Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Selection of the Bacterial Strains
2.2. Antimicrobial Susceptibility Testing
2.3. Detection of Florfenicol Resistance Genes
3. Results
3.1. Isolates, Origin of the Samples and Co-Infections
3.2. Identity of the Isolates and Co-Current Infections
3.3. Antimicrobial Susceptibility Testing
3.4. Detection of Florfenicol Resistance Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Syriopoulou, V.P.; Harding, A.L.; Goldmann, D.A.; Smith, A.L. In Vitro Antibacterial Activity of Fluorinated Analogs of Chloramphenicol and Thiamphenicol. Antimicrob. Agents Chemother. 1981, 19, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular Basis of Bacterial Resistance to Chloramphenicol and Florfenicol. FEMS Microbiol. Rev. 2004, 28, 519–542. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhu, T.; Zhou, D.; Lu, W.; Liu, H.; Sun, Z.; Ying, J.; Lu, J.; Lin, X.; Li, K.; et al. Analysis of Resistance to Florfenicol and the Related Mechanism of Dissemination in Different Animal-Derived Bacteria. Front. Cell. Infect. Microbiol. 2020, 10, 369. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.C.; Schwarz, S. Tetracycline and Phenicol Resistance Genes and Mechanisms: Importance for Agriculture, the Environment, and Humans. J. Environ. Qual. 2016, 45, 576–592. [Google Scholar] [CrossRef] [PubMed]
- Arcangioli, M.-A.; Leroy-Sétrin, S.; Martel, J.-L.; Chaslus-Dancla, E. A New Chloramphenicol and Florfenicol Resistance Gene Flanked by Two Integron Structures in Salmonella typhimurium DT104. FEMS Microbiol. Lett. 1999, 174, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, J.; Xu, L.; Liu, Y.; Li, P.; Zhu, T.; Cheng, C.; Lu, S.; Xu, T.; Yi, H.; et al. Spread of the Florfenicol Resistance floR Gene among Clinical Klebsiella pneumoniae Isolates in China. Antimicrob. Resist. Infect. Control 2018, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Werckenthin, C.; Kehrenberg, C. Identification of a Plasmid-Borne Chloramphenicol-Florfenicol Resistance Gene in Staphylococcus sciuri. Antimicrob. Agents Chemother. 2000, 44, 2530–2533. [Google Scholar] [CrossRef] [PubMed]
- Park, B.-K.; Lim, J.-H.; Kim, M.-S.; Hwang, Y.-H.; Yun, H.-I. Pharmacokinetics of Florfenicol and Its Metabolite, Florfenicol Amine, in Dogs. Res. Vet. Sci. 2008, 84, 85–89. [Google Scholar] [CrossRef]
- Tameirão, E.R.; Soares, B.C.F.; Toma, H.S.; Wosiacki, S.R.; Ferrante, M. Eficacia de Florfenicol para el Tratamiento de Pioderma por Staphylococcus intermedius en Perros. Rev. Investig. Vet. Perú 2021, 32, e17678. [Google Scholar] [CrossRef]
- Noli, C.; Sartori, R.; Cena, T. Impact of a Terbinafine-Florfenicol-Betamethasone Acetate Otic Gel on the Quality of Life of Dogs with Acute Otitis Externa and Their Owners. Vet. Dermatol. 2017, 28, 386-e90. [Google Scholar] [CrossRef]
- Trif, E.; Cerbu, C.; Olah, D.; Zăblău, S.D.; Spînu, M.; Potârniche, A.V.; Pall, E.; Brudașcă, F. Old Antibiotics Can Learn New Ways: A Systematic Review of Florfenicol Use in Veterinary Medicine and Future Perspectives Using Nanotechnology. Animals 2023, 13, 1695. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 7th ed.; CLSI Supplement VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024; ISBN 9781684402113. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibillity Testing, 33rd ed.; Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023; ISBN 9781684401710. [Google Scholar]
- Butaye, P. Mobile Genes Coding for Efflux-Mediated Antimicrobial Resistance in Gram-Positive and Gram-Negative Bacteria. Int. J. Antimicrob. Agents 2003, 22, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Desomer, J.; Vereecke, D.; Crespi, M.; Montagu, M. The Plasmid-Encoded Chloramphenicol-Resistance Protein of Rhodococcus fascians Is Homologous to the Transmembrane Tetracycline Efflux Proteins. Mol. Microbiol. 1992, 6, 2377–2385. [Google Scholar] [CrossRef] [PubMed]
- Nagy, I.; Schoofs, G.; Vanderleyden, J.; De Mot, R. Transposition of the IS21-Related Element IS1415 in Rhodococcus erythropolis. J. Bacteriol. 1997, 179, 4635–4638. [Google Scholar] [CrossRef] [PubMed]
- Tauch, A.; Zheng, Z.; Pühler, A.; Kalinowski, J. Corynebacterium striatum Chloramphenicol Resistance Transposon Tn5564:Genetic Organization and Transposition in Corynebacterium glutamicum. Plasmid 1998, 40, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Kehrenberg, C.; Schwarz, S. fexA, a Novel Staphylococcus lentus Gene Encoding Resistance to Florfenicol and Chloramphenicol. Antimicrob. Agents Chemother. 2004, 48, 615–618. [Google Scholar] [CrossRef]
- Dai, L.; Wu, C.-M.; Wang, M.-G.; Wang, Y.; Wang, Y.; Huang, S.-Y.; Xia, L.-N.; Li, B.-B.; Shen, J.-Z. First Report of the Multidrug Resistance Gene cfr and the Phenicol Resistance Gene fexA in a Bacillus Strain from Swine Feces. Antimicrob. Agents Chemother. 2010, 54, 3953–3955. [Google Scholar] [CrossRef]
- Gómez-Sanz, E.; Torres, C.; Lozano, C.; Zarazaga, M. High Diversity of Staphylococcus aureus and Staphylococcus pseudintermedius Lineages and Toxigenic Traits in Healthy Pet-Owning Household Members. Underestimating Normal Household Contact? Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 83–94. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Wu, C.; Schwarz, S.; Shen, Z.; Jeon, B.; Ding, S.; Zhang, Q.; Shen, J. A Novel Phenicol Exporter Gene, fexB, Found in enterococci of Animal Origin. J. Antimicrob. Chemother. 2012, 67, 322–325. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T.; et al. A Novel Gene, optrA, That Confers Transferable Resistance to Oxazolidinones and Phenicols and Its Presence in Enterococcus faecalis and Enterococcus faecium of Human and Animal Origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.M.; Gaca, A.; Bispo, P.M.; Lebreton, F.; Saavedra, J.T.; Silva, R.A.; Basílio-Júnior, I.D.; Zorzi, F.M.; Filsner, P.H.; Moreno, A.M.; et al. Coexistence of the Oxazolidinone Resistance–Associated Genes Cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Front. Public Health 2020, 8, 518. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Zou, J.; Zhao, J.; Tang, Y.; Yuan, Y.; Yang, B.; Huang, J.; Xia, P.; Xia, Y. Emergence of optrA-Mediated Linezolid Resistance in Enterococcus faecium: A Molecular Investigation in a Tertiary Hospital of Southwest China from 2014–2018. Infect. Drug Resist. 2022, 15, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Gao, M.; Feng, C.; Yan, T.; Sheng, Z.; Shi, W.; Liu, S.; Zhang, L.; Li, A.; Lu, J.; et al. Molecular Characterization of Florfenicol and Oxazolidinone Resistance in Enterococcus Isolates from Animals in China. Front. Microbiol. 2022, 13, 811692. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Sun, J.; Ma, J.; Li, L.; Fang, L.-X.; Zhang, Q.; Liu, Y.-H.; Liao, X.-P. Identification of the Multi-Resistance Gene Cfr in Escherichia coli Isolates of Animal Origin. PLoS ONE 2014, 9, e102378. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2019; ISBN 978-92-4-151552-8. [Google Scholar]
- Pedersen, K.; Pedersen, K.; Jensen, H.; Finster, K.; Jensen, V.F.; Heuer, O.E. Occurrence of Antimicrobial Resistance in Bacteria from Diagnostic Samples from Dogs. J. Antimicrob. Chemother. 2007, 60, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Damborg, P.; Sørensen, A.H.; Guardabassi, L. Monitoring of Antimicrobial Resistance in Healthy Dogs: First Report of Canine Ampicillin-Resistant Enterococcus faecium Clonal Complex 17. Vet. Microbiol. 2008, 132, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Maaland, M.G.; Mo, S.S.; Schwarz, S.; Guardabassi, L. In Vitro Assessment of Chloramphenicol and Florfenicol as Second-Line Antimicrobial Agents in Dogs. J. Vet. Pharmacol. Ther. 2015, 38, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Mechesso, A.F.; Lee, S.J.; Park, N.H.; Park, S.C. Pharmacokinetic Parameters and Optimal Dosage of a Florfenicol and Tylosin Mixture in Beagle Dogs. Veterinární Medicína 2018, 63, 329–334. [Google Scholar] [CrossRef]
- Gómez-Beltrán, D.A.; Villar, D.; López-Osorio, S.; Ferguson, D.; Monsalve, L.K.; Chaparro-Gutiérrez, J.J. Prevalence of Antimicrobial Resistance in Bacterial Isolates from Dogs and Cats in a Veterinary Diagnostic Laboratory in Colombia from 2016–2019. Vet. Sci. 2020, 7, 173. [Google Scholar] [CrossRef]
- Derakhshandeh, A.; Eraghi, V.; Boroojeni, A.M.; Niaki, M.A.; Zare, S.; Naziri, Z. Virulence Factors, Antibiotic Resistance Genes and Genetic Relatedness of Commensal Escherichia coli Isolates from Dogs and Their Owners. Microb. Pathog. 2018, 116, 241–245. [Google Scholar] [CrossRef]
- Ma, S.; Chen, S.; Lyu, Y.; Huang, W.; Liu, Y.; Dang, X.; An, Q.; Song, Y.; Jiao, Y.; Gong, X.; et al. China Antimicrobial Resistance Surveillance Network for Pets (CARPet), 2018 to 2021. One Health Adv. 2023, 1, 7. [Google Scholar] [CrossRef]
- Zhang, Q.; Tang, S.-S.; Qian, M.-Y.; Wei, L.; Zhou, D.; Zhang, Z.-J.; He, J.-K.; Zhang, Q.-J.; Zhu, P.; Xiao, X.-L. Nanoemulsion formulation of florfenicol improves bioavailability in pigs. J. Vet. Pharmacol. Ther. 2016, 39, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-K.; Lo, D.-Y.; Wei, H.-W.; Kuo, H.-C. Antimicrobial Resistance of Escherichia coli Isolates from Canine Urinary Tract Infections. J. Vet. Med. Sci. 2015, 77, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, S.; Stevenson, M.A.M.; Hudson, C.R.; Maier, M.; Buffington, T.; Dam, Q.; Maurer, J.J. Characterization of Multidrug-Resistant Escherichia coli Isolates Associated with Nosocomial Infections in Dogs. J. Clin. Microbiol. 2002, 40, 3586–3595. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Wu, F.; Wu, C.; Jiang, Y.; Yin, M.; Zhou, W.; Zhu, X.; Cheng, C.; Zhu, L.; Li, K.; et al. Florfenicol Resistance in Enterobacteriaceae and Whole-Genome Sequence Analysis of Florfenicol-Resistant Leclercia adecarboxylata Strain R25. Int. J. Genom. 2019, 2019, 9828504. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Chen, W.; Zhou, R.; Yang, J.; Wu, Y.; Zheng, J.; Fei, S.; Wu, G.; Sun, Z.; Li, J.; et al. Characteristics of the Plasmid-Mediated Colistin-Resistance Gene Mcr-1 in Escherichia coli Isolated from a Veterinary Hospital in Shanghai. Front. Microbiol. 2022, 13, 1002827. [Google Scholar] [CrossRef] [PubMed]
- Stege, P.B.; Hordijk, J.; Sandholt, A.K.S.; Zomer, A.L.; Viveen, M.C.; Rogers, M.R.C.; Salomons, M.; Wagenaar, J.A.; Mughini-Gras, L.; Willems, R.J.L.; et al. Gut Colonization by ESBL-Producing Escherichia coli in Dogs Is Associated with a Distinct Microbiome and Resistome Composition. Microbiol. Spectr. 2023, 11, e00063-23. [Google Scholar] [CrossRef] [PubMed]
Class | Antibacterial Agent | Disk Content (μg) | Breakpoints | |
---|---|---|---|---|
Inhibition Zone (mm) | MIC μg/mL | |||
Phenicols | Florfenicol | 30 | S: ≥19 I:15–18, R: ≤14 | S: ≤4, I:8, R: ≥16 |
Chloramphenicol | 30 | S: ≥18 I:13–17, R: ≤12 | S: ≤8, I:16, R: ≥32 | |
β-Lactams | Ampicillin | 10 | S: ≥17 I:14–16, R: ≤13 | S: ≤8, I:16, R: ≥32 |
Amoxicillin + clavulanate | 20 + 10 | S: ≥18 I:14–17, R: ≤13 | S: ≤ 8/4, I:16/8, R: ≥32/16 | |
Cefalexin | - | - | S: ≤16, R: ≥32 | |
Cefaclor | 30 | S: ≥18 I:15–17, R: ≤14 | - | |
Cefuroxime | 30 | S: ≥23 I:15–22, R: ≤14 | - | |
Cefoxitin | 30 | S: ≥18 I:15–17, R: ≤14 | - | |
Ceftazidime | 30 | S: ≥21 I:18–20, R: ≤17 | - | |
Cefovecin | - | - | S: ≤2, I:4, R: ≥8 | |
Ceftiofur | - | - | S: ≤2, I:4, R: ≥8 | |
Cefpodoxime | - | - | S: ≤2, I:4, R: ≥8 | |
Piperacillin + tazobactam | 100 + 10 | S: ≥21 I:18–20, R: ≤17 | - | |
Imipenem | - | - | S: ≤1, I:2, R: ≥4 | |
Aminoglycosides | Amikacin | 30 | S: ≥17 I:15–16, R: ≤14 | S: ≤4, I:8, R: ≥16 |
Gentamicin | 10 | S: ≥15 I:13–14, R: ≤12 | S: ≤2, I:4, R: ≥8 | |
Neomycin | - | - | S: ≤8, I:16, R: ≥32 | |
Tobramycin | 10 | S: ≥15 I:13–14, R: ≤12 | - | |
Fluoroquinolones | Ciprofloxacin | 5 | S: ≥26 I:22–25, R: ≤21 | - |
Enrofloxacin | 5 | S: ≥23 I:17–22, R: ≤16 | S: ≤0.5, I:1–2, R: ≥4 | |
Marbofloxacin | - | - | S: ≤1, I:2, R: ≥4 | |
Pradofloxacin | - | - | S: ≤0.25, I:0.5–1, R: ≥2 | |
Folate Pathway Inhibitors | Trimethoprim + sulph/zole | 1.25 + 23.75 | S: ≥16 I:11–15, R: ≤10 | S: ≤ 2/38, R: ≥ 4/76 |
Tetracyclines | Tetracycline | - | - | S: ≤4, I:8, R: ≥16 |
Doxycycline | 30 | S: ≥14 I:11–13, R: ≤10 | S: ≤4, I:8, R: ≥16 | |
Minocycline | 30 | S: ≥16 I:13–15, R: ≤12 | - | |
Phosphonic acid | Fosfomycin | 200 | S: ≥16 I:13–15, R: ≤12 | - |
Nitrofurans | Nitrofurantoin | 300 | S: ≥17 I:15–16, R: ≤14 | S ≤32, I:64, R ≥128 |
Gene | sequence 5′→3′ | Product Length (bp) | Tm = °C | Reference |
---|---|---|---|---|
floR | F: ACGTTTATGCCAACCGTCCT R: CATTACAAGCGCGACAGTGG | 398 | 55 | [3] |
cfr | F: GGGAGGATTTAATAAATAATTTTGGAGAAACAG R: CTTATATGTTCATCGAGTATATTCATTACCTCATC | 580 | 62 | [3] |
Sample | Total Samples (%) | Canine Samples (%) | Feline Samples (%) |
---|---|---|---|
Soft tissue | 16 (37.2%) | 14 (46.7%) | 2 (15.4%) |
Urine 1 | 18 (41.9%) | 9 (30%) | 9 (69.2%) |
Blood culture | 4 (9.3%) | 3 (10%) | 1 (7.7%) |
Upper respiratory | 2 (4.7%) | 1 (3.3%) | 1 (7.7%) |
Bile secretion | 1 (2.3%) | 1 (3.3%) | 0 (0%) |
Ear canal | 1 (2.3%) | 1 (3.3%) | 0 (0%) |
Vaginal swab | 1 (2.3%) | 1 (3.3%) | 0 (0%) |
Total 1 | 43 | 30 | 13 |
Code | Sample | FFC-Resistant Isolate | Co-Current Isolates 1 |
---|---|---|---|
FC1 | Soft tissue | E. coli | ΜRSP (MDR) and Enterococcus spp. (SDR) |
FC2 | Soft tissue | E. coli | MRSA (MDR) and Pseudomonas aeruginosa (NDR) |
FC4 | Soft tissue | E. coli | ND |
FC5 | Soft tissue | E. coli | Proteus mirabilis (SDR) |
FC6 | Ear canal | E. coli | Acinetobacter baumannii (SDR) |
FC7 | Soft tissue | E. coli | Klebsiella pneumoniae (MDR) and MRSP (MDR) |
FC8 | Urine | E. coli | ND |
FC9 | Soft tissue | E. coli | ΜRSP (MDR) |
FC10 | Blood | E. coli | ND |
FC11 | Soft tissue | E. coli | P. mirabilis (SDR) and Enterococcus spp. (NDR) |
FC13 | Tracheal secretion | E. coli | ND |
FC16 | Soft tissue | Enterobacter cloacae | Staphylococcus pseudintermedius (SDR), P. aeruginosa (NDR) |
FC18 | Soft tissue | Pluralibacter gergoviae | E. coli (SDR) |
FC19 | Soft tissue | E. cloacae | MRSP (MDR) |
FC20 | Blood | E. cloacae | ND |
FC22 | Soft tissue | E. cloacae | Ε. coli (MDR) |
FC24 | Urine | E. cloacae | ND |
FC26 | Soft tissue | P. gergoviae | E. coli (SDR) |
FC27 | Soft tissue | E. cloacae | ΜRSP (MDR) |
FC28 | Soft tissue | K. pneumoniae | ΜRSA (MDR) |
FC29 | Blood | Klebsiella oxytoca | A. baumannii (MDR) |
FC30 | Urine | K. pneumoniae | ND |
FC31 | Urine | K. pneumoniae | ND |
FC33 | Urine | K. pneumoniae | ND |
FC34 | Bile secretion | E. coli | ND |
FC35 | Urine | P. mirabilis | ND |
FC36 | Urine | P. mirabilis | ND |
FC42 | Urine | K. pneumoniae | ND |
FC43 | Urine | P. mirabilis | ND |
FC44 | Vaginal swab | Morganella morganii | Staphylococcus aureus (SDR) |
Code | Sample | FFC-Resistant Isolate | Co-Current Isolates |
---|---|---|---|
FC3 | Urine | E. coli | ND |
FC12 | Urine | E. coli | E. cloacae (MDR) |
FC14 | Urine | E. cloacae | ND |
FC15 | Soft tissue | E. cloacae | P. mirabilis (MDR) |
FC17 | Urine | E. cloacae | E. coli (MDR) |
FC21 | Urine | E. cloacae | ND |
FC23 | Blood | E. cloacae | ND |
FC25 | Soft tissue | E. cloacae | ND |
FC32 | Urine | K. pneumoniae | ND |
FC37 | Urine | P. mirabilis | ND |
FC38 | Nasal secretion | P. mirabilis | Streptococcus spp (SDR) |
FC39 | Urine | P. mirabilis | ND |
FC40 | Urine | Citrobacter freundii | E. coli (MDR) |
FC41 | Urine | P. mirabilis | ND |
Antibacterial Agent | Resistance Rate (n) | Resistant Rate in Dogs (n) | Resistant Rate in Cats (n) |
---|---|---|---|
Florfenicol | 100% (44) | 100% (30) | 100% (14) |
Chloramphenicol | 90.9% (40) | 93.3% (28) | 85.7% (12) |
Ampicillin | 100% (44) | 100% (30) | 100% (14) |
Amoxicillin + clavulanate | 93.2% (41) | 90.0% (27) | 100% (14) |
Cefaclor | 97.7% (43) | 96.7%(29) | 100% (14) |
Cefuroxime | 93.2% (41) | 90.0% (27) | 100% (14) |
Cefoxitin | 68.2% (30) | 70.0% (21) | 64.3% (9) |
Ceftazidime | 45.5% (20) | 40.0% (12) | 57.1% (8) |
Piperacillin + tazobactam | 34.1% (15) | 30.0% (9) | 42.9% (6) |
Amikacin | 13.6% (6) | 20.0% (6) | 0.0% (0) |
Gentamicin | 38.6% (17) | 40.0% (12) | 35.7% (5) |
Tobramycin | 43.2% (19) | 43.3% (13) | 42.9% (6) |
Enrofloxacin | 93.2% (41) | 90.0% (27) | 100% (14) |
Ciprofloxacin | 93.2% (41) | 90.0% (27) | 100% (14) |
Sulph/zole + trimethoprim | 86.4% (38) | 86.7% (26) | 85.7% (12) |
Doxycycline | 90.9% (40) | 90.0% (27) | 92.5% (13) |
Minocycline | 63.6% (28) | 60.0% (18) | 71.4% (10) |
Fosfomycin | 9.1% (4) | 13.3% (4) | 0.0% (0) |
Nitrofurantoin | 40.1% (18) | 33.3% (10) | 57.1% (8) |
Antibacterial Agent | Resistance Rate (n) | Resistant Rate in Dogs (n) | Resistant Rate in Cats (n) |
---|---|---|---|
Florfenicol | 100% (44) | 100% (30) | 100% (14) |
Chloramphenicol | 100% (44) | 100% (30) | 100% (14) |
Ampicillin 1 | 100% (29) | 100% (22) | 100% (7) |
Amoxicillin + clavulanate | 88.6% (39) | 90.0% (27) | 85.7% (12) |
Cefalexin 1 | 100% (37) | 100%(27) | 100% (10) |
Cefpodoxime 1 | 81.4% (35) | 79.3% (23) | 85.7% (12) |
Cefovecin 1 | 79.1% (34) | 75.9% (22) | 85.7% (12) |
Ceftiofur | 70.5% (31) | 66.7% (20) | 78.6% (11) |
Imipenem | 31.8% (14) | 26.7% (8) | 42.9% (6) |
Amikacin | 13.6% (6) | 16.7% (5) | 7.1% (1) |
Gentamicin | 40.1% (18) | 43.3% (13) | 35.7% (5) |
Neomycin | 4.5% (2) | 6.7% (2) | 0.0% (0) |
Enrofloxacin | 95.5% (42) | 93.3% (28) | 100% (14) |
Marbofloxacin | 95.5% (42) | 93.3% (28) | 100% (14) |
Pradofloxacin | 95.5% (42) | 93.3% (28) | 100% (14) |
Sulph/zole + trimethoprim | 86.4% (38) | 86.7% (26) | 85.7% (12) |
Tetracycline | 100% (44) | 100% (30) | 100% (14) |
Doxycycline | 97.7% (43) | 100% (30) | 92.9% (13) |
Nitrofurantoin | 27.3% (12) | 23.3% (7) | 35.7% (5) |
Bacterial Species | floR-Positive Isolates | floR-Negative Isolates |
---|---|---|
C. freundii | FC40 | - |
E. cloacae | FC16, FC17, FC19, FC20, FC21, FC22, FC23, FC24 | FC14, FC15, FC25, FC27 |
E. coli | FC1, FC2, FC3, FC4, FC6, FC9, FC34 | FC5, FC7, FC8, FC10, FC11, FC12, FC13 |
K. oxytoca | FC29 | - |
K. pneumoniae | FC28, FC30, FC31, FC33, FC42 | FC32 |
M. morganii | FC44 | - |
P. gergoviae | FC18 | FC26 |
P. mirabilis | FC35, FC36, FC37, FC38, FC39, FC41, FC43 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lysitsas, M.; Triantafillou, E.; Spyrou, V.; Billinis, C.; Valiakos, G. Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales. Vet. Sci. 2024, 11, 71. https://doi.org/10.3390/vetsci11020071
Lysitsas M, Triantafillou E, Spyrou V, Billinis C, Valiakos G. Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales. Veterinary Sciences. 2024; 11(2):71. https://doi.org/10.3390/vetsci11020071
Chicago/Turabian StyleLysitsas, Marios, Eleutherios Triantafillou, Vassiliki Spyrou, Charalambos Billinis, and George Valiakos. 2024. "Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales" Veterinary Sciences 11, no. 2: 71. https://doi.org/10.3390/vetsci11020071
APA StyleLysitsas, M., Triantafillou, E., Spyrou, V., Billinis, C., & Valiakos, G. (2024). Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales. Veterinary Sciences, 11(2), 71. https://doi.org/10.3390/vetsci11020071