Review of the Current Status on Ruminant Abortigenic Pathogen Surveillance in Africa and Asia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design and Systematic Review Protocol
2.2. Search Strategy
2.3. Exclusion Criteria
- (i)
- If the numerator (i.e., number positive) and denominator (i.e., number tested) information were not reported at the species and sample type levels;
- (ii)
- If they were in a language other than English. When required, a third reviewer (TK) served as a tiebreaker, independently reviewing articles to resolve disagreements between the two primary reviewers.
2.4. Article Selection and Data Extraction
2.5. Analysis
3. Results
Median Sero-Prevalence of Abortigenic Pathogens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tibary, A. Abortion in Cattle–Reproductive System. Available online: https://www.msdvetmanual.com/reproductive-system/abortion-in-large-animals/abortion-in-cattle (accessed on 12 October 2021).
- Givens, M.D. A Clinical, Evidence-Based Approach to Infectious Causes of Infertility in Beef Cattle. Theriogenology 2006, 66, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Semango, G.; Hamilton, C.M.; Kreppel, K.; Katzer, F.; Kibona, T.; Lankester, F.; Allan, K.J.; Thomas, K.M.; Claxton, J.R.; Innes, E.A.; et al. The Sero-Epidemiology of Neospora Caninum in Cattle in Northern Tanzania. Front. Vet. Sci. 2019, 6, 327. [Google Scholar] [CrossRef] [PubMed]
- Wardrop, N.A.; Thomas, L.F.; Cook, E.A.J.; de Glanville, W.A.; Atkinson, P.M.; Wamae, C.N.; Fèvre, E.M. The Sero-Epidemiology of Coxiella Burnetii in Humans and Cattle, Western Kenya: Evidence from a Cross-Sectional Study. PLoS Neglected Trop. Dis. 2016, 10, e0005032. [Google Scholar] [CrossRef] [PubMed]
- Madzingira, O.; Fasina, F.O.; Kandiwa, E.; Musilika-Shilongo, A.; Chitate, F.; van Heerden, H. A Retrospective Sero-Epidemiological Survey of Bovine Brucellosis on Commercial and Communal Farming Systems in Namibia from 2004 to 2018. Trop Anim Health Prod 2020, 52, 3099–3107. [Google Scholar] [CrossRef]
- Oyas, H.; Holmstrom, L.; Kemunto, N.P.; Muturi, M.; Mwatondo, A.; Osoro, E.; Bitek, A.; Bett, B.; Githinji, J.W.; Thumbi, S.M.; et al. Enhanced Surveillance for Rift Valley Fever in Livestock during El Niño Rains and Threat of RVF Outbreak, Kenya, 2015-2016. PLoS Neglected Trop. Dis. 2018, 12, e0006353. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, J.-Y.; Jeoung, H.-Y.; Yeh, J.-Y.; Cho, Y.-S.; Choi, J.-S.; Lee, J.-Y.; Cho, I.-S.; Yoo, H.-S. Serological Surveillance Studies Confirm the Rift Valley Fever Virus Free Status in South Korea. Trop. Anim. Health Prod. 2015, 47, 1427–1430. [Google Scholar] [CrossRef]
- Esubalew, S.; Tarekegn, Z.S.Z.; Jemberu, W.T.; Nigatu, S.D.; Kussa, M.; Tsegaye, A.A.; Asteraye, G.B.; Bogale, B.; Kebede, M.C. Seroepidemiology of Toxoplasma Gondii in Small Ruminants in Northwest Ethiopia. Vet. Parasitol. Reg. Stud. Rep. 2020, 22, 100456. [Google Scholar] [CrossRef]
- Njiro, S.M.; Kidanemariam, A.G.; Tsotetsi, A.M.; Katsande, T.C.; Mnisi, M.; Lubisi, B.A.; Potts, A.D.; Baloyi, F.; Moyo, G.; Mpofu, J.; et al. A Study of Some Infectious Causes of Reproductive Disorders in Cattle Owned by Resource-Poor Farmers in Gauteng Province, South Africa. J. S. Afr. Vet. Assoc. 2011, 82, 213–218. [Google Scholar] [CrossRef]
- Moore, D.; Reichel, M.; Spath, E.; Campero, C. Neospora Caninum Causes Severe Economic Losses in Cattle in the Humid Pampa Region of Argentina. Trop. Anim. Health Prod. 2013, 45, 1237–1241. [Google Scholar] [CrossRef]
- Nicolino, R.R.; Capanema, R.O.; de Oliveira, C.S.F.; Pastrana, M.E.O.; Lopes, L.B.; Haddad, J.P.A. Estimating the Abortion Risk Difference in Neospora Caninum Seropositive Dairy Cattle in Brazil. Ciência Rural 2015, 45, 1629–1633. [Google Scholar] [CrossRef]
- Semango, G.; Yoder, J.; Kibona, T.; Claxton, J.R.; Buza, J.; Mmbaga, B.T.; Johnson, S.S.; Cleaveland, S.; Lankester, F. Economic Burden of Livestock Abortions in Northern Tanzania. J. Agric. Appl. Econ. 2024, 56, 195–215. [Google Scholar] [CrossRef]
- Berezowski, J. Veterinary Surveillance. EOLSS 2002, 6, 153. [Google Scholar]
- OIE Animal Health Surveillance. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahc/current/chapitre_surveillance_general.pdf (accessed on 18 May 2024).
- Tonouhewa, A.B.N.; Akpo, Y.; Sherasiya, A.; Sessou, P.; Adinci, J.M.; Aplogan, G.L.; Youssao, I.; Assogba, M.N.; Farougou, S. A Serological Survey of Toxoplasma Gondii Infection in Sheep and Goat from Benin, West-Africa. J. Parasit. Dis. 2019, 43, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Hesterberg, U.W.; Bagnall, R.; Perrett, K.; Bosch, B.; Horner, R.; Gummow, B. A Serological Prevalence Survey of Brucella Abortus in Cattle of Rural Communities in the Province of KwaZulu-Natal, South Africa. J. S. Afr. Vet. Assoc. 2008, 79, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Gomo, C.; de Garine-Wichatitsky, M.; Caron, A.; Pfukenyi, D.M. Survey of Brucellosis at the Wildlife-Livestock Interface on the Zimbabwean Side of the Great Limpopo Transfrontier Conservation Area. Trop. Anim. Health Prod. 2012, 44, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Alhaji, N.B.; Babalobi, O.O.; Wungak, Y.; Ularamu, H.G. Participatory Survey of Rift Valley Fever in Nomadic Pastoral Communities of North-Central Nigeria: The Associated Risk Pathways and Factors. PLoS Neglected Trop. Dis. 2018, 12, e0006858. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Häsler, B.; Komba, E.; Sindato, C.; Rweyemamu, M.; Mlangwa, J. Towards an Integrated Animal Health Surveillance System in Tanzania: Making Better Use of Existing and Potential Data Sources for Early Warning Surveillance. BMC Vet. Res. 2021, 17, 109. [Google Scholar] [CrossRef] [PubMed]
- Chethan Kumar, H.B.; Hiremath, J.; Yogisharadhya, R.; Balamurugan, V.; Jacob, S.S.; Manjunatha Reddy, G.B.; Suresh, K.P.; Shome, R.; Nagalingam, M.; Sridevi, R.; et al. Animal Disease Surveillance: Its Importance & Present Status in India. Indian J. Med. Res. 2021, 153, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Namayanja, J.; Dione, M.; Kungu, J.M. Stakeholders’ Perceptions on Performance of the Livestock Disease Surveillance System in Uganda: A Case of Pallisa and Kumi Districts. Pastoralism 2019, 9, 12. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- UN Statistics Division. Available online: https://unstats.un.org/home/ (accessed on 20 August 2021).
- Swai, E.S.; Hulsebosch, J.; Van der Heijden, W. Prevalence of Genital Campylobacteriosis and Trichomonosis in Crossbred Breeding Bulls Kept on Zero-Grazed Smallholder Dairy Farms in the Tanga Region of Tanzania. J. S. Afr. Vet. Assoc. 2005, 76, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Otim, C.P.; Ocaido, M.; Okuna, N.M.; Erume, J.; Ssekitto, C.; Wafula, R.Z.O.; Kakaire, D.; Walubengo, J.; Okello, A.; Mugisha, A. Disease and Vector Constraints Affecting Cattle Production in Pastoral Communities of Ssembabule District, Uganda. Livest. Res. Rural. Dev. 2004, 16, 1–5. [Google Scholar]
- Sandhu, K.S.; Ball, M.S.; Kumar, H.; Sharma, S.; Sidhu, P.K.; Sreekumar, C.; Dubey, J.P. Seroprevalence of Neospora Caninum Antibodies in Cattle and Water Buffaloes in India. J. Parasitol. 2007, 93, 1374–1377. [Google Scholar]
- Chevalier, V.; Thiongane, Y.; Etter, E.; Lancelot, R. Serological Follow up of Rift Valley Fever in a Sahelian Ecosystem 2004; CIRAD: Paris, France, 2007. [Google Scholar]
- Matope, G.; Bhebhe, E.; Muma, J.B.; Lund, A.; Skjerve, E. Risk Factors for Brucella Spp. Infection in Smallholder Household Herds. Epidemiol. Infect. 2011, 139, 157–164. [Google Scholar] [CrossRef]
- Kroc, J.M.; Ochi, E.B. Short-Communication: Sero-Survey of Anti Rift Valley Fever Virus (RVFV) Antibodies in Sheep and Goats in Kapoeta, Eastrn Equatoria State, Sudan. Sudan J. Vet. Res. 2009, 24, 65–67. [Google Scholar]
- Jonker, A.; Michel, A. Retrospective Study of Bacterial and Fungal Causes of Abortion in Domestic Ruminants in Northern Regions of South Africa (2006–2016). Aust. Vet. J. 2021, 99, 66–71. [Google Scholar] [CrossRef]
- Ferede, Y.; Mengesha, D.; Mekonen, G. Study on the Seroprevalence of Small Ruminant Brucellosis in and around Bahir Dar, North West Ethiopia. Ethiop. Vet. J. 2011, 15, 2. [Google Scholar] [CrossRef]
- Degefa, T.; Duressa, A.; Duguma, R. Brucellosis and Some Reproductive Problems of Indigenous Arsi Cattle in Selected Arsi Zone’s of Oromia Regional State, Ethiopia. Glob. Vet. 2011, 7, 45–53. [Google Scholar]
- Barkallah, M.; Gharbi, Y.; Hassena, A.B.; Slima, A.B.; Mallek, Z.; Gautier, M.; Greub, G.; Gdoura, R.; Fendri, I. Survey of Infectious Etiologies of Bovine Abortion during Mid- to Late Gestation in Dairy Herds. PLoS ONE 2014, 9, e91549. [Google Scholar] [CrossRef]
- Moiane, B.T. Rift Valley Fever in Mozambique; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2017. [Google Scholar]
- Matope, G.; Bhebhe, E.; Muma, J.B.; Oloya, J.; Madekurozwa, R.L.; Lund, A.; Skjerve, E. Seroprevalence of Brucellosis and Its Associated Risk Factors in Cattle from Smallholder Dairy Farms in Zimbabwe. Trop. Anim. Health Prod. 2011, 43, 975–982. [Google Scholar] [CrossRef]
- Jafarizadeh, A.; Pourbakhsh, S.A.; Tadayon, K.; Jamshidian, M.; Ashtari, A. Mixed Infection Zones May Be Important in the Epidemiology of Contagious Agalactia. J. Vet. Res. 2016, 60, 159–162. [Google Scholar] [CrossRef]
- Ligi, J.; Sengupta, P.P.; Rudramurthy, G.R.; Rahman, H. A Pilot Sero-Survey for Surra in Livestock in Karnataka by ELISA Using Flagellar Antigen of Trypanosoma Evansi. Int. J. Fundam. Appl. Sci. 2015, 4, 99–103. [Google Scholar]
- Hwang, J.-M.; Kim, J.G.; Yeh, J.-Y. Serological Evidence of Bluetongue Virus Infection and Serotype Distribution in Dairy Cattle in South Korea. BMC Vet. Res. 2019, 15, 255. [Google Scholar] [CrossRef]
- Bronsvoort, B.M.; Kelly, R.F.; Freeman, E.; Callaby, R.; Bagninbom, J.M.; Ndip, L.; Handel, I.G.; Tanya, V.N.; Morgan, K.L.; Ngwa, V.N.; et al. A Cross-Sectional, Population-Based, Seroepidemiological Study of Rift Valley Fever in Cameroonian Cattle Populations. Front. Vet. Sci. 2022, 9, 897481. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.M.; Kibona, T.; Claxton, J.R.; de Glanville, W.A.; Lankester, F.; Amani, N.; Buza, J.J.; Carter, R.W.; Chapman, G.E.; Crump, J.A.; et al. Prospective Cohort Study Reveals Unexpected Aetiologies of Livestock Abortion in Northern Tanzania. Sci. Rep. 2022, 12, 11669. [Google Scholar] [CrossRef]
- Govindasamy, K.; Etter, E.M.C.; Geertsma, P.; Thompson, P.N. Progressive Area Elimination of Bovine Brucellosis, 2013–2018, in Gauteng Province, South Africa: Evaluation Using Laboratory Test Reports. Pathogens 2021, 10, 1595. [Google Scholar] [CrossRef]
- Fafetine, J.M.; Coetzee, P.; Mubemba, B.; Nhambirre, O.; Neves, L.; Coetzer, J.A.W.; Venter, E.H. Rift Valley Fever Outbreak in Livestock, Mozambique, 2014. Emerg. Infect. Dis. 2016, 22, 2165–2167. [Google Scholar] [CrossRef]
- Khajuria, B.K.; Malik, M.A.; Tiwari, A.; Sharma, N.; Wazir, V.S. Seroprevalence Studies of Brucellosis at Organized and Unorganized Cattle Farms in North India. Int. J. Agric. Environ. Biotechnol. 2014, 7, 499. [Google Scholar] [CrossRef]
- Hekal, S.H.A.; Al-Gaabary, M.H.; El-Sayed, M.M.; Sobhy, H.M.; Fayed, A.A.A. Seroprevalence of Some Infectious Transboundry Diseases in Cattle Imported from Sudan to Egypt. J. Adv. Vet. Anim. Res. 2019, 6, 92. [Google Scholar] [CrossRef]
- Lindahl-Rajala, E.; Hoffman, T.; Fretin, D.; Godfroid, J.; Sattorov, N.; Boqvist, S.; Lundkvist, Å.; Magnusson, U. Detection and Characterization of Brucella Spp. in Bovine Milk in Small-Scale Urban and Peri-Urban Farming in Tajikistan. PLoS Neglected Trop. Dis. 2017, 11, e0005367. [Google Scholar] [CrossRef]
- Barkallah, M.; Jribi, H.; Ben Slima, A.; Gharbi, Y.; Mallek, Z.; Gautier, M.; Fendri, I.; Gdoura, R. Molecular Prevalence of Chlamydia and Chlamydia-like Bacteria in Tunisian Domestic Ruminant Farms and Their Influencing Risk Factors. Transbound. Emerg. Dis. 2018, 65, e329–e338. [Google Scholar] [CrossRef]
- Abdeltif, B.; Tennah, S.; Derdour, S.Y.; Temim, A.; Boufendi, H.; Ghalmi, F. The First Study on Seroprevalence and Risk Factors of Neospora Caninum Infection in Pregnant Local Cows from Northeast Algeria. Vet. World 2022, 15, 442–448. [Google Scholar] [CrossRef]
- De Glanville, W.A.; Allan, K.J.; Nyarobi, J.M.; Thomas, K.M.; Lankester, F.; Kibona, T.J.; Claxton, J.R.; Brennan, B.; Carter, R.W.; Crump, J.A.; et al. An Outbreak of Rift Valley Fever among Peri-Urban Dairy Cattle in Northern Tanzania. Trans. R. Soc. Trop. Med. Hyg. 2022, 116, 1082–1090. [Google Scholar] [CrossRef]
- Troupin, C.; Ellis, I.; Doukouré, B.; Camara, A.; Keita, M.; Kagbadouno, M.; Bart, J.-M.; Diallo, R.; Lacôte, S.; Marianneau, P.; et al. Seroprevalence of Brucellosis, Q Fever and Rift Valley Fever in Domestic Ruminants in Guinea in 2017–2019. BMC Vet. Res. 2022, 18, 64. [Google Scholar] [CrossRef]
- Djellata, N. Seroprevalence of Infectious Bovine Rhinotracheitis in Aborted Cows in Algeria. Vet. Stanica 2024, 55, 311. [Google Scholar] [CrossRef]
- Al-Mubarak, A.I.A.; Hussen, J.; Kandeel, M.; Al-Kubati, A.A.G.; Falemban, B.; Skeikh, A.; Hemida, M.G. Risk-Associated Factors Associated with the Bovine Viral Diarrhea Virus in Dromedary Camels, Sheep, and Goats in Abattoir Surveillance and Semi-Closed Herd System. Vet. World 2022, 15, 1924–1931. [Google Scholar] [CrossRef]
- Messele, Y.E.; Girmay, G.; Emeru, B.A.; Bora, S.K.; Gudeta, W.F.; Dersso, B.S.; Tegegne, D.T.; Hurrisa, B.U.; Yalew, S.T.; Werid, G.M. Seroprevalence of Major Infectious Causes of Dairy Cattle Reproductive Problems in Central Ethiopia; Research Square: Durham, NC, USA, 2021. [Google Scholar]
- Yitagesu, E.; Jackson, W.; Kebede, N.; Smith, W.; Fentie, T. Prevalence of Bovine Abortion, Calf Mortality, and Bovine Viral Diarrhea Virus (BVDV) Persistently Infected Calves among Pastoral, Peri-Urban, and Mixed-Crop Livestock Farms in Central and Northwest Ethiopia. BMC Vet. Res. 2021, 17, 87. [Google Scholar] [CrossRef]
- Naveena, T.; Sarangi, L.N.; Rana, S.K.; Prasad, A.; Prabha, T.S.; Jhansi, D.; Ponnanna, N.M.; Sharma, G.K. Seroprevalence to Common Infectious Abortifacient and Infertility Causing Agents in the Dairy Herds of India. Iran J. Vet. Res. 2022, 23, 189–195. [Google Scholar]
- Mohammed, F.U.; Ibrahim, S.; Musa, G.A.; Kaltungo, B.Y.; Danbirni, S.; Kwaga, J.K. Brucella Infection in Migratory Cattle Herds in Jigawa State Nigeria: A Cross Sectional Study. Sokoto J. Vet. Sci. 2020, 18, 191–194. [Google Scholar] [CrossRef]
- El-Mohamady, R.; Gerges, A.M.; Abd-Elhafeiz, Y.G.M. Investigation of The Association Between Bovine Viral Diarrhea Virus and Neospora Caninum as a Cause of Abortion in Cattle. J. Appl. Vet. Sci. 2021, 7, 11–17. [Google Scholar] [CrossRef]
- Akoko, J.M.; Mwatondo, A.; Muturi, M.; Wambua, L.; Abkallo, H.M.; Nyamota, R.; Bosire, C.; Oloo, S.; Limbaso, K.S.; Gakuya, F.; et al. Mapping Brucellosis Risk in Kenya and Its Implications for Control Strategies in Sub-Saharan Africa. Sci. Rep. 2023, 13, 20192. [Google Scholar] [CrossRef] [PubMed]
- Deb Nath, N.; Ahmed, S.S.U.; Malakar, V.; Hussain, T.; Chandra Deb, L.; Paul, S. Sero-Prevalence and Risk Factors Associated with Brucellosis in Dairy Cattle of Sylhet District, Bangladesh: A Cross-Sectional Study. Vet. Med. Sci. 2023, 9, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Marumo, B.; Hlokwe, T.M.; Kayoka-Kabongo, P.N. Seroprevalence of Brucellosis in Communal and Smallholder Cattle Farming in North West Province, South Africa. Onderstepoort J. Vet. Res. 2023, 90, 2114. [Google Scholar] [CrossRef]
- Jaismon, P.A.; Sushmitha, A.P.; Verma, M.R.; Singh, Y.P.; Borthakur, U.; Kumar, S.; Sharun, K.; Dhama, K. Prevalence of Bovine Brucellosis in India: A Meta-Analysis. Vet. Q. 2023, 43, 1–9. [Google Scholar] [CrossRef]
- Mohammadian, B.; Noaman, V.; Emami, S.J. Molecular Survey on Prevalence and Risk Factors of Anaplasma Spp. Infection in Cattle and Sheep in West of Iran. Trop. Anim. Health Prod. 2021, 53, 266. [Google Scholar] [CrossRef]
- Chambaro, H.M.; Sasaki, M.; Simulundu, E.; Silwamba, I.; Sinkala, Y.; Gonzalez, G.; Squarre, D.; Fandamu, P.; Lubaba, C.H.; Munyeme, M.; et al. Co-Circulation of Multiple Serotypes of Bluetongue Virus in Zambia. Viruses 2020, 12, 963. [Google Scholar] [CrossRef]
- Daniels, P.W.; Sendow, I.; Pritchard, L.I.; Eaton, B.T. Regional Overview of Bluetongue Viruses in South-East Asia: Viruses, Vectors and Surveillance. Vet. Ital. 2004, 40, 94–100. [Google Scholar]
- FAO Animal Genetic Resources. Strategies for Improved Use and Conservation. Available online: https://www.fao.org/3/ah806e/AH806E12.htm (accessed on 17 April 2024).
- Rahman, M.M.; Islam, M.R.; Dhar, P.S. Recent Re-Emergence of Rift Valley Fever: Epidemiology, Clinical Characteristics, Transmission, Symptoms, Diagnosis, Prevention, and Treatment. Int. J. Surg. 2023, 109, 117. [Google Scholar] [CrossRef]
- FAO Manual on Livestock Disease Surveillance and Information Systems. Available online: https://www.fao.org/3/x3331e/x3331e01.htm (accessed on 22 October 2021).
- Bronner, A.; Hénaux, V.; Fortané, N.; Hendrikx, P.; Calavas, D. Why Do Farmers and Veterinarians Not Report All Bovine Abortions, as Requested by the Clinical Brucellosis Surveillance System in France? BMC Vet. Res. 2014, 10, 93. [Google Scholar] [CrossRef]
- Goutardab, F.L.; Binotab, A.; Dubozac, R.; Rasamoelina-Andriamanivode, H.; Pedronoae, M.; Hollf, D.; Peyreag, M.I.; Cappelleah, J.; Chevaliera, V.; Figuiéi, M.; et al. How to Reach the Poor? Surveillance in Low-Income Countries, Lessons from Experiences in Cambodia and Madagascar. Prev. Vet. Med. 2015, 120, 12–26. [Google Scholar] [CrossRef]
- Mtema, Z.; Changalucha, J.; Cleaveland, S.; Elias, M.; Ferguson, H.M.; Halliday, J.E.B.; Haydon, D.T.; Jaswant, G.; Kazwala, R.; Killeen, G.F.; et al. Mobile Phones as Surveillance Tools: Implementing and Evaluating a Large-Scale Intersectoral Surveillance System for Rabies in Tanzania. PLOS Med. 2016, 13, e1002002. [Google Scholar] [CrossRef]
- Karimuribo, E.D.; Mutagahywa, E.; Sindato, C.; Mboera, L.; Mwabukusi, M.; Kariuki Njenga, M.; Teesdale, S.; Olsen, J.; Rweyemamu, M. A Smartphone App (AfyaData) for Innovative One Health Disease Surveillance from Community to National Levels in Africa: Intervention in Disease Surveillance. JMIR Public Health Surveill 2017, 3, e94. [Google Scholar] [CrossRef] [PubMed]
- Karimuribo, E.; Batamuzi, E.; Massawe, L.; Silayo, R.; Mgongo, F.; Kimbita, E.; Wambura, R. Potential Use of Mobile Phones in Improving Animal Health Service Delivery in Underserved Rural Areas: Experience from Kilosa and Gairo Districts in Tanzania. BMC Vet. Res. 2016, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.S.; Daly, K.; Nyanza, E.C.; Ngallaba, S.E.; Bull, S. Health Worker Acceptability of an mHealth Platform to Facilitate the Prevention of Mother-to-Child Transmission of HIV in Tanzania. Digit. Health 2020, 6, 2055207620905409. [Google Scholar] [CrossRef] [PubMed]
- L’Engle, K.L.; Vahdat, H.L.; Ndakidemi, E.; Lasway, C.; Zan, T. Evaluating Feasibility, Reach and Potential Impact of a Text Message Family Planning Information Service in Tanzania. Contraception 2013, 87, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Francis, F.; Ishengoma, D.S.; Mmbando, B.P.; Rutta, A.S.M.; Malecela, M.N.; Mayala, B.; Lemnge, M.M.; Michael, E. Deployment and Use of Mobile Phone Technology for Real-Time Reporting of Fever Cases and Malaria Treatment Failure in Areas of Declining Malaria Transmission in Muheza District North-Eastern Tanzania. Malar. J. 2017, 16, 308. [Google Scholar] [CrossRef]
- Haberer, J.E.; Kiwanuka, J.; Nansera, D.; Wilson, I.B.; Bangsberg, D.R. Challenges in Using Mobile Phones for Collection of Antiretroviral Therapy Adherence Data in a Resource-Limited Setting. AIDS Behav. 2010, 14, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Wakadha, H.; Chandir, S.; Were, E.V.; Rubin, A.; Obor, D.; Levine, O.S.; Gibson, D.G.; Odhiambo, F.; Laserson, K.F.; Feikin, D.R. The Feasibility of Using Mobile-Phone Based SMS Reminders and Conditional Cash Transfers to Improve Timely Immunization in Rural Kenya. Vaccine 2013, 31, 987–993. [Google Scholar] [CrossRef]
- Chang, L.W.; Kagaayi, J.; Arem, H.; Nakigozi, G.; Ssempijja, V.; Serwadda, D.; Quinn, T.C.; Gray, R.H.; Bollinger, R.C.; Reynolds, S.J. Impact of a mHealth Intervention for Peer Health Workers on AIDS Care in Rural Uganda: A Mixed Methods Evaluation of a Cluster-Randomized Trial. AIDS Behav. 2011, 15, 1776–1784. [Google Scholar] [CrossRef]
- Githinji, S.; Kigen, S.; Memusi, D.; Nyandigisi, A.; Mbithi, A.M.; Wamari, A.; Muturi, A.N.; Jagoe, G.; Barrington, J.; Snow, R.W.; et al. Reducing Stock-Outs of Life Saving Malaria Commodities Using Mobile Phone Text-Messaging: SMS for Life Study in Kenya. PLoS ONE 2013, 8, e54066. [Google Scholar] [CrossRef]
- Leon, N.; Schneider, H.; Daviaud, E. Applying a Framework for Assessing the Health System Challenges to Scaling up mHealth in South Africa. BMC Med. Inf. Decis. Mak. 2012, 12, 123. [Google Scholar] [CrossRef] [PubMed]
- Horvath, T.; Azman, H.; Kennedy, G.E.; Rutherford, G.W. Mobile Phone Text Messaging for Promoting Adherence to Antiretroviral Therapy in Patients with HIV Infection. Cochrane Database Syst. Rev. 2012, 2012, CD009756. [Google Scholar] [CrossRef] [PubMed]
- Njoroge, M.; Zurovac, D.; Ogara, E.A.A.; Chuma, J.; Kirigia, D. Assessing the Feasibility of eHealth and mHealth: A Systematic Review and Analysis of Initiatives Implemented in Kenya. BMC Res. Notes 2017, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Kiberu, V.M.; Mars, M.; Scott, R.E. Barriers and Opportunities to Implementation of Sustainable E-Health Programmes in Uganda: A Literature Review. Afr. J. Prim. Health Care Fam. Med. 2017, 9, 10. [Google Scholar] [CrossRef] [PubMed]
Search String | Database or Further Sources | Results | Date | Comments |
---|---|---|---|---|
((((ASIA[Text Word]) OR (AFRICA[Text Word]) AND (1990/1/1:2024/5/1[pdat])) AND (((GOATS[Title/Abstract]) OR (SHEEP[Title/Abstract])) OR (CATTLE[Title/Abstract]) AND (1990/1/1:2024/5/1[pdat]))) AND (ABORT*[Title/Abstract] AND (1990/1/1:2024/5/1[pdat]))) AND (surve*[Title/Abstract]) | PubMed | 37 | 1 May 2024 | PubMed search |
abortion surveillance cattle OR sheep OR goats * * * * “Asia OR Africa” -human -people -persons -man -woman -Europe -americas -australia -pacific -“south america”1990–2024 | Google Scholar | 240 | 1 May 2024 | Google Scholar search through NM-AIST |
s/no | Country | Region | Year | Species | Number of Species (Positive) | Pathogen(s) Detected | Study Type | Husbandry Method (Climatic Zone) | Detection Method | Ref |
---|---|---|---|---|---|---|---|---|---|---|
1 | Tanzania | East Africa | 1996 | Cross-bred bulls; Taurine breeds [24] (Friesian, Ayrshire, and Simmental crossed with Tanzanian short-horn zebu, boran, and Sahiwal) | Campylobacter fetus 3/58, Trichomonas foetus 0/58 | Campylobacter fetus subsp. Venerealis, Trichomonas foetus | Sero-survey | Smallholder dairy farms (zero-grazing) Tropical climate | Culture and biochemical tests | [24] |
2 | Uganda | East Africa | 2000 | Cattle (Ankole, crosses—Fresian and Boran) | Brucella—41/143 Anaplasma 3/454 | Brucella, Anaplasma | Cross-sectional | Pastoral communities Tropical climate | RBPT, ELISA | [25] |
3 | India | Asia | 2002–2004 | Cattle | 35/427 (9.6%) | Neospora caninum | Cross-sectional survey | Dairy farms Tropical climate | ELISA, IFAT | [26] |
4 | Senegal | West Africa | 2003 | Sheep | 7/260 (2.7%) | RVFV | Serological survey | Nomadic Tropical climate | Sero neutralization test | [27] |
5 | Zimbabwe | Southern Africa | 2004–2005 | Cattle | 71/1291 (5.5%) | Brucella | Cross-sectional | Smallholder Subtropical climate | RBT, ELISA | [28] |
6 | Sudan | Central Africa | 2005 | Sheep and goats | Sheep 3/270 (1.1%) | RVFV | Sero-surveillance | Nomadic pastoralist Tropical savannah | ELISA, Hemagglutination | [29] |
7 | South Africa | Southern Africa | 2006–2016 | 193 cattle, 39 goats, and 57 sheep | 63/288; Brucella 21/288 (7.3%) Cattle, Trueperella pyogenes 5/288 Cattle, 1/288 sheep | Brucella, Trueperella pyogenes, E. coli, Salmonella, L. monocytogenes, C. burnetii, B. licheniformus, Rhizopus, B. abortus, Leptospira, C. pecorum, Campylobacter | Observational retrospective study | Archived samples Subtropical and temperate | Microbiology, necropsy, histopathology, PCR | [30] |
8 | Ethiopia | East Africa | 2008–2009 | Sheep and goats | 0/270 sheep, 2/230 goats | Brucella | Cross-sectional | Mixed farming Tropical | Rose Bengal Plate Test, Complement Fixation Test | [31] |
9 | Ethiopia | East Africa | 2009–2010 | Cattle | 2/370 (0.05%) | Brucella | Cross-sectional survey | Mixed farming Equatorial rainforest, Afro-alpine | Rose Bengal, Complement Fixation Test | [32] |
10 | Tunisia | North Africa | 2010–2012 | Cattle | 214 blood, vaginal swabs, milk. Brucella 47/150 (31.3%) RBPT, DANA PCR 46/150 (30.6%). Chlamydia 27/150 (18%), L. monocytogenes 7/150 (4.6%), Salmonella 5/150 (3.3%). Vaginal swabs; Brucella 46/150 (30.6%), Chlamydiales 27/150 (2.65%), L. monocytogenes 4/150 (2.6%) | Brucella, Chamydiales (C. abortus, C. pecorum), Listeria, Salmonella, Coxiella burnetii, Campylobacter | Cross-sectional survey | Limited pasture or tethered Mediterranean climate | PCR, Rose Bengal | [33] |
11 | Mozambique | Southern Africa | 2010–2016 | Cattle, goats, and sheep | Cattle 149/404 Goats 45/223 Sheep | RVFV | Sero-survey | Mixed farming Tropical to sub-tropical | ELISA, PRNT | [34] |
12 | Zimbabwe | Southern Africa | 2011 | Cattle (mixed breeds) | 81/1440 (5.6%) | Brucella | Cross-sectional survey | Smallholder, mixed farming (strictly separate pastures) Subtropical | ELISA | [35] |
13 | Iran | Asia | 2011–2012 | Sheep and goats | PCR: Sheep 101/274. Goats 10/25, Culture Sheep 76/274. Goats’ 9/25 | Mycoplasma spp. | Cross-sectional | Mixed farming Arid and semi-arid climate | PCR, bacterial culture | [36] |
14 | India | Asia | 2012–2014 | Cattle | 11/61 (18.03%) | Trypanosoma evansi | Sero-survey | Mixed farming. Tropical climate | ELISA | [37] |
15 | South Korea | Asia | 2012–2013 | Cattle (Holstein breed) | 37/171 and 85/466 | Blue Tongue Virus | Serological survey from National Surveillance Program | Mixed farming Temperate climate | ELISA, BTV neutralization test, RT-PCR | [38] |
16 | Cameroon | West Africa | 2013 | Cattle | 117/1498 | RVFV | Cross-sectional survey | Pastoralists Humid and Equatorial climate | ELISA | [39] |
17 | Tanzania | East Africa | 2013–2016 | Cattle, goats, and sheep | Brucella Cattle 1/71, Coxiella Goats 5/100, Sheep 1/44, Neospora Cattle 9/71, Goats 1/100, Toxoplasma Sheep 1/44, BHV-1 Cattle 2/49, BVDV Cattle 2/71, Goats 1/100, Sheep 6/44, RVFV Cattle 14/71 | Brucella, Chlamydia abortus, Coxiella burnetii, Leptospira hardjo, Neospora caninum, Toxoplasma gondii, Bluetongue Virus, Bovine Herpes Virus 1, Pestiviruses (BVDV/BDV), RVFV | Cross-sectional survey | Pastoral, agro-pastoral, and smallholder Tropical climate | ELISA, PCR | [40] |
18 | South Africa | Southern Africa | 2013–2018 | Cattle | 359,026 (22.1%) | Brucella | Cross-sectional survey, Provincial surveillance program | Mixed farming Subtropical and temperate | CFT, Rose Bengal Plate Test | [41] |
19 | Mozambique | Southern Africa | 2014 | Goats | Serology: 31/127 (24.4%) | RVFV | Outbreak investigation | Mixed farming Tropical to sub-tropical | ELISA, PCR | [42] |
20 | India | Asia | 2014 | Cattle | 160 RBPT 3/160 (1.8%), Standard Tube Agglutination Test (STAT) 5/160 (3.13%) | Brucella | Sero-epidemiological survey | Mixed farming Tropical climate | RBPT, STAT, Bacterial culture, Milk Ring Test | [43] |
21 | Nigeria | West Africa | 2015 | Cattle | 11/97 (11.3%) | RVFV | Cross-sectional survey | Nomadic pastoral Tropical monsoon climate, tropical savannah, and Sahelian hot and semi-arid | ELISA | [18] |
22 | Kenya | East Africa | 2016 | Cattle | 100/955, 10.5% | Coxiella burnetii | Cross-sectional survey | Mixed crop-livestock Tropical climate | ELISA | [4] |
23 | Egypt | North Africa | 2016–2018 | Cattle | 165/176 (93.86%) | BHV-1 | Transboundary, Import from Sudan | Nomadic Subtropical desert climate | ELISA | [44] |
24 | Tajikistan | Central Asia | 2016 | Cattle | 570 (58 PCR, 12 ELISA) | Brucella | Sero-prevalence | Smallholder Continental, subtropical, desert | ELISA, qPCR, DNA sequencing | [45] |
25 | Tunisia | North Africa | 2017 | Cattle and sheep | Cattle Waddlia 12/27, Parachlamydiaceae 8/27, Chlamydiaceae 7/27, Sheep P. acanthamoebae 9/164, C. pecorum 6/164 | Waddlia chondrophila, C. abortus, C. pecorum | Cross-sectional survey | Smallholder Mediterranean | PCR | [46] |
26 | Algeria | North Africa | 2017–2019 | Atlas brown cows | 650 pregnant (235(36.2%)) | Neospora caninum | Sero-prevalence | Smallholder Mediterranean | ELISA | [47] |
27 | Tanzania | East Africa | 2017–2019 | Cattle | 14/63 (23%) | RVFV | Prospective cohort | Pastoral, agropastoral, and smallholder Tropical climate | ELISA, RT-qPCR | [48] |
28 | Benin | West Africa | 2017 | Sheep and goats | Goats 83/153, Sheep 3/215 | Toxoplasma gondii | Sero-epidemiological survey | Pastoral. Steppe climate and topical humid climate | ELISA | [15] |
29 | Guinea | West Africa | 2017–2019 | Cattle, goats, and sheep | Brucella; Cattle 52/463, Sheep 2/486. Coxiella; Cattle 95/463, Goats 18/408, Sheep 11/486. RVF; Cattle 76/463, Goats 4/408, Sheep 5/486 | Brucella, Coxiella burnetii, RVFV | Sero-survey from archived samples | Intensive farms Samples from different prefectures Hot and humid | ELISA, Virus Neutralizing Ab | [49] |
30 | Algeria | North Africa | 2018–2019 | Cattle | 201/460 (43.7%) | Bovine Herpes Virus 1 | Abortion investigation | Mixed farming Mediterranean climate | ELISA | [50] |
31 | Saudi Arabia | Asia | 2018–2020 | Sheep and goats | Goat 3/84 (3.5%) Serum | BVDV | Sero-prevalence-Abattoir surveillance | Abattoir, semi-closed management Desert climate | ELISA | [51] |
32 | Ethiopia | East Africa | 2018–2019 | Cattle cross and pure breeds; Boran–Fresian cross, Boran–Jersey, Pure Jersey, and Boran | BHV-1 68/86(79.1%), BVD 33/86 (38.4%), Neospora 3/86 (3.5%), Coxiella 1/86 (1.2%) | Brucella spp., Neospora caninum, BVD, BHV-1, Coxiella burnetii | Reproductive problem investigation | Semi-intensive farming system (grazing and indoor feeding) Equatorial rainforest, Afro-alpine | ELISA | [52] |
33 | Ethiopia | East Africa | 2018–2019 | Cattle (Zebu, Holstein, Fresian, and crossbreed) | 0/882 (ear notch samples | BVDV | Cross-sectional survey | Peri-urban dairy farms, mixed crop–livestock farms (small holder extensive management system), pastoral herds (seasonal mobility) Equatorial rainforest, Afro-alpine | ELISA | [53] |
34 | India | Asia | 2019 | Cattle crossbreeds, exotic, and indigenous | BHV-1 425/1004, BVDV 604/1004, Brucella 176/1004, Coxiella 57/1004, Anaplasma 363/1004, Neospora 9/1004 | BHV-1, BVDV, Brucella, Coxiella burnetii, Neospora caninum, Anaplasma marginale | Cros-sectional | Intensive dairy farms Tropical | ELISA | [54] |
35 | Nigeria | West Africa | 2020 | Cattle | 61/1810 (3.37%) | Brucella | Cross-sectional | Mixed farming Tropical monsoon climate, tropical savannah, and Sahelian hot and semi-arid | SAT | [55] |
36 | Egypt | North Africa | 2020 | Cattle | Neospora 35/116 (30.17%), BVDV 31/116(26.72%) | Neospora caninum, BVDV | Cross-sectional | Medium-sized farms Subtropical desert climate | ELISA | [56] |
37 | Kenya | East Africa | 2020–2021 | Cattle | 6593(449) | Brucella | Sero-prevalence | Agro-alpine, high and medium potential, semi-arid, arid, and very arid Tropical climate | ELISA | [57] |
38 | Bangladesh | Asia | 2023 | Cattle (local, cross) | 66/386 (17.09%) | Brucella | Cross-sectional | Transboundary area, mixed farming Humid, warm climate | RBPT, Plate agglutination test, serum agglutination | [58] |
39 | South Africa | Southern Africa | 2023 | Cattle | 2% 770 | Brucella | Cross-sectional survey, abattoir survey | Communal, commercial, and non-commercial farms Subtropical and temperate | RNT, CFT, Milk Ring Test | [59] |
Abortigenic Pathogen | Species | Cases (n) | Total Tested (N) | Median Sero-Prevalence | |||
---|---|---|---|---|---|---|---|
Africa | Asia | Africa | Asia | Africa | Asia | ||
Anaplasma | Cattle | 3 | 363 | 454 | 1004 | 0.7 | 36.2 |
BHV-1 | Cattle | 436 | 245 | 771 | 1004 | 56.5 | 24.4 |
Bluetongue virus | Cattle | 0 | 122 | 0 | 637 | 0 | 19.2 |
Brucella spp. | Goats | 2 | 0 | 230 | 0 | 0.87 | 0 |
Sheep | 2 | 0 | 754 | 0 | 0.27 | 0 | |
Cattle | 80,165 | 305 | 372,127 | 2120 | 21.5 | 14.4 | |
BVDV | Goats | 1 | 3 | 100 | 84 | 1 | 3.6 |
Sheep | 6 | 0 | 44 | 0 | 13.6 | 0 | |
Cattle | 66 | 604 | 1155 | 1004 | 5.7 | 60.2 | |
Campylobacter | Cattle | 3 | 0 | 58 | 0 | 5.2 | 0 |
Chlamydia abortus | Cattle | 34 | 0 | 177 | 0 | 19.2 | 0 |
Chlamydia pecorum | Sheep | 6 | 0 | 164 | 0 | 3.7 | 0 |
Coxiella burnetii | Goats | 23 | 0 | 508 | 0 | 4.5 | 0 |
Sheep | 12 | 0 | 530 | 0 | 2.3 | 0 | |
Cattle | 196 | 54 | 1504 | 1004 | 13 | 5.4 | |
Listeria | Cattle | 7 | 0 | 150 | 0 | 4.7 | 0 |
Mycoplasma | Goats | 0 | 10 | 0 | 25 | 0 | 40 |
Sheep | 0 | 101 | 0 | 274 | 0 | 36.9 | |
Neospora caninum | Goats | 1 | 0 | 100 | 0 | 1 | 0 |
Cattle | 282 | 44 | 923 | 1431 | 30.6 | 3.1 | |
RVFV | Goats | 80 | 0 | 758 | 0 | 10.6 | 0 |
Sheep | 15 | 0 | 1016 | 0 | 1.5 | 0 | |
Cattle | 381 | 0 | 2596 | 0 | 14.7 | 0 | |
Salmonella | Cattle | 5 | 0 | 150 | 0 | 3.3 | 0 |
Toxoplasma gondii | Goats | 83 | 0 | 153 | 0 | 54.2 | 0 |
Sheep | 4 | 0 | 259 | 0 | 1.5 | 0 | |
Trichomonas foetus | Cattle | 0 | 0 | 58 | 0 | 0 | 0 |
Trypanosoma evansi | Cattle | 0 | 11 | 0 | 61 | 0 | 18 |
Waddlia chondrophila | Cattle | 12 | 0 | 27 | 0 | 44.4 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semango, G.P.; Buza, J. Review of the Current Status on Ruminant Abortigenic Pathogen Surveillance in Africa and Asia. Vet. Sci. 2024, 11, 425. https://doi.org/10.3390/vetsci11090425
Semango GP, Buza J. Review of the Current Status on Ruminant Abortigenic Pathogen Surveillance in Africa and Asia. Veterinary Sciences. 2024; 11(9):425. https://doi.org/10.3390/vetsci11090425
Chicago/Turabian StyleSemango, George Peter, and Joram Buza. 2024. "Review of the Current Status on Ruminant Abortigenic Pathogen Surveillance in Africa and Asia" Veterinary Sciences 11, no. 9: 425. https://doi.org/10.3390/vetsci11090425
APA StyleSemango, G. P., & Buza, J. (2024). Review of the Current Status on Ruminant Abortigenic Pathogen Surveillance in Africa and Asia. Veterinary Sciences, 11(9), 425. https://doi.org/10.3390/vetsci11090425