Establishment of a Multilocus Sequence Typing Scheme for the Characterization of Avibacterium paragallinarum
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates and Strains
2.2. Selection of Housekeeping Genes for MLST
2.3. Gene Amplification and Sequencing
2.4. MLST Analysis
2.5. Phylogenetic Analysis of STs
3. Results
3.1. MLST Analysis
3.2. Phylogeny and Cluster Analysis of STs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blackall, P.J. Infectious coryza: Overview of the disease and new diagnostic options. Clin. Microbiol. Rev. 1999, 12, 627–632. [Google Scholar] [CrossRef]
- Blackall, P.J.; Soriano-Vargas, E. Infectious coryza and related bacterial infections. Dis. Poult. 2020, 890–906. [Google Scholar] [CrossRef]
- Blackall, P.J.; Morrow, C.J.; McInnes, A.; Eaves, L.E.; Rogers, D.G. Epidemiologic studies on infectious coryza outbreaks in northern New South Wales, Australia, using serotyping, biotyping, and chromosomal DNA restriction endonuclease analysis. Avian Dis. 1990, 34, 267–276. [Google Scholar] [CrossRef]
- Page, L.A. Haemophilus infections in chickens. I. Characteristics of 12 Haemophilus isolates recovered from diseased chickens. Am. J. Vet. Res. 1962, 23, 85–95. [Google Scholar] [PubMed]
- Kume, K.; Sawata, A.; Nakai, T.; Matsumoto, M. Serological classification of Haemophilus paragallinarum with a hemagglutinin system. J. Clin. Microbiol. 1983, 17, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Blackall, P.J.; Eaves, L.E.; Rogers, D.G. Proposal of a new serovar and altered nomenclature for Haemophilus paragallinarum in the Kume hemagglutinin scheme. J. Clin. Microbiol. 1990, 28, 1185–1187. [Google Scholar] [CrossRef] [PubMed]
- Blackall, P.J.; Reid, G.G. Further efficacy studies on inactivated, aluminum-hydroxide-adsorbed vaccines against infectious coryza. Avian Dis. 1987, 31, 527–532. [Google Scholar] [CrossRef]
- Rimler, R.B.; Davis, R.B.; Page, R.K. Infectious coryza: Cross-protection studies, using seven strains of Haemophilus gallinarum. Am. J. Vet. Res. 1977, 38, 1587–1589. [Google Scholar] [PubMed]
- Kume, K.; Sawata, A.; Nakase, Y. Immunologic relationship between Page’s and Sawata’s serotype strains of Haemophilus paragallinarum. Am. J. Vet. Res. 1980, 41, 757–760. [Google Scholar]
- Yamaguchi, T.; Iritani, Y.; Hayashi, Y. Hemagglutinating activity and immunological properties of Haemophilus paragallinarum field isolates in Japan. Avian Dis. 1989, 33, 511–515. [Google Scholar] [CrossRef]
- Wang, H.; Sun, H.; Blackall, P.J.; Zhang, Z.; Zhou, H.; Xu, F.; Chen, X. Evaluation of a proposed molecular methodology for the serotyping of Avibacterium paragallinarum. J. Vet. Diagn. Invest. 2016, 28, 555–560. [Google Scholar] [CrossRef]
- Blackall, P.J.; Eaves, L.E.; Aus, G. Serotyping of Haemophilus paragallinarum by the Page scheme: Comparison of the use of agglutination and hemagglutination-inhibition tests. Avian Dis. 1990, 34, 643–645. [Google Scholar] [CrossRef]
- Zhang, P.J.; Miao, M.; Sun, H.; Gong, Y.; Blackall, P.J. Infectious coryza due to Haemophilus paragallinarum serovar B in China. Aust. Vet. J. 2003, 81, 96–97. [Google Scholar] [CrossRef]
- Sun, H.; Xie, S.; Li, X.; Xu, F.; Li, Y.; Boucher, C.E.; Chen, X. Selection of Avibacterium paragallinarum Page serovar B strains for an infectious coryza vaccine. Vet. Immunol. Immunopathol. 2018, 199, 77–80. [Google Scholar] [CrossRef]
- Xu, Y.; Cheng, J.; Huang, X.; Xu, M.; Feng, J.; Liu, C.; Zhang, G. Characterization of emergent Avibacterium paragallinarum strains and the protection conferred by infectious coryza vaccines against them in China. Poult. Sci. 2019, 98, 6463–6471. [Google Scholar] [CrossRef]
- Sakamoto, R.; Kino, Y.; Sakaguchi, M. Development of a multiplex PCR and PCR-RFLP method for serotyping of Avibacterium paragallinarum. J. Vet. Med. Sci. 2012, 74, 271–273. [Google Scholar] [CrossRef]
- Soriano, V.E.; Tellez, G.; Hargis, B.M.; Newberry, L.; Salgado-Miranda, C.; Vazquez, J.C. Typing of Haemophilus paragallinarum strains by using enterobacterial repetitive intergenic consensus-based polymerase chain reaction. Avian Dis. 2004, 48, 890–895. [Google Scholar] [CrossRef]
- Hellmuth, J.E.; Hitzeroth, A.C.; Bragg, R.R.; Boucher, C.E. Evaluation of the ERIC-PCR as a probable method to differentiate Avibacterium paragallinarum serovars. Avian Pathol. 2017, 46, 272–277. [Google Scholar] [CrossRef]
- Bisgaard, M.; Nørskov-Lauritsen, N.; de Wit, S.J.; Hess, C.; Christensen, H. Multilocus sequence phylogenetic analysis of Avibacterium. Microbiology 2012, 158 Pt 4, 993–1004. [Google Scholar] [CrossRef]
- Enright, M.C.; Spratt, B.G. Multilocus sequence typing. Trends Microbiol. 1999, 7, 482–487. [Google Scholar] [CrossRef]
- Selander, R.K.; Caugant, D.A.; Ochman, H.; Musser, J.M.; Gilmour, M.N.; Whittam, T.S. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 1986, 51, 873–884. [Google Scholar] [CrossRef]
- Grozner, D.; Kovacs, A.B.; Wehmann, E.; Kreizinger, Z.; Beko, K.; Mitter, A.; Sawicka, A.; Janosi, S.; Tomczyk, G.; Morrow, C.J.; et al. Multilocus sequence typing of the goose pathogen Mycoplasma anserisalpingitidis. Vet. Microbiol. 2021, 254, 108972. [Google Scholar] [CrossRef]
- Ibarz Pavon, A.B.; Maiden, M.C. Multilocus sequence typing. Methods Mol. Biol. 2009, 551, 129–140. [Google Scholar]
- Perez-Losada, M.; Cabezas, P.; Castro-Nallar, E.; Crandall, K.A. Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. Infect. Genet. Evol. 2013, 16, 38–53. [Google Scholar] [CrossRef]
- Maiden, M.C.; Bygraves, J.A.; Feil, E.; Morelli, G.; Russell, J.E.; Urwin, R.; Zhang, Q.; Zhou, J.; Zurth, K.; Caugant, D.A.; et al. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 1998, 95, 3140–3145. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Ponten, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef]
- Guo, M.; Chen, X.; Zhang, H.; Liu, D.; Wu, Y.; Zhang, X. Isolation, Serovar Identification, and Antimicrobial Susceptibility of Avibacterium paragallinarum from Chickens in China from 2019 to 2020. Vet. Sci. 2022, 9, 27. [Google Scholar] [CrossRef]
- Chen, X.; Miflin, J.K.; Zhang, P.; Blackall, P.J. Development and Application of DNA Probes and PCR Tests for Haemophilus paragallinarum. Avian Dis. 1996, 40, 398–407. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Kimura, M. Evolutionary rate at the molecular level. Nature 1968, 217, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Francisco, A.P.; Bugalho, M.; Ramirez, M.; Carrico, J.A. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinform. 2009, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Soriano, E.V.; Garduño, M.L.; Téllez, G.; Rosas, P.F.; Suárez-Güemes, F.; Blackall, P.J. Cross-protection study of the nine serovars of Haemophilus paragallinarum in the Kume haemagglutinin scheme. Avian Pathol. 2004, 33, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B.; Zhang, L.; Koopman, J.S.; Manning, S.D.; Marrs, C.F. Choosing an appropriate bacterial typing technique for epidemiologic studies. Epidemiol. Perspect. Innov. 2005, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Hunter, P.R.; Gaston, M.A. Numerical index of the discriminatory ability of typing systems: An application of Simpson’s index of diversity. J. Clin. Microbiol. 1988, 26, 2465–2466. [Google Scholar] [CrossRef] [PubMed]
- Coram, T.E.; Settles, M.L.; Wang, M.; Chen, X. Surveying expression level polymorphism and single-feature polymorphism in near-isogenic wheat lines differing for the Yr5 stripe rust resistance locus. Theor. Appl. Genet. 2008, 117, 401–411. [Google Scholar] [CrossRef]
- Kryazhimskiy, S.; Plotkin, J.B. The population genetics of dN/dS. PLoS Genet. 2008, 4, e1000304. [Google Scholar] [CrossRef]
Strains | Country | Year | Serovar | Origin or GenBank Accession No. |
---|---|---|---|---|
221 | Japan | / | A | CVCC |
H-18 | Japan | / | C | |
2019/JS08, 2019/JS15, 2019/JS28, 2019/JS42, 2019/JS45, 2019/HB64, 2019/HB65 | China | 2019 | A | [27] |
2019/JS31, 2019/JS33, 2019/JS34, 2019/JS35, 2019/JS36, 2019/JS37, 2019/JS38, 2019/JS39, 2019/JS40, 2019/HB68 | China | 2019 | B | |
2019/NX56, 2019/NX57, 2019/NX58 | China | 2019 | C | |
2020/JS71, 2020/JS74, 2020/JS77, 2020/JS78, 2020/JS79, 2020/JS80, 2020/JS81, 2020/JS82, 2020/JS83 | China | 2020 | C | |
2020/HUB01, 2020/JS01, 2020/JS02, 2020/JS03, 2020/JS04, 2020/JS07 | China | 2020 | C | This study |
2021/JS01, 2021/JS02, 2021/JS05, 2021/06 | China | 2021 | C | |
2021/JS03, 2021/JS04, 2021/JS07, 2021/JS08, 2021/JS09, | China | 2021 | A | |
FARPER-174 | Peru | 2015 | C-2 | CP034110.1 |
ESV-135 | Mexico | 2008 | C-1 | CP050316.1 |
ADL-AP01, ADL-AP02, ADL-AP07, ADL-AP10, ADL-AP15, ADL-AP16, ADL-AP17 | United States | 2019 | unknown | CP051642.1, CP051641.1, CP051640.1, CP051639.1, CP051638.1, CP051637.1, CP051636.1 |
AVPG2015 | Mexico | 2014 | unknown | CP058307.1 |
p4chr1 | China | 2021 | unknown | CP081939.1 |
M | China | 2010 | unknown | CP086713.1 |
ZJ-C | China | 2019 | unknown | CP095161.1 |
Gene | Protein Product | Primer Sequence (5′–3′) | Fragment Size (bp) a |
---|---|---|---|
pmi | Mannose-6-phosphate isomerase | Forward: TTACATTATCCGAACACGC | 597 (863) |
Reverse: TTACCCATTAAACGGTCAGC | |||
infB | Translation initiation factor IF-2 | Forward: TTTACCGTGGTCAACGTGTC | 594 (831) |
Reverse: GAAAGAAAAGCGGCGGAAGA | |||
mdh | Malate dehydrogenase | Forward: CTAACTATTAATAAATTTCTCTCCTA | 738 (936) |
Reverse: ATGAAAGTTGCTGTTTTAGGTGCTG | |||
adk | Adenylate kinase | Forward: ATGAAAATTATTCTTCTAGGTGCAC | 447 (623) |
Reverse: TCGGCACTCACTGCTTCC | |||
deoD | Purine-nucleoside phosphorylase | Forward: GGGCTTTTGCTGATGTAGTATT | 432 (717) |
Reverse: GGTTAGTTGGCGTTCTTCT | |||
recA | DNA recombination/repair protein | Forward: ATCACTACCCCAGAAGAAAAAGAA | 864 (1063) |
Reverse: TATCCATTACATCATTATTGTCATT | |||
zwf | Glucose-6-phosphate dehydrogenase | Forward: CGTGCAATGAGTTTGTCCG | 738 (1413) |
Reverse: TATCGTGATTTTTGGGGCAT |
Gene | Average G+C Content (%) | Number of Alleles | Number of Polymorphic Sites | Percentage of Variable Nucleotide Site (%) | Nucleotide Polymorphism | dN/dS | Simpson’s ID | Tajima’s D |
---|---|---|---|---|---|---|---|---|
pmi | 44 | 3 | 109 | 18.26 | 0.02823 | 0.22 | 0.371 | −1.08584 |
infB | 45 | 6 | 18 | 3.08 | 0.00872 | 0.69 | 0.395 | 0.91678 |
mdh | 48 | 4 | 8 | 1.09 | 0.00267 | 0 | 0.368 | 0.04274 |
adk | 45 | 3 | 2 | 0.45 | 0.00015 | - | 0.067 | −1.44562 |
deoD | 45 | 4 | 31 | 7.17 | 0.01642 | 0.80 | 0.368 | 0.10658 |
recA | 46 | 5 | 19 | 2.20 | 0.00365 | 0 | 0.369 | −0.71009 |
zwf | 46 | 5 | 35 | 4.76 | 0.01415 | 0.25 | 0.613 | 0.92331 |
Strain | ST | Allelic Profile | ||||||
---|---|---|---|---|---|---|---|---|
pmi | infB | mdh | adk | deoD | recA | zwf | ||
221, 2019/JS08, 2019/JS15, 2019/JS28, 2019/JS42, 2019/JS45, 2019/NX56, 2019/NX57, 2019/NX58, 2019/HB65, 2019/JS71, 2019/JS74, 2019/JS77, 2019/JS78, 2019/JS79, 2019/JS80, 2019/JS81, 2019/JS82, 2019/JS83, 2020/JS01, 2020/JS02, 2020/JS03, 2020/JS04, 2020/JS07, 2021/JS01, 2021/JS02, 2021/JS03, 2021/JS04, 2021/JS05, 2021/JS07, 2021/JS08, 2021/JS09, p4chr1, ZJ-C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
H-18 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
2019/JS31, 2019/JS33, 2019/JS34, 2019/JS35, 2019/JS36, 2019/JS37, 2019/JS38, 2019/JS39, 2019/JS40, 2019/HB68, 2020/HuB01 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 3 |
2019/HB64 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 4 |
M | 5 | 2 | 2 | 3 | 3 | 3 | 5 | 7 |
2021/06 | 6 | 2 | 3 | 3 | 1 | 3 | 3 | 5 |
FARPER-174 | 7 | 2 | 4 | 4 | 1 | 4 | 4 | 6 |
ESV-135, ADL-AP01, ADL-AP02, ADL-AP07, ADL-AP10, ADL-AP15, ADL-AP16, ADL-AP17, AVPG2015 | 8 | 3 | 4 | 4 | 1 | 4 | 4 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Jin, Y.; Wang, H.; Zhang, X.; Wu, Y. Establishment of a Multilocus Sequence Typing Scheme for the Characterization of Avibacterium paragallinarum. Vet. Sci. 2024, 11, 208. https://doi.org/10.3390/vetsci11050208
Guo M, Jin Y, Wang H, Zhang X, Wu Y. Establishment of a Multilocus Sequence Typing Scheme for the Characterization of Avibacterium paragallinarum. Veterinary Sciences. 2024; 11(5):208. https://doi.org/10.3390/vetsci11050208
Chicago/Turabian StyleGuo, Mengjiao, Yikun Jin, Haonan Wang, Xiaorong Zhang, and Yantao Wu. 2024. "Establishment of a Multilocus Sequence Typing Scheme for the Characterization of Avibacterium paragallinarum" Veterinary Sciences 11, no. 5: 208. https://doi.org/10.3390/vetsci11050208
APA StyleGuo, M., Jin, Y., Wang, H., Zhang, X., & Wu, Y. (2024). Establishment of a Multilocus Sequence Typing Scheme for the Characterization of Avibacterium paragallinarum. Veterinary Sciences, 11(5), 208. https://doi.org/10.3390/vetsci11050208