Combined Dietary Supplementation of Tenebrio molitor Larvae and Chitosan in Growing Pigs: A Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals, and Diets
2.2. Determination of Fecal Microbial Populations
2.3. Hematological and Biochemical Analysis of Blood Samples
2.4. Collection of Meat Samples
2.5. Microbial Analysis of Meat Samples
2.6. Chemical Analysis of Meat Samples
2.7. Total Phenolic Analysis of Meat Samples
2.8. Oxidative Stability Analysis of Meat Samples
2.9. Color and pH Analysis of Meat Samples
2.10. Meat Fatty Acid Analysis
2.11. Statistical Analysis
3. Results
3.1. Performance Parameters
3.2. Fecal Microbial Populations
3.3. Blood Parameters
3.4. Microbiological, Chemical, and Oxidative Stability Analysis of the Meat Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United-Nation. World Population Prospects: The 2012 Revision; United Nation: New York, NY, USA, 2013.
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- NRC. National Research Council, Nutrient Requirements of Swine; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Son, J.; Park, S.H.; Jung, H.J.; You, S.J.; Kim, B.G. Effects of drying methods and blanching on nutrient utilization in black soldier fly larva meals based on in vitro assays for pigs. Animals 2023, 13, 858. [Google Scholar] [CrossRef]
- Ko, H.; Kim, Y.; Kim, J. The produced mealworm meal through organic wastes as a sustainable protein source for weanling pigs. J. Anim. Sci. Technol. 2020, 63, 365–373. [Google Scholar] [CrossRef]
- Bosch, G.; Veenenbos, M.E.; van Zanten, H.H.E.; Meijer, N.P.; van der Fels-Klerx, H.J.; van Loon, J.J.A. Efficiency of organic stream conversion by black soldier fly larvae: A review of the scientific literature. J. Insects Food Feed. 2018, 4, S44. [Google Scholar]
- Meyer, S.; Gessner, D.K.; Maheshwari, G.; Röhrig, J.; Friedhoff, T.; Most, E.; Zorn, H. Tenebrio molitor larvae meal affects the cecal microbiota of growing pigs. Animals 2020, 10, 1151. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.S.; Cho, K.H.; Hong, J.S.; Jang, H.S.; Chung, Y.H.; Kwon, G.T. Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian-Australas. J. Anim. Sci. 2019, 32, 387–394. [Google Scholar] [CrossRef]
- Jin, X.H.; Heo, P.S.; Hong, J.S.; Kim, N.J.; Kim, Y.Y. Supplementation of dried mealworm (Tenebrio molitor larvae) on growth performance, nutrient digestibility and blood profiles in weaning pigs. Asian-Australas. J. Anim. Sci. 2016, 29, 979–986. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Z.; Wang, Y.; Yan, S.; Shi, B. Effects of chitosan as growth promoter on diarrhea, nutrient apparent digestibility, fecal microbiota and immune response in weaned piglets. J. Appl. Anim. Res. 2018, 46, 1437–1442. [Google Scholar] [CrossRef]
- Wijtten, P.J.; van der Meulen, J.; Verstegen, M.W. Intestinal barrier function and absorption in pigs after weaning: A review. Br. J. Nutr. 2011, 105, 967–981. [Google Scholar] [CrossRef]
- Kick, A.R.; Tompkins, M.B.; Flowers, W.L.; Whisnant, C.S.; Almond, G.W. Effects of stress associated with weaning on the adaptive immune system in pigs. J. Anim. Sci. 2012, 90, 649–656. [Google Scholar] [CrossRef]
- Zhu, L.H.; Zhao, K.L.; Chen, X.L.; Xu, J.X. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. J. Anim. Sci. 2012, 90, 2581–2589. [Google Scholar] [CrossRef]
- Madec, F.; Bridoux, N.; Bounaix, S.; Cariolet, R.; Duval-Iflah, Y.; Hampson, D.J.; Jestin, A. Experimental models of porcine post-weaning colibacillosis and their relationship to post-weaning diarrhoea and digestive disorders as encountered in the field. Vet. World 2000, 72, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Fairbrother, J.M.; Nadeau, E.; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Uyanga, V.A.; Ejeromedoghene, O.; Lambo, M.T.; Alowakennu, M.; Alli, Y.A.; Ere-Richard, A.A.; Min, L.; Zhao, J.; Wang, X.; Jiao, H.; et al. Chitosan and chitosan-based composites as beneficial compounds for animal health: Impact on gastrointestinal functions and biocarrier application. J. Funct. Foods 2023, 104, 105520. [Google Scholar] [CrossRef]
- Yeul, P.; Shrivastava, S. Chitosan: An overview. Int. J. Curr. Res. 2012, 4, 176–182. [Google Scholar]
- Huq, T.; Khan, A.; Brown, D.; Dhayagude, N.; He, Z.; Ni, Y. Sources, production and commercial applications of fungal chitosan: A review. J. Bioresour. Bioprod. 2022, 7, 85–98. [Google Scholar] [CrossRef]
- Amirthalingam, S.; Rajendran, A.K.; Mani, P.; Rangasamy, J. Perspectives and challenges of using chitosan in various biological applications. In Chitosan for Biomaterials III: Structure-Property Relationships; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Guan, Z.; Feng, Q. Chitosan and chitooligosaccharide: The promising non-plant-derived prebiotics with multiple biological activities. Int. J. Mol. Sci. 2022, 23, 6761. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, B.; Yan, S.; Li, J.; Li, T.; Guo, Y.; Guo, X. Effects of chitosan supplementation on the growth performance, nutrient digestibility, and digestive enzyme activity in weaned pigs. Czech J. Anim. Sci. 2014, 59, 156–163. [Google Scholar] [CrossRef]
- O’Shea, C.J.; Sweeney, T.; Lynch, M.B.; Callan, J.J.; O’Doherty, J.V. Modification of selected bacteria and markers of protein fermentation in the distal gastrointestinal tract of pigs upon consumption of chitosan is accompanied by heightened manure odor emissions. J. Anim. Sci. 2011, 89, 1366–1375. [Google Scholar] [CrossRef]
- Xiao, D.; Wang, Y.; Liu, G.; He, J.; Qiu, W.; Hu, X.; Feng, Z.; Ran, M.; Nyachoti, C.M.; Kim, S.W.; et al. Effects of chitosan on intestinal inflammation in weaned pigs challenged by enterotoxigenic Escherichia coli. PLoS ONE 2014, 9, e104192. [Google Scholar] [CrossRef]
- Hou, G.; Zhang, M.; Wang, J.; Zhu, W. Chitosan-chelated zinc modulates ileal microbiota, ileal microbial metabolites, and intestinal function in weaned piglets challenged with Escherichia coli K88. Appl. Microbiol. Biotechnol. 2021, 105, 7529–7544. [Google Scholar] [CrossRef]
- Moye, Z.D.; Burne, R.A.; Zeng, L. Uptake and metabolism of N-acetylglucosamine and glucosamine by Streptococcus mutans. Appl. Environ. Microbiol. 2014, 80, 5053–5067. [Google Scholar] [CrossRef]
- Adámková, A.; Mlček, J.; Kouřimská, L.; Borkovcová, M.; Bušina, T.; Adámek, M.; Bednářová, M.; Krajsa, J. Nutritional potential of selected insect species reared on the island of sumatra. Int. J. Environ. Res. Public Health 2017, 14, 521. [Google Scholar] [CrossRef]
- Song, Y.S.; Kim, M.W.; Moon, C.; Seo, D.J.; Han, Y.S.; Jo, Y.H. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio molitor. Entomol. Res. 2018, 48, 227–233. [Google Scholar] [CrossRef]
- Benzertiha, A.; Kierończyk, B.; Kołodziejski, P.; Pruszyńska–Oszmałek, E.; Rawski, M.; Józefiak, D.; Józefiak, A. Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poult. Sci. 2020, 99, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Sedgh-Gooya, S.; Torki, M.; Darbemamieh, M.; Khamisabadi, H.; Karimi Torshizi, M.A.; Abdolmohamadi, A. Yellow mealworm, Tenebrio molitor (Col: Tenebrionidae), larvae powder as dietary protein sources for broiler chickens: Effects on growth performance, carcass traits, selected intestinal microbiota and blood parameters. J. Anim. Physiol. Anim. Nutr. 2021, 105, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Marono, S.; Piccolo, G.; Loponte, R.; Di Meo, C.; Attia, Y.A.; Nizza, A.; Bovera, F. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital. J. Anim. Sci. 2015, 14, 3889. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol. 2015, 34, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio molitor Larvae) as an alternative protein source for monogastric animal: A review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef] [PubMed]
- Van Broekhoven, S.; Oonincx, D.G.A.B.; Van Huis, A.; Van Loon, J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rumbos, C.I.; Adamaki-Sotiraki, C.; Gourgouta, M.; Karapanagiotidis, I.T.; Asimaki, A.; Mente, E.; Athanassiou, C.G. Strain matters: Strain effects on the larval growth and performance of the yellow mealworm, Tenebrio molitor L. J. Insects Food Feed. 2021, 7, 1183–1194. [Google Scholar] [CrossRef]
- Premier Nutrition. Premier Atlas 2014; Premier Nutrition: Brereton, UK, 2014. [Google Scholar]
- Choudhury, R.; Middelkoop, A.; Bolhuis, J.E.; Kleerebezem, M. Legitimate and reliable determination of the age-related intestinal microbiome in young piglets; rectal swabs and fecal samples provide comparable insights. Front. Microbiol. 2019, 10, 1886. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Durán, M.; López-Jácome, L.; Colín-Castro, C.; Cerón-González, G.; Ortega-Peña, S.; Vanegas-Rodríguez, E.; Mondragón-Eguiluz, J.; Franco-Cendejas, R. Comparison of the MicroScan WalkAway and VITEK 2 Compact systems for the identification and susceptibility of clinical Gram-positive and Gram-negative bacteria. Investig. Discapac. 2017, 6, 105–114. [Google Scholar]
- Biasato, I.; Renna, M.; Gai, F.; Dabbou, S.; Meneguz, M.; Perona, G.; Martinez, S. Partially defatted black soldier fly larva meal inclusion in piglet diets: Effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2019, 10, 12. [Google Scholar] [CrossRef]
- Zomborszky-Kovács, M.; Vetesi, F.; Horn, P.; Repa, I.; Kovacs, F. Effects of prolonged exposure to low-dose fumonisin B1 in pigs. J. Vet. Med. 2002, 49, 197–201. [Google Scholar] [CrossRef]
- PD. Presidential Degree 56/2013 on Harmonization of the Directive 2010/63/EU, on the Protection of Animals Used for Scientific Purposes; Hellenic Parliament: Athens, Greece, 2013. [Google Scholar]
- Bonos, E.; Skoufos, I.; Petrotos, K.; Giavasis, I.; Mitsagga, C.; Fotou, K.; Vasilopoulou, K.; Giannenas, I.; Gouva, E.; Tsinas, A.; et al. Innovative use of olive, winery and cheese waste by-products as functional ingredients in broiler nutrition. Vet. Sci. 2022, 9, 290. [Google Scholar] [CrossRef] [PubMed]
- ISO 4833:2001; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Microorganisms—Colony-Count Technique at 30 Degress Celcius. ISO: Geneva, Switzerland, 2001.
- ISO 6579:2002; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Salmonella spp. ISO: Geneva, Switzerland, 2002.
- Anderson, S. Determination of fat, moisture, and protein in meat and meat products by using the FOSS FoodScan near-infrared spectrophotometer with FOSS artificial neural network calibration model and associated database: Collaborative study. J. AOAC Int. 2007, 90, 1073–1083. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Waterhouse, A.L. Determination of total phenolics. Curr. Protoc. Food Anal. Chem. 2002, 6, I1.1.1–I1.1.8. [Google Scholar] [CrossRef]
- Vasilopoulos, S.; Giannenas, I.; Savvidou, S.; Bonos, E.; Rumbos, C.; Papadopoulos, E.; Fortomaris, P.; Athanassiou, C. Growth performance, welfare traits and meat characteristics of broilers fed diets partly replaced with whole Tenebrio molitor larvae. Anim. Nutr. 2022, 13, 90–100. [Google Scholar] [CrossRef]
- Ahn, D.U.; Olson, D.G.; Jo, C.; Love, J.; Jin, S.K. Volatiles Production and Lipid Oxidation in Irradiated Cooked Sausage as Related to Packaging and Storage. J. Food Sci. 1999, 64, 226–229. [Google Scholar] [CrossRef]
- Van de Perre, V.; Permentier, L.; De Bie, S.; Verbeke, G.; Geers, R. Effect of unloading, lairage, pig handling, stunning and season on pH of pork. Meat Sci. 2010, 86, 931–937. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef]
- Skoufos, I.; Tzora, A.; Giannenas, I.; Bonos, E.; Papagianni, N.; Tsinas, A.; Christaki, E.; Florou-Paneri, P. Dietary inclusion of rapeseed meal as soybean meal substitute on growth performance, gut microbiota, oxidative stability and fatty acid profile in growing-fattening pigs. Asian-Australas. J. Anim. Sci. 2016, 11, 89–97. [Google Scholar] [CrossRef]
- IBM. SPSS Statistics for Windows; IBM: Armonk, NY, USA, 2018. [Google Scholar]
- Smith, F.; Clark, J.E.; Overman, B.L.; Tozel, C.C.; Huang, J.H.; Rivier, J.E.; Blikslager, A.T.; Moeser, A.J. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G352–G363. [Google Scholar] [CrossRef]
- Cho, K.H.; Sampath, V.; Kim, A.J.; Yoo, J.S.; Kim, I.H. Evaluation of full-fatted and hydrolysate mealworm (Tenebrio molitor) larvae as a substitute for spray-dried plasma protein diet in weaning pigs. J. Anim. Physiol. Anim. Nutr. 2023, 107, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Gessner, D.K.; Braune, S.M.; Friedhoff, T.; Most, E.; Hornig, M. Comprehensive evaluation of the metabolic effects of insect meal from Tenebrio molitor L. in growing pigs by transcriptomics, metabolomics and lipidomics. J. Anim. Sci. Biotechnol. 2020, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shi, B.; Yan, S.; Li, T.; Guo, Y.; Li, J. Effects of chitosan on body weight gain, growth hormone and intestinal morphology in weaned pigs. Asian-Australas. J. Anim. Sci. 2013, 26, 1484–1489. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, W.; Spranghers, T.; De Clercq, P.; De Smet, S.; Sas, B.; Eeckhout, M. Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Anim. Feed. Sci. Technol. 2015, 204, 72–87. [Google Scholar] [CrossRef]
- Gasco, L.; Biancarosa, I.; Liland, N.S. From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Curr. Opin. Green. Sustain. Chem. 2020, 23, 67–79. [Google Scholar] [CrossRef]
- Zheng, L.; Duarte, M.E.; Loftus, A.S.; Kim, S.W. Intestinal health of pigs upon weaning: Challenges and nutritional intervention. Front. Vet. Sci. 2021, 8, 628258. [Google Scholar] [CrossRef]
- Devriendt, B.; Stuyven, E.; Verdonck, F.; Goddeeris, B.M.; Cox, E. Enterotoxigenic Escherichia coli (K88) induce proinflammatory responses in porcine intestinal epithelial cells. Dev. Comp. Immunol. 2010, 34, 1175–1182. [Google Scholar] [CrossRef]
- Bednorz, C.; Guenther, S.; Oelgeschläger, K.; Kinnemann, B.; Pieper, R.; Hartmann, S.; Tedin, K.; Semmler, T.; Neumann, K.; Schierack, P.; et al. Feeding the probiotic Enterococcus faecium strain ncimb 10415 to piglets specifically reduces the number of Escherichia coli pathotypes that adhere to the gut mucosa. Appl. Environ. Microbiol. 2013, 79, 7896–7904. [Google Scholar] [CrossRef]
- Hermann-Bank, M.L.; Skovgaard, K.; Stockmarr, A.; Strube, M.L.; Larsen, N.; Kongsted, H.; Ingerslev, H.-C.; Mølbak, L.; Boye, M. Characterization of the bacterial gut microbiota of piglets suffering from new neonatal porcine diarrhoea. BMC Vet. Res. 2015, 11, 139. [Google Scholar] [CrossRef]
- Scott, K.P.; Gratz, S.W.; Sheridan, P.O.; Flint, H.J.; Duncan, S.H. The influence of diet on the gut microbiota. Pharmacol. Res. 2013, 69, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-Q.; Du, Y.-J.; Wang, C.; Tao, W.-J.; He, Y.-D.; Li, H. Effects of copper-loaded chitosan nanoparticles on intestinal microflora and morphology in weaned piglets. Biol. Trace Elem. Res. 2012, 149, 184–189. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, M.J.; Tissing, W.J.; Dun, C.A.; Meessen, N.E.; Kamps, W.A.; de Bont, E.S.; Harmsen, H.J. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin. Infect. Dis. 2009, 49, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Van Immerseel, F.; Ducatelle, R.; De Vos, M.; Boon, N.; Van De Wiele, T.; Verbeke, K.; Rutgeerts, P.; Sas, B.; Louis, P.; Flint, H.J. Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. J. Med. Microbiol. 2010, 59, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Schierack, P.; Walk, N.; Reiter, K.; Weyrauch, K.D.; Wieler, L.H. Composition of intestinal Enterobacteriaceae populations of healthy domestic pigs. Microbiology 2007, 153, 3830–3837. [Google Scholar] [CrossRef] [PubMed]
- Biasato, I.; Ferronico, I.; Colombino, E.; Gai, F.; Schiavone, A.; Cocolin, L. Effects of dietary Hermetia illucens meal inclusion on cecal microbiota and small intestinal mucin dynamics and infiltration with immune cells of weaned piglets. J. Anim. Sci. Biotechnol. 2020, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Hahm, K.-S. Antimicrobial peptides (AMPs): Peptide structure and mode of action. J. Biochem. Mol. Biol. 2005, 38, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.C.; Ingale, S.L.; Kim, J.S.; Park, Y.K.; Kwon, I.K.; Chae, B.J. Effects of dietary supplementation with an antimicrobial peptide-P5 on growth performance, nutrient retention, excreta and intestinal microflora and intestinal morphology of broilers. Anim. Feed. Sci. Technol. 2013, 185, 78–84. [Google Scholar] [CrossRef]
- Hakenasen, I.M.; Grepperud, G.H.; Hansen, I.O.; Overland, M.; Anestad, R.M. Full-fat insect meal as a protein and energy source for weaned piglets: Effects on growth performance, nutrient digestibility, gastrointestinal function and microbiota. Res. Sq. 2020, 1–37. [Google Scholar] [CrossRef]
- Gresse, R.; Chaucheyras-Durand, F.; Fleury, M.A.; Van de Wiele, T.; Forano, E.; Blanquet-Diot, S. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol. 2017, 25, 851–873. [Google Scholar] [CrossRef] [PubMed]
- Etim, N.; Enyenihi, G.; Williams, M.E.; Udo, M.; Offiong, E.E.A. Haematological parameters: Indicators of the physiological status of farm animals. Br. J. Sci. 2013, 10, 33–45. [Google Scholar]
- Etim, N.N.; Offiong, E.E.A.; Williams, M.E.; Asuquo, L.E. Influence of nutrition on blood parameters of pigs. Am. Int. J. Biol. Life Sci. 2014, 2, 46–52. [Google Scholar]
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Alaru, A.O.; Mwangi, D.M.; Githinji, M. Effect of dietary replacement of fishmeal by insect meal on growth performance, blood profiles and economics of growing pigs in Kenya. Animals 2019, 9, 705. [Google Scholar] [CrossRef]
- Ameen, S.A.; Adedeji, O.S.; Akingbade, A.A.; Olayemi, T.B.; Oyedapo, L.O.; Aderinola, A. The effect of different feeding regimes on haematological parameters and immune status of commercial broilers in derived savannah zone of Nigeria. In Proceedings of the 32nd Annual Conference Nigerian Society Animal Production (NSAP), Calabar, Nigeria, 18–22 March 2007; pp. 146–148. [Google Scholar]
- Seo, W.G.; Pae, H.O.; Kim, N.Y.; Oh, G.S.; Park, I.S.; Kim, Y.H.; Kim, Y.M.; Lee, Y.H.; Jun, C.D.; Chung, H.T. Synergistic cooperation between water-soluble chitosan oligomers and interferon-gamma for induction of nitric oxide synthesis and tumoricidal activity in murine peritoneal macrophages. Cancer Lett. 2000, 159, 189–195. [Google Scholar] [CrossRef]
- Adhikari, H.S.; Yadav, P.N. Anticancer Activity of Chitosan, Chitosan Derivatives, and Their Mechanism of Action. Int. J. Biomater. 2018, 2018, 2952085. [Google Scholar] [CrossRef]
- Veldkamp, T.; Dong, L.; Paul, A.; Govers, C. Bioactive properties of insect products for monogastric animals—A review. J. Insects Food Feed. 2022, 8, 1027–1040. [Google Scholar] [CrossRef]
- Chen, B.; Li, D.; Leng, D.; Kui, H.; Bai, X.; Wang, T. Gut microbiota and meat quality. Front. Microbiol. 2022, 13, 951726. [Google Scholar] [CrossRef]
- Knecht, D.; Cholewińska, P.; Jankowska-Mąkosa, A.; Czyż, K. Development of swine’s digestive tract microbiota and its relation to production indices—A review. Animals 2020, 10, 527. [Google Scholar] [CrossRef] [PubMed]
- Zacharis, C.; Bonos, E.; Giannenas, I.; Skoufos, I.; Tzora, A.; Voidarou, C.; Tsinas, A.; Fotou, K.; Papadopoulos, G.; Mitsagga, C.; et al. Utilization of Tenebrio molitor larvae reared with different substrates as feed ingredients in piglets. Vet. Sci. 2023, 10, 393. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhu, J.; Ren, H.; Deng, Y.; Zhang, X.; Liu, Y.; Cui, Q.; Hu, X.; Zuo, J.; Chen, B.; et al. Growth performance, carcass characteristics, meat quality and chemical composition of the Shaziling pig and its crossbreeds. Livest. Sci. 2021, 244, 104342. [Google Scholar] [CrossRef]
- Terlouw, C. Stress reactions at slaughter and meat quality in pigs: Genetic background and prior experience: A brief review of recent findings. Livest. Prod. Sci. 2005, 94, 125–135. [Google Scholar] [CrossRef]
- Meluzzi, A.; Sirri, F.; Castellini, C.; Roncarati, A.; Melotti, P.; Franchini, A. Influence of genotype and feeding on chemical composition of organic chicken meat. Ital. J. Anim. Sci. 2009, 8, 766–768. [Google Scholar] [CrossRef]
- Viktoria, O.; Jana, P. The influence of production systems on meat quality, with emphasis on pork. Ambio 2005, 34, 338–343. [Google Scholar] [CrossRef]
- Callow, E.H. Comparative studies of meat. II. Changes in the carcass during growth and fattening and their relation to the chemical composition of the fatty and muscular tissues. J. Agric. Sci. 1948, 38, 174–199. [Google Scholar] [CrossRef]
- Okrouhla, M.; Stupka, R.; Citek, J.; Sprysl, M.; Trnka, M.; Kluzakova, E. Effect of lean meat proportion on the chemical composition of pork. Czech J. Food Scien 2008, 26, 464–469. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, T.K.; Choi, H.D.; Park, J.D.; Sung, J.M.; Jeon, K.H.; Paik, H.D.; Kim, Y.B. Optimization of replacing pork meat with yellow worm (Tenebrio molitor L.) for frankfurters. Korean J. Food Sci. Anim. Resour. 2017, 37, 617–625. [Google Scholar] [CrossRef]
- Echegaray, N.; Munekata, P.E.S.; Centeno, J.A.; Domínguez, R.; Pateiro, M.; Carballo, J.; Lorenzo, J.M. Total phenol content and antioxidant activity of different Celta pig carcass locations as affected by the finishing diet (chestnuts or commercial feed). Antioxidants 2020, 10, 5. [Google Scholar] [CrossRef]
- Bermúdez, R.; Franco, I.; Franco, D.; Carballo, J.; Lorenzo, J.M. Influence of inclusion of chestnut in the finishing diet on fatty acid profile of dry-cured ham from Celta pig breed. Meat Sci. 2012, 92, 394–399. [Google Scholar] [CrossRef]
- Echegaray, N.; Pateiro, M.; Munekata, P.E.S.; Lorenzo, J.M.; Chabani, Z.; Farag, M.A.; Domínguez, R. Measurement of antioxidant capacity of meat and meat products: Methods and applications. Molecules 2021, 26, 3880. [Google Scholar] [CrossRef]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef]
- Barbut, S.; Sosnicki, A.A.; Lonergan, S.M.; Knapp, T.; Ciobanu, D.C.; Gatcliffe, L.J.; Huff-Lonergan, E.; Wilson, E.W. Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat. Meat Sci. 2008, 79, 46–63. [Google Scholar] [CrossRef]
- Towers, L. Pork Meat Quality: Understanding Industry Measurements and Guidelines. 2016. Available online: https://www.thepigsite.com/articles/pork-meat-quality-understanding-industry-measurements-and-guidelines (accessed on 10 September 2023).
- Alessandra de Avila Souza, M.; Shimokomaki, M.; Nascimento Terra, N.; Petracci, M. Oxidative changes in cooled and cooked pale, soft, exudative (PSE) chicken meat. Food Chem. 2022, 385, 132471. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Wang, Y.; Chen, S.; Hu, M.; Wang, Z.; Wu, G. Low-mlecular-weight chitosan supplementation increases the population of Prevotella in the cecal contents of weanling pigs. Front. Microbiol. 2017, 8, 2182. [Google Scholar] [CrossRef] [PubMed]
- Barkley, K.E.; Fields, B.; Dilger, A.C.; Boler, D.D. Rapid Communication: Effect of machine, anatomical location, and replication on instrumental color of boneless pork loins. J. Anim. Sci. 2018, 96, 2747–2752. [Google Scholar] [CrossRef] [PubMed]
- Florowski, T.; Florowska, A.; Chmiel, M.; Adamczak, L.; Pietrzak, D.; Ruchlicka, M. The effect of pale, soft and exudative meat on the quality of canned pork in gravy. Meat Sci. 2017, 123, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Madeira, M.S.; Alfaia, C.M.; Lopes, P.A.; Pestana, J.; Coelho, D.; Fontes, C.M.G.A.; Prates, J.A.M. Ameliorating pork marbling and quality with novel feeding approaches. In Advances in Animal Health, Medicine and Production; Springer: Cham, Switzerland, 2020; pp. 161–177. [Google Scholar]
- Siemianowska, E.; Kosewska, A.; Aljewicz, M.; Skibniewska, K.A.; Polak-Juszczak, L.; Jarocki, A.; Marta, J. Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agric. Sci. 2013, 4, 5. [Google Scholar] [CrossRef]
- Baldacchino, F.; Spagnoleta, A.; Lamaj, F.; Vitale, M.L.; Verrastro, V. First optimization of tomato pomace in diets for Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). Insects 2023, 14, 854. [Google Scholar] [CrossRef] [PubMed]
- Altmann, B.A.; Neumann, C.; Rothstein, S.; Liebert, F.; Morlein, D. Do dietary soy alternatives lead to pork quality improvements or drawbacks? A look into micro-alga and insect protein in swine diets. Meat Sci. 2019, 153, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Müller Richli, M.; Weinlaender, F.; Wallner, M.; Pöllinger-Zierler, B.; Kern, J.; Scheeder, M.R.L. Effect of feeding Alphitobius diaperinus meal on fattening performance and meat quality of growing-finishing pigs. J. Appl. Anim. Res. 2023, 51, 204–211. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Chen, W.; Rong, T.; Wang, G.; Li, J.; Ma, X. Use of Hermetia illucens larvae as a dietary protein source: Effects on growth performance, carcass traits, and meat quality in finishing pigs. Meat Sci. 2019, 158, 107837. [Google Scholar] [CrossRef]
- Liu, S.; Loo, Y.T.; Li, Z.; Ng, K. Alginate-inulin-chitosan based microspheres alter metabolic fate of encapsulated quercetin, promote short chain fatty acid production, and modulate pig gut microbiota. Food Chem. 2023, 418, 135802. [Google Scholar] [CrossRef]
- Xu, G.; Huang, X.; Qiu, L.; Wu, J.; Hu, Y. Mechanism study of chitosan on lipid metabolism in hyperlipidemic rats. Asia Pac. J. Clin. Nutr. 2007, 16 (Suppl. S1), 313–317. [Google Scholar] [PubMed]
Chemical Composition, g/kg as Fed | T. molitor Whole Larvae Meal |
---|---|
Dry matter | 271.6 |
Digestible energy (DE, MJ/kg) | 7.6 |
Crude protein | 169.8 |
Crude fiber | 22.0 |
Ether extract | 123.0 |
Ash | 13.0 |
Acid detergent fiber (ADF) | 23.0 |
Neutral detergent fiber (NDF) | 52.0 |
Chitin | 11.56 |
Lysine | 10.0 |
Meth + Cyst | 5.0 |
Methionine | 0.3 |
Cystine | 0.2 |
Threonine | 10.0 |
Tryptophan | 1.9 |
Calcium | 1.0 |
Total phosphorus | 3.0 |
Ingredients, g/kg as Fed | Group A | Group B | Group C | Group D |
---|---|---|---|---|
Maize | 336.0 | 205.5 | 335.5 | 205.0 |
Barley | 347.0 | 347.0 | 347.0 | 347.0 |
Wheat middlings | 30.0 | 30.0 | 30.0 | 30.0 |
Soybean meal (47% crude protein) | 168.0 | 188.8 | 168.0 | 188.8 |
Soybean oil | 19.0 | 54.8 | 19.0 | 54.8 |
Vitamin and mineral premix 1 | 60.0 | 60.0 | 60.0 | 60.0 |
Fishmeal (72% crude protein) | 30.0 | 0.0 | 30.0 | 0.0 |
T. molitor whole larvae meal | 0.0 | 100.0 | 0.0 | 100.0 |
Chitosan | 0.0 | 0.0 | 0.5 | 0.5 |
Benzoic acid | 3.0 | 3.0 | 3.0 | 3.0 |
Zn oxide | 3.0 | 3.0 | 3.0 | 3.0 |
Salt | 2.0 | 2.0 | 2.0 | 2.0 |
Monocalcium phosphate (22% P) | 2.0 | 6.0 | 2.0 | 6.0 |
Calculated analysis, g/kg as fed | ||||
Dry matter | 884.2 | 841.6 | 884.2 | 841.6 |
Digestible energy (DE, MJ/kg) | 13.6 | 13.6 | 13.6 | 13.6 |
Crude protein | 186.6 | 186.5 | 186.6 | 186.5 |
Crude fiber | 34.5 | 34.9 | 34.5 | 34.9 |
Ether extract | 39.4 | 79.0 | 39.4 | 79.0 |
Ash | 52.8 | 54.1 | 52.8 | 54.1 |
Acid detergent fiber (ADF) | 39.5 | 39.8 | 39.5 | 39.8 |
Neutral detergent fiber (NDF) | 114.0 | 109.0 | 114.0 | 109.0 |
Chitosan | 0.000 | 1.156 | 0.500 | 1.656 |
Lysine | 12.3 | 12.2 | 12.3 | 12.2 |
Meth + Cyst | 7.7 | 7.4 | 7.7 | 7.4 |
Methionine | 4.9 | 4.6 | 4.9 | 4.6 |
Cystine | 2.8 | 2.8 | 2.8 | 2.8 |
Threonine | 6.2 | 6.5 | 6.2 | 6.5 |
Tryptophan | 2.0 | 2.1 | 2.0 | 2.1 |
Calcium | 5.6 | 5.5 | 5.6 | 5.5 |
Total phosphorus | 5.0 | 5.3 | 5.0 | 5.3 |
Sodium | 3.0 | 2.9 | 3.0 | 2.9 |
Chloride | 5.2 | 4.9 | 5.2 | 4.9 |
Potassium | 6.7 | 6.4 | 6.7 | 6.4 |
Body Weight on Day (kg) | Treatments | Effect of T. molitor Meal | Effect of Chitosan | Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group A | Group B | Group C | Group D | SEM | Without T. molitor | With T. molitor | p | Without Chitosan | With Chitosan | p | p | |
1 | 8.41 | 8.51 | 8.31 | 8.31 | 0.114 | 8.36 | 8.41 | 0.831 | 8.46 | 8.31 | 0.525 | 0.833 |
21 | 14.77 | 16.86 | 15.15 | 17.46 | 0.277 | 14.96 | 17.16 | <0.001 | 15.81 | 16.26 | 0.298 | 0.814 |
42 | 24.86 ab | 24.98 ab | 23.12 a | 26.96 b | 0.412 | 23.95 | 25.93 | 0.011 | 24.92 | 24.88 | 0.875 | 0.017 |
Weight gain for period (kg) | ||||||||||||
1 to 21 days | 6.36 | 8.35 | 6.84 | 9.15 | 0.231 | 6.61 | 8.75 | <0.001 | 7.35 | 7.95 | 0.066 | 0.640 |
21 to 42 days | 10.09 b | 8.13 ab | 7.97 a | 9.61 ab | 0.368 | 8.99 | 8.83 | 0.819 | 9.11 | 8.72 | 0.654 | 0.014 |
1 to 42 days | 16.45 a | 16.48 ab | 14.81 a | 18.63 b | 0.417 | 15.60 | 17.50 | 0.015 | 16.46 | 16.56 | 0.739 | 0.017 |
Feed intake per pig for period (kg) | ||||||||||||
1 to 21 days | 14.56 | 14.02 | 13.53 | 13.87 | - | - | - | - | - | - | - | - |
21 to 42 days | 21.19 | 20.46 | 19.65 | 20.25 | - | - | - | - | - | - | - | - |
1 to 42 days | 35.75 | 34.48 | 33.18 | 34.12 | - | - | - | - | - | - | - | - |
Feed conversion ratio (kg feed/kg weight gain) | ||||||||||||
1 to 21 days | 2.29 | 1.68 | 1.98 | 1.52 | - | - | - | - | - | - | - | - |
21 to 42 days | 2.10 | 2.52 | 2.47 | 2.30 | - | - | - | - | - | - | - | - |
1 to 42 days | 2.17 | 2.09 | 2.24 | 1.82 | - | - | - | - | - | - | - | - |
Carcass parameters | ||||||||||||
Carcass weight (kg) | 14.94 | 15.66 | 16.72 | 18.26 | 0.538 | 16.72 | 15.83 | 0.272 | 15.30 | 17.49 | 0.041 | 0.685 |
Carcass dressing percentage (%) | 0.63 | 0.63 | 0.74 | 0.67 | 0.022 | 0.68 | 0.65 | 0.420 | 0.63 | 0.70 | 0.103 | 0.394 |
Day 42 (Log10 CFU/g) | Treatments | Effect of T. molitor Meal | Effect of Chitosan | Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group A | Group B | Group C | Group D | SEM | Without T. molitor | With T. molitor | p | Without Chitosan | With Chitosan | p | p | |
Enterobacteriaceae | 6.46 | 6.90 | 6.08 | 5.89 | 0.141 | 6.29 | 6.39 | 0.642 | 6.66 | 5.99 | 0.014 | 0.251 |
Enterococcaceae | 4.06 | 4.06 | 3.87 | 3.88 | 0.098 | 3.99 | 3.95 | 0.982 | 4.06 | 3.87 | 0.413 | 0.997 |
Lactobacillaceae | 8.12 ab | 6.96 a | 7.44 ab | 8.60 b | 0.228 | 7.81 | 7.78 | 0.988 | 7.59 | 8.02 | 0.275 | 0.010 |
Total aerobes | 8.34 c | 8.63 c | 7.43 b | 6.64 a | 0.143 | 7.93 | 7.68 | 0.128 | 8.48 | 7.03 | <0.001 | 0.002 |
Total anaerobes | 8.56 | 8.74 | 8.93 | 9.23 | 0.100 | 8.73 | 8.97 | 0.226 | 8.65 | 9.08 | 0.031 | 0.744 |
Hematological Parameters | Treatments | Effect of T. molitor Meal | Effect of Chitosan | Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group A | Group B | Group C | Group D | SEM | Without T. molitor | With T. molitor | p | Without Chitosan | With Chitosan | p | p | |
WBC (m/mm3) | 23.47 | 22.03 | 23.44 | 21.00 | 1.052 | 23.45 | 21.51 | 0.390 | 22.75 | 22.22 | 0.813 | 0.823 |
Lym (%) | 34.33 | 35.48 | 38.82 | 39.08 | 0.907 | 36.58 | 37.28 | 0.684 | 34.91 | 38.95 | 0.029 | 0.799 |
Mon (%) | 9.35 b | 7.58 a | 7.63 a | 8.80 ab | 0.330 | 8.49 | 8.19 | 0.635 | 8.47 | 8.22 | 0.692 | 0.029 |
Gra (%) | 56.32 | 56.93 | 55.08 | 53.45 | 1.095 | 55.70 | 55.19 | 0.825 | 56.63 | 54.27 | 0.311 | 0.626 |
RBC (m/mm3) | 6.32 | 6.62 | 5.87 | 6.96 | 0.176 | 6.09 | 6.79 | 0.050 | 6.47 | 6.41 | 0.862 | 0.246 |
Hct (%) | 35.02 | 36.32 | 34.98 | 37.98 | 0.999 | 35.00 | 37.15 | 0.312 | 35.67 | 36.48 | 0.698 | 0.686 |
Hb (g/dl) | 11.87 | 12.27 | 11.48 | 14.10 | 0.407 | 11.68 | 13.18 | 0.058 | 12.07 | 12.79 | 0.345 | 0.155 |
THR (m/mm3) | 329.50 | 325.50 | 325.33 | 378.83 | 19.063 | 327.42 | 352.17 | 0.539 | 327.50 | 352.08 | 0.542 | 0.476 |
Biochemical parameters | ||||||||||||
ALB (g/dL) | 2.63 | 2.57 | 2.42 | 2.52 | 0.061 | 2.53 | 2.54 | 0.897 | 2.60 | 2.47 | 0.305 | 0.518 |
ALT (U/L) | 117.33 | 115.33 | 123.83 | 126.50 | 4.101 | 120.58 | 120.92 | 0.969 | 116.33 | 125.17 | 0.314 | 0.788 |
AST (U/L) | 69.50 | 74.83 | 47.38 | 68.83 | 3.839 | 58.44 | 71.83 | 0.062 | 72.17 | 58.11 | 0.051 | 0.247 |
CHOL (mg/dL) | 75.00 | 70.00 | 74.5.00 | 76.66 | 1.739 | 74.75 | 73.33 | 0.695 | 72.50 | 75.58 | 0.397 | 0.326 |
CK (U/L) | 1189.50 | 1014.00 | 1017.83 | 1221.00 | 118.797 | 1103.67 | 1119.00 | 0.952 | 1101.75 | 1120.92 | 0.940 | 0.456 |
GLU (mg/dL) | 92.17 | 98.17 | 100.83 | 92.00 | 4.556 | 96.50 | 95.08 | 0.884 | 95.17 | 96.42 | 0.898 | 0.450 |
TBIL (mg/dL) | 0.09 | 0.12 | 0.07 | 0.13 | 0.013 | 0.81 | 0.12 | 0.130 | 0.10 | 0.10 | 1.000 | 0.421 |
TRIG (mg/dL) | 49.00 | 48.17 | 63.33 | 54.83 | 2.446 | 56.17 | 51.50 | 0.311 | 48.58 | 59.08 | 0.030 | 0.404 |
Shoulder Meat Microbiota (Log10 CFU/g) | Treatments | Effect of T. molitor Meal | Effect of Chitosan | Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group A | Group B | Group C | Group D | SEM | Without T. molitor | With T. molitor | p | Without Chitosan | With Chitosan | p | p | |
Total microbes | 5.82 | 5.11 | 5.15 | 5.51 | 0.157 | 5.48 | 5.31 | 0.584 | 5.33 | 5.40 | 0.674 | 0.101 |
Escherichia coli | 4.27 | 2.44 | 3.95 | 2.60 | 0.227 | 4.11 | 2.52 | <0.001 | 3.36 | 3.27 | 0.780 | 0.413 |
Clostridium spp. | 3.24 | 2.01 | 2.32 | 2.38 | 0.191 | 2.78 | 2.20 | 0.112 | 2.63 | 2.35 | 0.441 | 0.081 |
Campylobacter jejuni | 3.44 | 2.31 | 3.13 | 2.47 | 0.162 | 3.29 | 2.39 | 0.004 | 2.88 | 2.80 | 0.738 | 0.390 |
Staphylococcus spp. | 4.80 | 4.61 | 4.27 | 4.21 | 0.099 | 4.53 | 4.41 | 0.496 | 4.71 | 4.24 | 0.019 | 0.700 |
Staphylococcus aureus | 2.60 | 2.46 | 1.96 | 2.63 | 0.121 | 2.28 | 2.54 | 0.263 | 2.53 | 2.29 | 0.309 | 0.088 |
Belly meat microbiota (Log10 CFU/g) | ||||||||||||
Total microbes | 6.04 | 6.21 | 5.92 | 6.03 | 0.149 | 5.98 | 6.12 | 0.676 | 6.12 | 5.97 | 0.649 | 0.932 |
Escherichia coli | 4.31 | 3.37 | 3.62 | 3.17 | 0.212 | 3.96 | 3.27 | 0.110 | 3.84 | 3.39 | 0.290 | 0.560 |
Clostridium spp. | 3.24 | 2.01 | 2.32 | 2.38 | 0.191 | 2.78 | 2.20 | 0.112 | 2.63 | 2.35 | 0.441 | 0.081 |
Campylobacter jejuni | 3.41 | 2.98 | 2.84 | 3.25 | 0.155 | 3.12 | 3.12 | 0.982 | 3.19 | 3.05 | 0.651 | 0.213 |
Staphylococcus spp. | 4.17 | 4.09 | 4.15 | 3.61 | 0.753 | 4.16 | 3.85 | 0.384 | 4.13 | 3.88 | 0.478 | 0.514 |
Staphylococcus aureus | 2.40 | 2.46 | 2.22 | 1.93 | 0.134 | 2.31 | 2.20 | 0.683 | 2.43 | 2.08 | 0.211 | 0.528 |
Boneless steak meat microbiota (Log10 CFU/g) | ||||||||||||
Total microbes | 4.35 | 4.34 | 4.12 | 3.90 | 0.097 | 4.24 | 4.12 | 0.555 | 4.35 | 4.01 | 0.091 | 0.584 |
Escherichia coli | 2.74 | 2.08 | 1.89 | 1.58 | 0.186 | 2.31 | 1.83 | 0.178 | 2.41 | 1.73 | 0.066 | 0.625 |
Clostridium spp. | 1.45 | 1.47 | 1.53 | 1.63 | 0.070 | 1.49 | 1.55 | 0.692 | 1.46 | 1.58 | 0.432 | 0.770 |
Campylobacter jejuni | 3.32 | 2.98 | 2.85 | 2.59 | 0.158 | 3.09 | 2.79 | 0.361 | 3.15 | 2.72 | 0.192 | 0.897 |
Staphylococcus spp. | 3.09 | 2.32 | 3.07 | 2.47 | 0.173 | 3.08 | 2.40 | 0.059 | 2.71 | 2.77 | 0.848 | 0.811 |
Staphylococcus aureus | 2.91 | 2.11 | 2.06 | 1.80 | 0.228 | 2.49 | 1.96 | 0.254 | 2.51 | 1.94 | 0.221 | 0.562 |
Ham Meat Chemical Composition (%) | Treatments | Effect of T. molitor Meal | Effect of Chitosan | Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group A | Group B | Group C | Group D | SEM | Without T. molitor | With T. molitor | p | Without Chitosan | With Chitosan | p | p | |
Fat | 2.64 | 3.2 | 2.94 | 3.06 | 0.156 | 2.79 | 3.13 | 0.310 | 2.92 | 3.00 | 0.813 | 0.504 |
Protein | 19.56 | 20.06 | 19.82 | 20.07 | 0.115 | 19.69 | 20.07 | 0.118 | 19.81 | 19.95 | 0.559 | 0.576 |
Moisture | 76.89 | 76.09 | 76.93 | 76.32 | 0.137 | 76.91 | 76.20 | 0.009 | 76.49 | 76.62 | 0.586 | 0.692 |
Collagen | 1.02 | 0.89 | 1.11 | 1.03 | 0.038 | 1.07 | 0.96 | 0.153 | 0.95 | 1.07 | 0.133 | 0.715 |
Ash | 0.98 | 0.97 | 1.03 | 1.04 | 0.026 | 1.01 | 1.00 | 0.958 | 0.98 | 1.03 | 0.322 | 0.791 |
Boneless steak meat chemical composition (%) | ||||||||||||
Fat | 3.18 | 2.57 | 2.75 | 2.98 | 0.121 | 2.96 | 2.77 | 0.434 | 2.87 | 2.86 | 0.967 | 0.097 |
Protein | 19.80 | 20.61 | 20.34 | 20.47 | 0.140 | 20.07 | 20.54 | 0.094 | 20.21 | 20.41 | 0.463 | 0.210 |
Moisture | 75.97 | 76.05 | 76.22 | 75.79 | 0.119 | 76.10 | 75.92 | 0.491 | 76.01 | 76.01 | 0.984 | 0.313 |
Collagen | 1.17 | 1.08 | 1.20 | 1.27 | 0.039 | 1.19 | 1.17 | 0.857 | 1.12 | 1.23 | 0.178 | 0.301 |
Ash | 1.05 | 0.98 | 0.96 | 0.93 | 0.019 | 1.00 | 0.95 | 0.153 | 1.02 | 0.94 | 0.041 | 0.519 |
Shoulder meat chemical composition (%) | ||||||||||||
Fat | 5.22 | 5.50 | 5.41 | 5.91 | 0.169 | 5.31 | 5.70 | 0.275 | 5.36 | 5.66 | 0.395 | 0.745 |
Protein | 18.43 | 18.21 | 18.42 | 18.32 | 0.068 | 18.43 | 18.26 | 0.261 | 18.32 | 18.37 | 0.713 | 0.683 |
Moisture | 75.56 | 75.55 | 75.42 | 75.17 | 0.149 | 75.49 | 75.36 | 0.692 | 75.56 | 75.30 | 0.419 | 0.715 |
Collagen | 1.31 | 1.33 | 1.21 | 1.10 | 0.046 | 1.26 | 1.21 | 0.594 | 1.32 | 1.15 | 0.078 | 0.452 |
Ash | 0.97 | 0.90 | 0.93 | 0.94 | 0.020 | 0.95 | 0.92 | 0.437 | 0.94 | 0.94 | 0.963 | 0.411 |
Bellymeat chemical composition (%) | ||||||||||||
Fat | 9.87 | 8.61 | 8.61 | 8.99 | 0.274 | 9.24 | 8.80 | 0.424 | 9.24 | 8.80 | 0.430 | 0.149 |
Protein | 16.93 | 17.55 | 17.33 | 17.49 | 0.175 | 17.13 | 17.52 | 0.300 | 17.24 | 17.41 | 0.646 | 0.542 |
Moisture | 72.27 | 72.89 | 73.09 | 72.84 | 0.208 | 72.68 | 72.87 | 0.670 | 72.58 | 72.97 | 0.382 | 0.322 |
Collagen | 1.66 | 1.67 | 1.62 | 1.50 | 0.062 | 1.64 | 1.59 | 0.706 | 1.67 | 1.56 | 0.427 | 0.608 |
Ash | 1.00 | 0.90 | 0.93 | 0.81 | 0.024 | 0.96 | 0.85 | 0.015 | 0.95 | 0.87 | 0.064 | 0.922 |
Total Phenols (g/L) | Treatments | Effect of T. molitor Meal | Effect of Chitosan | Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group A | Group B | Group C | Group D | SEM | Without T. molitor | With T. molitor | p | Without Chitosan | With Chitosan | p | p | |
Shoulder meat | 1.96 | 5.31 | 4.54 | 5.27 | 0.448 | 3.25 | 5.29 | 0.010 | 3.64 | 4.90 | 0.088 | 0.079 |
Belly meat | 1.83 | 2.04 | 2.36 | 2.38 | 0.088 | 2.09 | 2.21 | 0.463 | 1.94 | 2.37 | 0.013 | 0.535 |
Boneless steak meat | 3.54 | 5.25 | 4.34 | 4.18 | 0.283 | 3.94 | 4.72 | 0.169 | 4.39 | 4.26 | 0.809 | 0.100 |
MDA (ng/g)—Day 1 | ||||||||||||
Shoulder meat | 2.34 | 1.45 | 0.62 | 1.59 | 0.427 | 1.60 | 1.52 | 0.965 | 1.89 | 1.18 | 0.404 | 0.324 |
Belly meat | 2.63 | 1.35 | 0.82 | 0.75 | 0.261 | 1.86 | 1.05 | 0.042 | 2.08 | 0.79 | 0.002 | 0.061 |
MDA (ng/g)—Day 7 | ||||||||||||
Shoulder meat | 27.44 b | 20.16 a | 20.56 a | 20.26 a | 0.889 | 24.00 | 20.21 | 0.001 | 23.80 | 20.41 | 0.002 | 0.002 |
Belly meat | 17.98 b | 12.69 a | 15.21 ab | 16.30 ab | 0.759 | 16.59 | 14.49 | 0.128 | 15.33 | 15.75 | 0.749 | 0.029 |
pH | ||||||||||||
Shoulder meat | 5.84 | 5.76 | 5.73 | 5.76 | 0.020 | 5.78 | 5.76 | 0.601 | 5.80 | 5.74 | 0.155 | 0.185 |
Belly meat | 5.96 | 5.94 | 5.85 | 5.85 | 0.017 | 5.90 | 5.90 | 0.796 | 5.95 | 5.85 | 0.002 | 0.854 |
Boneless steak meat | 5.95 | 5.87 | 6.02 | 6.08 | 0.032 | 5.99 | 5.98 | 0.867 | 5.91 | 6.05 | 0.032 | 0.252 |
Color L* | ||||||||||||
Shoulder meat | 63.22 | 61.50 | 58.68 | 57.86 | 0.956 | 60.95 | 59.68 | 0.487 | 62.36 | 58.27 | 0.036 | 0.804 |
Belly meat | 64.40 | 58.64 | 62.94 | 62.52 | 1.042 | 63.67 | 60.58 | 0.143 | 61.52 | 62.73 | 0.555 | 0.202 |
Boneless steak meat | 72.14 | 72.32 | 71.76 | 67.72 | 0.783 | 71.95 | 70.02 | 0.193 | 72.23 | 69.74 | 0.099 | 0.157 |
Color a* | ||||||||||||
Shoulder meat | 15.14 | 14.48 | 17.02 | 13.86 | 0.788 | 16.08 | 14.17 | 0.254 | 14.81 | 15.44 | 0.701 | 0.450 |
Belly meat | 13.92 | 15.94 | 13.60 | 14.80 | 0.679 | 13.76 | 15.37 | 0.270 | 14.93 | 14.20 | 0.611 | 0.775 |
Boneless steak meat | 8.08 | 7.14 | 5.26 | 6.68 | 0.494 | 6.67 | 6.91 | 0.804 | 7.61 | 5.97 | 0.103 | 0.232 |
Color b* | ||||||||||||
Shoulder meat | 12.32 | 13.24 | 12.94 | 12.00 | 0.364 | 12.63 | 12.62 | 0.990 | 12.78 | 12.47 | 0.687 | 0.236 |
Belly meat | 10.12 a | 11.54 ab | 12.16 b | 11.08 ab | 0.320 | 11.14 | 11.31 | 0.776 | 10.83 | 11.62 | 0.198 | 0.050 |
Boneless steak meat | 14.98 | 16.08 | 17.16 | 19.68 | 0.698 | 16.07 | 17.88 | 0.166 | 15.53 | 18.42 | 0.034 | 0.577 |
Shoulder Meat Fatty Acids | Treatments | Effect of T. molitor Meal | Effect of Chitosan | Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group A | Group B | Group C | Group D | SEM | Without T. molitor | With T. molitor | p | Without Chitosan | With Chitosan | p | p | |
C14:0 (Myristic) | 0.30 b | 0.06 a | 0.09 a | 0.07 a | 0.032 | 0.19 | 0.07 | 0.002 | 0.18 | 0.08 | 0.010 | 0.004 |
C15:0 (Pentadecanoic) | 0.29 b | 0.05 a | 0.15 ab | 0.13 a | 0.113 | 0.22 | 0.09 | 0.028 | 0.17 | 0.14 | 0.543 | 0.048 |
C15:1 (cis-10-Pentadecenoic) | 2.01 | 1.64 | 0.62 | 0.96 | 2.04 | 1.32 | 1.30 | 0.955 | 1.82 | 0.79 | 0.007 | 0.249 |
C16:0 (Palmitic) | 28.40 | 26.89 | 27.90 | 25.57 | 0.787 | 28.15 | 26.23 | 0.287 | 27.64 | 26.73 | 0.602 | 0.813 |
C16:1 (Palmitoleic) | 0.09 a | 0.84 b | 4.02 d | 2.32 c | 0.463 | 2.06 | 1.58 | 0.063 | 0.47 | 3.17 | <0.001 | 0.001 |
C17:0 (Heptadecanoic) | 0.50 | 0.30 | 0.20 | 0.27 | 0.062 | 0.35 | 0.28 | 0.586 | 0.40 | 0.24 | 0.208 | 0.284 |
C17:1 (cis-10-Heptadecenoic) | 0.53 | 0.82 | 0.26 | 0.39 | 0.071 | 0.40 | 0.61 | 0.029 | 0.68 | 0.33 | 0.002 | 0.356 |
C18:0 (Stearic) | 12.43 | 10.49 | 10.93 | 9.29 | 0.459 | 11.68 | 9.89 | 0.039 | 11.46 | 10.11 | 0.100 | 0.843 |
C18:1n9t (Elaidic) | 0.05 | 0.06 | 0.08 | 0.09 | 0.005 | 0.06 | 0.07 | 0.078 | 0.05 | 0.08 | 0.001 | 0.780 |
C18:1n9c (Oleic) | 23.38 | 21.78 | 25.42 | 26.11 | 0.607 | 24.40 | 23.95 | 0.563 | 22.58 | 25.77 | 0.003 | 0.165 |
C18:2n6t (Linolelaidic) | 0.06 | 0.07 | 0.05 | 0.06 | 0.007 | 0.06 | 0.06 | 0.572 | 0.07 | 0.05 | 0.433 | 0.733 |
C18:2n6c (Linoleic) | 24.70 | 29.28 | 24.71 | 29.08 | 0.778 | 24.70 | 29.18 | 0.001 | 26.99 | 26.89 | 0.921 | 0.912 |
C18:3n6 (γ-Linolenic) | 0.07 | 0.05 | 0.09 | 0.18 | 0.020 | 0.08 | 0.12 | 0.294 | 0.06 | 0.14 | 0.036 | 0.116 |
C20:0 (Arachidic) | 0.66 | 1.05 | 1.29 | 1.33 | 0.092 | 0.98 | 1.19 | 0.076 | 0.85 | 1.31 | 0.002 | 0.131 |
C18:3n3 (a-Linolenic) | 0.23 | 0.42 | 0.52 | 0.43 | 0.042 | 0.37 | 0.43 | 0.433 | 0.33 | 0.48 | 0.049 | 0.057 |
C20:1n9c (cis-11-Eicosenoic) | 0.05 | 0.03 | 0.01 | 0.02 | 0.007 | 0.03 | 0.03 | 0.789 | 0.04 | 0.02 | 0.088 | 0.299 |
C21:0 (Heneicosanoic) | 0.40 | 0.56 | 0.44 | 0.59 | 0.032 | 0.42 | 0.58 | 0.009 | 0.48 | 0.52 | 0.478 | 0.918 |
C20:2 (cis-11,14-Eicossadienoic) | 0.38 | 0.33 | 0.32 | 0.25 | 0.029 | 0.35 | 0.29 | 0.379 | 0.36 | 0.29 | 0.283 | 0.915 |
C22:0 (Behenic) | 5.48 | 5.28 | 2.91 | 2.84 | 0.434 | 4.20 | 4.06 | 0.786 | 5.38 | 2.87 | 0.001 | 0.897 |
Σ SFA (Total Saturated) | 48.47 | 44.69 | 43.90 | 40.10 | 0.999 | 46.18 | 42.39 | 0.006 | 46.58 | 42.00 | 0.002 | 0.991 |
Σ MUFA (Total Monounsaturated) | 26.10 | 25.17 | 30.42 | 29.89 | 0.793 | 28.26 | 27.53 | 0.449 | 25.64 | 30.15 | 0.001 | 0.831 |
Σ PUFA (Total Polyunsaturated) | 25.44 | 30.15 | 25.69 | 30.01 | 0.792 | 25.56 | 30.08 | 0.001 | 27.79 | 27.85 | 0.951 | 0.843 |
n6 (omega 6) Fatty Acids | 24.83 | 29.39 | 24.85 | 29.33 | 0.785 | 24.84 | 29.36 | 0.001 | 27.11 | 27.09 | 0.983 | 0.963 |
n3 (omega 3) Fatty Acids | 0.23 | 0.42 | 0.52 | 0.43 | 0.042 | 0.37 | 0.43 | 0.433 | 0.33 | 0.48 | 0.049 | 0.057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zacharis, C.; Bonos, E.; Voidarou, C.; Magklaras, G.; Fotou, K.; Giannenas, I.; Giavasis, I.; Mitsagga, C.; Athanassiou, C.; Antonopoulou, E.; et al. Combined Dietary Supplementation of Tenebrio molitor Larvae and Chitosan in Growing Pigs: A Pilot Study. Vet. Sci. 2024, 11, 73. https://doi.org/10.3390/vetsci11020073
Zacharis C, Bonos E, Voidarou C, Magklaras G, Fotou K, Giannenas I, Giavasis I, Mitsagga C, Athanassiou C, Antonopoulou E, et al. Combined Dietary Supplementation of Tenebrio molitor Larvae and Chitosan in Growing Pigs: A Pilot Study. Veterinary Sciences. 2024; 11(2):73. https://doi.org/10.3390/vetsci11020073
Chicago/Turabian StyleZacharis, Christos, Eleftherios Bonos, Chrysoula (Chrysa) Voidarou, Georgios Magklaras, Konstantina Fotou, Ilias Giannenas, Ioannis Giavasis, Chrysanthi Mitsagga, Christos Athanassiou, Efthimia Antonopoulou, and et al. 2024. "Combined Dietary Supplementation of Tenebrio molitor Larvae and Chitosan in Growing Pigs: A Pilot Study" Veterinary Sciences 11, no. 2: 73. https://doi.org/10.3390/vetsci11020073
APA StyleZacharis, C., Bonos, E., Voidarou, C., Magklaras, G., Fotou, K., Giannenas, I., Giavasis, I., Mitsagga, C., Athanassiou, C., Antonopoulou, E., Grigoriadou, K., Tzora, A., & Skoufos, I. (2024). Combined Dietary Supplementation of Tenebrio molitor Larvae and Chitosan in Growing Pigs: A Pilot Study. Veterinary Sciences, 11(2), 73. https://doi.org/10.3390/vetsci11020073