | 304.3 | 303.1 |
Acid Detergent Lignin | 53.9 | 53.9 | 53.8 |
Methionine | 1.02 | 3.31 | 8.56 |
Predictive nutritive value | |||
Metabolizable Energy (MJ/Kg) | 9.25 | 9.25 | 9.25 |
Net Energy (MJ/Kg) | 5.47 | 5.47 | 5.48 |
PDI 1 (g/Kg) | 85.66 | 85.65 | 85.67 |
PDIA 2 | 44.36 | 44.38 | 44.42 |
MetDi 3 (% PDI) | 1.87 | 2.02 | 2.75 |
LysDi 4 (% PDI) | 6.60 | 6.56 | 6.62 |
HisDi 5 (% PDI) | 2.12 | 2.12 | 2.12 |
Period 1 21 to 26 dpi 1 | Period 2 35 to 40 dpi | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C 2 | LM 3 | HM 4 | C | LM | HM | SEM | G 5 | P 6 | G × P | |
Intake (g/d) | ||||||||||
DMI 7 | 490.5 | 543.2 | 506.0 | 475.8 | 516.1 | 527.0 | 12.46 | 0.102 | 0.697 | 0.505 |
OMI 8 | 438.3 | 489.0 | 457.8 | 430.2 | 471.1 | 477.5 | 11.20 | 0.064 | 0.895 | 0.599 |
CPI 9 | 32.9 a | 35.3 a | 34.1 a | 36.4 b | 38.3 b | 44.5 b | 1.48 | 0.189 | 0.010 | 0.270 |
NDFI 10 | 238.4 | 269.6 | 228.4 | 243.4 | 268.6 | 266.0 | 9.08 | 0.186 | 0.281 | 0.415 |
ADFI 11 | 137.1 | 152.9 | 135.3 | 139.9 | 152.7 | 150.7 | 5.19 | 0.286 | 0.418 | 0.649 |
Total tract digestibility (g/kg DM) | ||||||||||
DDM 12 | 671.4 a | 697.1 a | 660.9 a | 642.3 b | 656.1 b | 656.0 b | 6.92 | 0.199 | 0.014 | 0.313 |
DOM 13 | 684.9 a | 711.6 a | 677.6 a | 661.5 b | 679.3 b | 673.4 b | 6.44 | 0.105 | 0.033 | 0.431 |
DCP 14 | 428.0 a | 477.9 a | 486.8 a | 545.5 b | 572.6 b | 638.7 b | 22.92 | 0.166 | 0.001 | 0.765 |
ADG 15 (g/d) | 27.3 | 35.2 | 36.7 | 27.3 | 35.2 | 36.7 | 4.38 | 0.417 | 1.000 | 1.000 |
C 1 | LM 2 | HM 3 | SEM 4 | p-Value | |||
---|---|---|---|---|---|---|---|
G 5 | dpi 6 | G × dpi | |||||
FEC (eggs/g of faeces) | 5369 | 2773 | 3001 | 1652 | 0.366 | <0.0001 | 0.577 |
Female | 389 | 291 | 290 | 94 | 0.727 | - | - |
Male | 349 | 297 | 202 | 161 | 0.653 | - | - |
Parasite burden | 739 | 589 | 492 | 292 | 0.702 | - | - |
C 1 | LM 2 | HM 3 | SEM 4 | p-Value | |||
---|---|---|---|---|---|---|---|
G 5 | dpi 6 | G × dpi | |||||
IgE anti-L3 7 | 0.175 a | 0.141 b | 0.157 ab | 0.009 | 0.017 | 0.009 | 0.789 |
IgE anti-ESP 8 | 0.143 | 0.131 | 0.108 | 0.005 | 0.130 | <0.0001 | 0.667 |
IgA anti-L3 | 0.183 a | 0.200 a | 0.225 b | 0.021 | 0.021 | 0.009 | 0.994 |
IgA anti-ESP | 0.159 a | 0.255 b | 0.243 b | 0.024 | 0.008 | 0.013 | 0.984 |
U_Tyrosine 9 | 1.624 a | 1.521 a | 1.346 b | 0.061 | 0.005 | <0.0001 | 0.952 |
Complete Blood Count (%) | C 1 | LM 2 | HM 3 | SEM 4 | p-Value | ||
---|---|---|---|---|---|---|---|
G 5 | dpi 6 | G × dpi | |||||
Lymphocytes | 40.04 | 40.37 | 39.63 | 1.3 | 0.828 | 0.003 | 0.828 |
Monocytes | 4.06 | 4.26 | 4.16 | 1.0 | 0.324 | 0.01 | 0.668 |
Polymorphonuclear neutrophils | 47.15 a | 45.08 a | 51.95 b | 1.6 | 0.004 | 0.012 | 0.674 |
Eosinophils | 8.61 a | 10.16 a | 4.17 b | 1.2 | 0.002 | 0.343 | 0.443 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montout, L.; Bahloul, L.; Feuillet, D.; Jean-Bart, M.; Archimède, H.; Bambou, J.-C. Supplementation with Rumen-Protected Methionine Reduced the Parasitic Effect of Haemonchus contortus in Goats. Vet. Sci. 2023, 10, 559. https://doi.org/10.3390/vetsci10090559
Montout L, Bahloul L, Feuillet D, Jean-Bart M, Archimède H, Bambou J-C. Supplementation with Rumen-Protected Methionine Reduced the Parasitic Effect of Haemonchus contortus in Goats. Veterinary Sciences. 2023; 10(9):559. https://doi.org/10.3390/vetsci10090559
Chicago/Turabian StyleMontout, Laura, Lahlou Bahloul, Dalila Feuillet, Max Jean-Bart, Harry Archimède, and Jean-Christophe Bambou. 2023. "Supplementation with Rumen-Protected Methionine Reduced the Parasitic Effect of Haemonchus contortus in Goats" Veterinary Sciences 10, no. 9: 559. https://doi.org/10.3390/vetsci10090559
APA StyleMontout, L., Bahloul, L., Feuillet, D., Jean-Bart, M., Archimède, H., & Bambou, J.-C. (2023). Supplementation with Rumen-Protected Methionine Reduced the Parasitic Effect of Haemonchus contortus in Goats. Veterinary Sciences, 10(9), 559. https://doi.org/10.3390/vetsci10090559