Individual- and Herd-Level Milk ELISA Test Status and Incidence for Paratuberculosis in Hubei Province, China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Samples
2.2. Milk and Serum Antibody Tests for Paratuberculosis
2.3. Milk Quality and Paratuberculosis Antibody Correlation
2.4. Statistical Analysis
2.5. Ethics Approval
3. Results
3.1. Coincidence Rate between Milk and Serum Antibody ELISA Tests
3.2. Lacto-Prevalence of MAP at Different Farms
3.3. Incidence Risk of MAP at Different Farms
3.4. Relationship between Bovine Paratuberculosis and Milk Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, D.; Danelishvili, L.; Yamazaki, Y.; Alonso, M.; Paustian, M.L.; Bannantine, J.P.; Meunier-Goddik, L.; Bermudez, L.E. The ability of Mycobacterium avium subsp. paratuberculosis to enter bovine epithelial cells is influenced by preexposure to a hyperosmolar environment and intracellular passage in bovine mammary epithelial cells. Infect. Immun. 2006, 74, 2849–2855. [Google Scholar] [CrossRef] [PubMed]
- Garvey, M. Mycobacterium Avium Paratuberculosis: A Disease Burden on the Dairy Industry. Animals 2020, 10, 1773. [Google Scholar] [CrossRef] [PubMed]
- Wiszniewska-Łaszczych, A.; Liedtke, K.G.; Szteyn, J.M.; Lachowicz, T. The Effect of Mycobacterium avium subsp. Paratuberculosis Infection on the Productivity of Cows in Two Dairy Herds with a Low Seroprevalence of Paratuberculosis. Animals 2020, 10, 490. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.S.; Toft, N.; Okura, H. Dynamics of specific anti-Mycobacterium avium subsp. paratuberculosis antibody response through age. PLoS ONE 2013, 8, e63009. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.A.; Rahawy, M.; Alkattan, L.M.; Khan, I.U.H.; Abdulmawjood, A.; Bülte, M. First report of paratuberculosis (Johne’s disease) in livestock farms of river buffaloes (Bubalus Bubalis) in Nineveh, Iraq. Vet. Ital. 2022, 58, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, P.; Barkema, H.W.; Mason, S.; Beaulieu, E.; Hall, D.C. Economic losses due to Johne’s disease (paratuberculosis) in dairy cattle. J. Dairy Sci. 2021, 104, 3123–3143. [Google Scholar] [CrossRef] [PubMed]
- Badia-Bringué, G.; Canive, M.; Blanco-Vázquez, C.; Torremocha, R.; Ovalle, S.; Ramos-Ruiz, R.; Casais, R.; Alonso-Hearn, M. MicroRNAs modulate immunological and inflammatory responses in Holstein cattle naturally infected with Mycobacterium avium subsp. paratuberculosis. Sci. Rep. 2024, 14, 173. [Google Scholar] [CrossRef] [PubMed]
- Sorge, U.S.; Lissemore, K.; Godkin, A.; Hendrick, S.; Wells, S.; Kelton, D. Associations between paratuberculosis milk ELISA result, milk production, and breed in Canadian dairy cows. J. Dairy Sci. 2011, 94, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, Y.; Wang, J.L.; Zhao, W.H.; Cheng, H.X.; Ma, Y.M.; Chai, H.L.; Zhang, Z.S.; Wang, L.F.; Miao, Z.Q.; et al. Serological investigation and genotyping of Mycobacterium avium subsp. paratuberculosis in sheep and goats in Inner Mongolia, China. PLoS ONE 2021, 16, e0256628. [Google Scholar] [CrossRef] [PubMed]
- Barkema, H.W.; Orsel, K.; Nielsen, S.S.; Koets, A.P.; Rutten, V.; Bannantine, J.P.; Keefe, G.P.; Kelton, D.F.; Wells, S.J.; Whittington, R.J.; et al. Knowledge gaps that hamper prevention and control of Mycobacterium avium subspecies paratuberculosis infection. Transbound. Emerg. Dis. 2018, 65 (Suppl. 1), 125–148. [Google Scholar] [CrossRef]
- Ssekitoleko, J.; Ojok, L.; Omala, S.K.; Mukhtar, M.E.; Eltom, K.H.; Eltayeb, E.S.; Kankya, C.; Kisekka, M.; Truyen, U.; Czerny, C.-P.; et al. Molecular and serological survey of paratuberculosis in cattle in selected districts of Western Uganda. BMC Vet. Res. 2022, 18, 438. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, T.; Mamo, G.; Zewude, A.; Sirak, A.; Gumi, B.; Ameni, G. Prevalence of paratuberculosis in cattle based on gross and microscopic lesions in Ethiopia. BMC Vet. Res. 2023, 19, 203. [Google Scholar] [CrossRef] [PubMed]
- Camilo, S.L.O.; Fritzen, J.T.T.; de Pádua Pereira, U.; Mota, R.A.; Alfieri, A.A.; Lisbôa, J.A.N. Presence of antibodies against Mycobacterium avium subspecies paratuberculosis in Brazilian high-producing dairy herds. Braz. J. Microbiol. 2022, 53, 2241–2249. [Google Scholar] [CrossRef]
- Lu, N.; Niu, Y.L.; Song, Y.; Zhang, D.D.; Jiang, J.; Wei, J.; Geng, H.L.; Cao, H. Prevalence of paratuberculosis in cattle in China: A systematic review and meta-analysis. Prev. Vet. Med. 2023, 220, 106043. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, M.; Wang, P.; Liu, P.; Chen, M.; Zhang, J.; Liu, S.; Wang, F. Characteristics and Epidemiological Investigation of Paratuberculosis in Dairy Cattle in Tai’an, China. Biomed. Res. Int. 2020, 2020, 3896754. [Google Scholar] [CrossRef]
- Yue, R.; Liu, C.; Barrow, P.; Liu, F.; Cui, Y.; Yang, L.; Zhao, D.; Zhou, X. The isolation and molecular characterization of Mycobacterium avium subsp. paratuberculosis in Shandong province, China. Gut Pathog. 2016, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Chen, K.; Liu, P.; Wang, X.; Chen, Y.; Shang, H.; Hao, Y.; Gao, P.; He, X.; Xu, X. Seroprevalence of five diarrhea-related pathogens in bovine herds of scattered households in Inner Mongolia, China between 2019 and 2022. PeerJ 2023, 11, e16013. [Google Scholar] [CrossRef]
- Collins, M.T. Diagnosis of paratuberculosis. Vet. Clin. N. Am. Food Anim. Pract. 1996, 12, 357–371. [Google Scholar] [CrossRef]
- Chaubey, K.; Singh, S.; Bhatia, A.; Gupta, R.; Gupta, S.; Varshney, A.; Singh, M.; Singh, M.; Hemati, Z.; Rathore, A. Detection limits of recombinant secretary proteins versus semi-purified protoplasmic antigens for the diagnosis of spontaneous cases of Mycobacterium avium subspecies paratuberculosis infection in domestic ruminants. J. Vet. Sci. Technol. 2018, 9, 552. [Google Scholar]
- Velasco, C.; Ortega, J.; Gómez-Buendía, A.; Grau, A.; López, M.; Álvarez, J.; Romero, B.; de Juan, L.; Bezos, J. Evaluation of the Effect of a Recent Comparative Intradermal Tuberculin Test on the Humoral Diagnosis of Paratuberculosis Using Serum and Milk Samples from Goats. Vet. Sci. 2024, 11, 105. [Google Scholar] [CrossRef]
- Klausen, J.; Huda, A.; Ekeroth, L.; Ahrens, P. Evaluation of serum and milk ELISAs for paratuberculosis in Danish dairy cattle. Prev. Vet. Med. 2003, 58, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Hardin, L.E.; Thorne, J.G. Comparison of milk with serum ELISA for the detection of paratuberculosis in dairy cows. J. Am. Vet. Med. Assoc. 1996, 209, 120–122. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, S.; Wang, Y.; Wang, G.; Wu, X.; Robertson, I.D.; Guo, A. Evaluation and application of a milk antibody ELISA for assessing the prevalence and incidence of bovine tuberculosis in dairy herds in Hubei Province, China. Anim. Dis. 2023, 3, 8. [Google Scholar] [CrossRef]
- Lombard, J.E.; Byrem, T.M.; Wagner, B.A.; McCluskey, B.J. Comparison of milk and serum enzyme–linked immunosorbent assays for diagnosis of Mycobacterium avium subspecies paratuberculosis infection in dairy cattle. J. Vet. Diagn. Investig. 2006, 18, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Robertson, I.D.; Cheng, S.; Wang, Y.; Hou, L.; Wang, G.; Wu, X.; Li, X.; Chen, Y.; Guo, A. Evaluation of a milk ELISA as an alternative to a serum ELISA in the determination of the prevalence and incidence of brucellosis in dairy herds in Hubei Province, China. Prev. Vet. Med. 2020, 182, 105086. [Google Scholar] [CrossRef]
- Lee, C.-S.; Sedory, S.A.; Singh, S. Estimation of odds ratio, attributable risk, relative risk, correlation coefficient and other parameters using randomized response techniques. Behaviormetrika 2021, 48, 371–392. [Google Scholar] [CrossRef]
- Abbott, R.D.; Curb, J.D.; Rodriguez, B.L.; Masaki, K.H.; Popper, J.S.; Ross, G.W.; Petrovitch, H. Age-related changes in risk factor effects on the incidence of thromboembolic and hemorrhagic stroke. J. Clin. Epidemiol. 2003, 56, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Hosseiniporgham, S.; Rebechesu, L.; Pintore, P.; Lollai, S.; Dattena, M.; Russo, S.; Ruiu, A.; Sechi, L.A. A rapid phage assay for detection of viable Mycobacterium avium subsp. paratuberculosis in milk. Sci. Rep. 2022, 12, 475. [Google Scholar] [CrossRef] [PubMed]
- Tieri, S.; Morsella, C.; Méndez, L.; Vasini, B.; Garro, C.; Paolicchi, F. Comparison of two serological diagnosis tests for bovine paratuberculosis. Vet. Res. Commun. 2024, 1–6. [Google Scholar] [CrossRef]
- Agag, S.; Medrouh, B.; Khaled, H.; Medkour, H.; Leulmi, H.; Djeghim, H.; Kaidi, R.; Khelef, D.; Medkour, H. Prevalence and associated risk factors of anti-Coxiella burnetii antibodies in dairy cattle herds using bulk tank milk analysis in Kabylia area, north Algeria. Trop. Anim. Health Prod. 2024, 56, 106. [Google Scholar] [CrossRef]
- Bokma, J.; Kaske, M.; Vermijlen, J.; Stuyvaert, S.; Pardon, B. Diagnostic performance of Mycoplasmopsis bovis antibody ELISA tests on bulk tank milk from dairy herds. BMC Vet. Res. 2024, 20, 81. [Google Scholar] [CrossRef]
- Khalid, A.; Riaz, A.; Yousaf, A.; Khan, I.H.; Ur-Rehman, S.; Moaeen-ud-Din, M.; Li, S.; Tang, C.; Shah, M.A.; Murtaz ul, H. Epidemiological survey of bovine gammaherpesvirus 4 (BoHV-4) infection in cattle and buffalo from Pakistan. Vet. Res. Commun. 2023, 47, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Hendrick, S.H.; Duffield, T.F.; Kelton, D.F.; Leslie, K.E.; Lissemore, K.D.; Archambault, M. Evaluation of enzyme-linked immunosorbent assays performed on milk and serum samples for detection of paratuberculosis in lactating dairy cows. J. Am. Vet. Med. Assoc. 2005, 226, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Steuer, P.; Collado, B.; Avilez, C.; Tejeda, C.; Soto, J.P.; Salgado, M. Is the transmission of Mycobacterium avium subspecies paratuberculosis (MAP) infection through milk intended to feed calves an overlooked item in paratuberculosis control programs? Trop. Anim. Health Prod. 2020, 52, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, J.; Yang, X.; Wang, D.; Wang, J.; Wu, J. The seroprevalence of Mycobacterium avium subspecies paratuberculosis in dairy cattle in Xinjiang, Northwest China. Ir. Vet. J. 2017, 70, 1. [Google Scholar] [CrossRef] [PubMed]
- Biemans, F.; Ben Romdhane, R.; Gontier, P.; Fourichon, C.; Ramsbottom, G.; More, S.J.; Ezanno, P. Modelling transmission and control of Mycobacterium avium subspecies paratuberculosis within Irish dairy herds with compact spring calving. Prev. Vet. Med. 2021, 186, 105228. [Google Scholar] [CrossRef] [PubMed]
- Biemans, F.; Tratalos, J.; Arnoux, S.; Ramsbottom, G.; More, S.J.; Ezanno, P. Modelling transmission of Mycobacterium avium subspecies paratuberculosis between Irish dairy cattle herds. Vet. Res. 2022, 53, 45. [Google Scholar] [CrossRef] [PubMed]
- Zoche-Golob, V.; Pützschel, R.; Einax, E.; Donat, K. Identification of different attitudes towards paratuberculosis control using cluster analysis applied on data from an anonymous survey among German cattle farmers. Ir. Vet. J. 2021, 74, 24. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, T.C.; Coffey, M.P.; Bond, K.S.; Hutchings, M.R.; Wall, E. Phenotypic effects of subclinical paratuberculosis (Johne’s disease) in dairy cattle. J. Dairy Sci. 2017, 100, 679–690. [Google Scholar] [CrossRef]
- Goff, H.D.; Hynes, E.H.; Perotti, M.C.; Kelly, P.M.; Hogan, S.A. Significance of Lactose in Dairy Products. In Advanced Dairy Chemistry: Volume 3: Lactose, Water, Salts and Minor Constituents; McSweeney, P.L.H., O’Mahony, J.A., Kelly, A.L., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 39–104. [Google Scholar]
- Elzaki, S.; Korkuc, P.; Arends, D.; Reissmann, M.; Rahmatalla, S.A.; Brockmann, G.A. Validation of somatic cell score-associated SNPs from Holstein cattle in Sudanese Butana and Butana × Holstein crossbred cattle. Trop. Anim. Health Prod. 2022, 54, 50. [Google Scholar] [CrossRef]
- Ozsvari, L.; Harnos, A.; Lang, Z.; Monostori, A.; Strain, S.; Fodor, I. The Impact of Paratuberculosis on Milk Production, Fertility, and Culling in Large Commercial Hungarian Dairy Herds. Front. Vet. Sci. 2020, 7, 565324. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.L.; Cue, R.I.; Botaro, B.G.; Horst, J.A.; Valloto, A.A.; Santos, M.V. Milk losses associated with somatic cell counts by parity and stage of lactation. J. Dairy Sci. 2018, 101, 4357–4366. [Google Scholar] [CrossRef] [PubMed]
City | Farms | Scale | January 2018 | April 2018 | ||
---|---|---|---|---|---|---|
No. of Lactating Cows | No. of Samples Tested | No. of Lactating Cows | No. of Samples Tested | |||
WH | A | Large | 1321 | 142 | 1121 | 99 |
B | Small | 94 | 77 | 97 | 77 | |
HG | C | Small | N/A | N/A | 146 | 146 |
D | Small | 100 | 80 | 99 | 78 | |
E | Large | 1092 | 274 | 1596 | 104 | |
F | Large | 1068 | 201 | 1108 | 170 | |
G | Small | 267 | 156 | 272 | 92 | |
H | Small | 191 | 126 | 180 | 105 | |
I | Large | 1883 | 156 | 1717 | 86 | |
J | Small | 140 | 140 | 150 | 92 | |
K | Small | 57 | 57 | 84 | 51 | |
L | Small | 131 | 96 | 124 | 75 | |
YC | M | Small | 117 | 91 | 128 | 81 |
Total | 13 | 6682 | 1596 | 6876 | 1256 |
Serum Antibody Test | ||||
---|---|---|---|---|
Positive | Negative | Total | ||
Milk antibody test | Positive | 22 | 4 | 26 |
Negative | 8 | 115 | 123 | |
Total | 30 | 119 | 149 |
Farm | January 2018 | April 2018 | ||
---|---|---|---|---|
Prevalence (%) | 95% CI | Prevalence (%) | 95% CI | |
A | 2.1 | 0.4, 6.0 | 0.0 | 0.0, 3.7 |
B | 18.2 | 10.3, 28.6 | 14.3 | 7.4, 24.1 |
C | N/A | N/A | 19.9 | 13.7, 27.3 |
D | 18.8 | 10.9, 29.0 | 11.5 | 5.4, 20.8 |
E | 2.9 | 1.3, 5.7 | 1.9 | 0.2, 6.8 |
F | 3.5 | 1.4, 7.0 | 1.8 | 0.4, 5.1 |
G | 1.3 | 0.2, 4.6 | 0.0 | 0.0, 3.9 |
H | 7.9 | 3.9, 14.1 | 9.5 | 4.7, 16.8 |
I | 9.0 | 5.0, 14.6 | 17.4 | 10.1, 27.1 |
J | 17.1 | 11.3, 24.4 | 17.4 | 10.3, 26.7 |
K | 15.8 | 7.5, 27.9 | 17.6 | 8.4, 30.9 |
L | 22.9 | 15.0, 32.6 | 18.7 | 10.6, 29.3 |
M | 4.4 | 1.2, 10.9 | 6.2 | 2.0, 13.8 |
Large farm | 4.1 | 2.8, 5.8 | 4.4 | 2.7, 6.6 |
Small farm | 12.2 | 10.0, 14.6 | 12.9 | 10.7, 15.5 |
Total | 8.3 | 7.0, 9.7 | 9.8 | 8.2, 11.6 |
Farms | Numbers of Cows That Tested Negative then Positive | Numbers of Cows That Tested Negative at the Beginning | Incidence Risk (/3 months) (%) | 95% CI |
---|---|---|---|---|
A | 0 | 97 | 0 | 0.0, 3.7 |
B | N/A | N/A | N/A | N/A |
C | N/A | N/A | N/A | N/A |
D | 5 | 33 | 15.2 | 5.1, 31.9 |
E | 1 | 60 | 1.7 | 0.0, 8.9 |
F | 1 | 123 | 0.8 | 0.0, 4.4 |
G | 0 | 89 | 0 | 0.0, 4.1 |
H | 6 | 96 | 6.2 | 2.3, 13.1 |
I | 7 | 46 | 15.2 | 6.3, 28.9 |
J | 11 | 74 | 14.9 | 7.7, 25.0 |
K | 4 | 43 | 9.3 | 2.6, 22.1 |
L | 5 | 61 | 8.2 | 2.7, 18.1 |
M | 8 | 78 | 10.3 | 4.5, 19.2 |
Small farms | 39 | 474 | 8.2 | 5.9, 11.1 |
Large farms | 9 | 326 | 2.8 | 1.3, 5.2 |
Total | 48 | 800 | 6 | 4.5, 7.9 |
Antibody Test Results | Milk Yield (kg/day) | Fat Content Percentage (%) | Milk Protein Percentage (%) | Lactose Content (%) | Total Solids Percentage (%) | SCC (×1000 cell/mL) | Urea Nitrogen Percentage (%) |
---|---|---|---|---|---|---|---|
negative (n = 2597) | 24.6 ± 11.2 | 3.9 ± 1.5 | 3.4 ± 0.4 | 5.0 ± 0.3 | 12.8 ± 1.5 | 413.8 ± 1264.4 | 14.1 ± 2.7 |
95% CI | 24.2, 25.1 | 3.8, 3.9 | 3.37, 3.4 | 5.0, 5.01 | 12.7, 12.9 | 365.1, 462.4 | 14.0, 14.2 |
positive (n = 255) | 21.1 ± 9.7 | 4.1 ± 1.9 | 3.6 ± 0.8 | 4.8 ± 0.5 | 13.0 ± 2.1 | 898.1 ± 2491.2 | 14.3 ± 4.6 |
95% CI | 19.9, 22.2 | 3.9, 4.3 | 3.5, 3.7 | 4.8, 4.9 | 12.8, 13.3 | 590.8, 1205.3 | 13.7, 14.8 |
p value | 0.000 | 0.057 | 0.001 | 0.000 | 0.083 | 0.002 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Hou, L.; Khalid, A.K.; Robertson, I.D.; Zhao, Y.; Chen, X.; Guo, A. Individual- and Herd-Level Milk ELISA Test Status and Incidence for Paratuberculosis in Hubei Province, China. Vet. Sci. 2024, 11, 202. https://doi.org/10.3390/vetsci11050202
Chen Y, Hou L, Khalid AK, Robertson ID, Zhao Y, Chen X, Guo A. Individual- and Herd-Level Milk ELISA Test Status and Incidence for Paratuberculosis in Hubei Province, China. Veterinary Sciences. 2024; 11(5):202. https://doi.org/10.3390/vetsci11050202
Chicago/Turabian StyleChen, Yingyu, Liyue Hou, Abdul Karim Khalid, Ian Duncan Robertson, Yuhao Zhao, Xi Chen, and Aizhen Guo. 2024. "Individual- and Herd-Level Milk ELISA Test Status and Incidence for Paratuberculosis in Hubei Province, China" Veterinary Sciences 11, no. 5: 202. https://doi.org/10.3390/vetsci11050202
APA StyleChen, Y., Hou, L., Khalid, A. K., Robertson, I. D., Zhao, Y., Chen, X., & Guo, A. (2024). Individual- and Herd-Level Milk ELISA Test Status and Incidence for Paratuberculosis in Hubei Province, China. Veterinary Sciences, 11(5), 202. https://doi.org/10.3390/vetsci11050202