A Review of Biological and Sustainable Management Approaches for Alphitobius diaperinus, a Major Pest in Poultry Facilities
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Biological Control Strategies of A. diaperinus
3.1.1. Entomopathogenic Fungi
Mechanism of Action of EF Controlling A. diaperinus
Studies on the Control of A. diaperinus with EF
Synergistic Effect Studies with EF on A. diaperinus Control
3.1.2. Entomopathogenic Bacteria
Mechanism of Action of EB Controlling A. diaperinus
Studies on the Control of A. diaperinus with EB
Synergistic Effect Studies with EB on A. diaperinus Control
3.1.3. Entomopathogenic Nematodes
Mechanism of Action of EN Controlling A. diaperinus
Studies on the Control of A. diaperinus with EN
Synergistic Effect Studies with EN on A. diaperinus Control
3.2. Sustainable Control Approaches of A. diaperinus
3.2.1. Plant Essential Oils and Extracts
Mechanism of Action of PEO and PE Controlling A. diaperinus
Studies on the Control of A. diaperinus with POE and PE
Synergistic Effect Studies with PEO and PE on A. diaperinus Control
3.2.2. Pheromones
Mechanism of Action of P Controlling A. diaperinus
Studies on the Control of A. diaperinus with P
Synergistic Effect Studies with P on A. diaperinus Control
3.2.3. Diatomaceous Earth
Mechanism of Action of DE Controlling A. diaperinus
Studies on the Control of A. diaperinus with DE
Synergistic Effect Studies with DE on A. diaperinus Control
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Bt | Bacillus thuringiensis |
Cry | Crystalline |
DE | Diatomaceous Earth |
EB | Entomopathogenic Bacteria |
EF | Entomopathogenic Fungi |
EN | Entomopathogenic Nematodes |
IPM | Integrated Pest Management |
P | Pheromones |
PE | Plant Extracts |
PEO | Plant Essential Oils |
References
- Dunford, J.C.; Kaufman, P.E. Lesser mealworm, litter beetle, Alphitobius diaperinus (Panzer) (Insecta: Coleoptera: Tenebrionidae). In EDIS; EENY-367/IN662; Institute of Food and Agricultural Sciences (IFAS): Gainesville, FL, USA, 2006. [Google Scholar]
- Sammarco, B.C.; Hinkle, N.C.; Crossley, M.S. Biology and management of lesser mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae) in broiler houses. J. Integr. Pest Manag. 2023, 14, 1–8. [Google Scholar] [CrossRef]
- Segú, H.; Jalševac, F.; Sierra-Cruz, M.; Feliu, F.; Movassat, J.; Rodríguez-Gallego, E.; Blay, M.T. Assessing the impact of insect protein sources on intestinal health and disease: Insights from human ex vivo and rat in vivo models. Food Funct. 2024, 15, 4552–4563. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Lee, W.S.; Chung, S.H.; Lee, J.H. Alphitobius diaperinus larvae (lesser mealworm) as human food—An approval of the European Commission—A critical review. J. Insects Food Feed 2024, 10, 45–58. [Google Scholar] [CrossRef]
- Velusamy, R.; Latchumikanthan, A.; Vijayasarathi, M.K. The lesser mealworm beetle (Alphitobius diaperinus) as an intermediate host for poultry tapeworm Raillietina cesticillus. Uttar Pradesh J. Zool. 2023, 44, 72–77. [Google Scholar] [CrossRef]
- Roche, A.J.; Cox, N.A.; Richardson, L.J.; Buhr, R.J.; Cason, J.A.; Fairchild, B.D.; Hinkle, N.C. Transmission of Salmonella to broilers by contaminated larval and adult lesser mealworms (Alphitobius diaperinus). Poult. Sci. 2009, 88, 44–48. [Google Scholar] [CrossRef]
- Donoso, A.; Paredes, N.; Retamal, P. Detection of antimicrobial-resistant Salmonella enterica strains in larval and adult forms of lesser mealworm (Alphitobius diaperinus) from industrial poultry farms. Front. Vet. Sci. 2020, 7, 577848. [Google Scholar] [CrossRef] [PubMed]
- Crippen, T.L.; Sheffield, C.L.; Beier, R.C.; Nisbet, D.J. The horizontal transfer of Salmonella between the lesser mealworm (Alphitobius diaperinus) and poultry manure. Zoonoses Public Health 2018, 65, e23–e33. [Google Scholar] [CrossRef] [PubMed]
- Mazen, N.A.M. Alphitobius diaperinus as an intermediate host for cestodes and its role in the transmission of toxigenic fungi. Egypt. J. Exp. Biol. 2006, 2, 129–136. [Google Scholar]
- Huber, K.; Gouilloud, L.; Zenner, L. A preliminary study of natural and experimental infection of the lesser mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae) with Histomonas meleagridis (Protozoa: Sarcomastigophora). Avian Pathol. 2007, 36, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Polat, B.; Cengiz, A.; Koc, S.; Kahraman Kokten, S.; Gultekin, Z.N.; Caliskan, C.; Kocaoglu Cenkci, S.; Yildirim, T.; Tufan-Cetin, O.; Cetin, H. Efficacy of Steinernema feltiae nematode against lesser mealworm (Alphitobius diaperinus) populations from poultry farms in Türkiye. Vet. Sci. 2024, 11, 567. [Google Scholar] [CrossRef]
- Vaughan, J.A.; Turner, E.C., Jr.; Ruszler, P.L. Infestation and damage of poultry house insulation by the lesser mealworm, Alphitobius diaperinus (Panzer). Poult. Sci. 1984, 63, 1094–1100. [Google Scholar] [CrossRef]
- Despins, J.L.; Turner, J.R.; Ruszler, P.L. Effects of poultry manure moisture and poultry house construction materials on movements of the lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), a structural insect pest in high rise caged layer houses. Poult. Sci. 1988, 68, 1326–1331. [Google Scholar] [CrossRef]
- Smith, R.; Hauck, R.; Macklin, K.; Price, S.; Dormitorio, T.; Wang, C. A review of the lesser mealworm beetle (Alphitobius diaperinus) as a reservoir for poultry bacterial pathogens and antimicrobial resistance. World Poult. Sci. J. 2022, 78, 197–214. [Google Scholar] [CrossRef]
- Meijer, N.; De Rijk, T.; van Loon, J.J.A.; Bosch, M.W.; Van der Fels-Klerx, H.J. Effects of insecticides on lesser mealworm (Alphitobius diaperinus)–bioaccumulation, mortality, and growth. J. Insects Food Feed 2022, 8, 773–782. [Google Scholar] [CrossRef]
- Renault, D.; Colinet, H. Differences in the susceptibility to commercial insecticides among populations of the lesser mealworm Alphitobius diaperinus collected from poultry houses in France. Insects 2021, 12, 309. [Google Scholar] [CrossRef]
- Hickmann, F.; de Morais, A.F.; Bronzatto, E.S.; Giacomelli, T.; Guedes, J.V.C.; Bernardi, O. Susceptibility of the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae), from broiler farms of southern Brazil to insecticides. J. Econ. Entomol. 2018, 111, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Boozer, W.E. Insecticide Susceptibility of the Adult Darkling Beetle, Alphitobius diaperinus (Coleoptera: Tenebrionidae): Topical Treatment with Bifenthrin, Imidacloprid, and Spinosad. Master’s Thesis, University of Georgia, Athens, GA, USA, 2011. [Google Scholar]
- Hamm, R.L.; Kaufman, P.E.; Reasor, C.A.; Rutz, D.A.; Scott, J.G. Resistance to cyfluthrin and tetrachlorvinphos in the lesser mealworm (Alphitobius diaperinus) collected from the eastern United States. Pest Manag. Sci. 2006, 62, 673–677. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Richman, D.; Myers, H.M. Susceptibility of Alphitobius diaperinus (Coleoptera: Tenebrionidae) from broiler facilities in Texas to four insecticides. J. Econ. Entomol. 2008, 101, 480–483. [Google Scholar] [CrossRef]
- Chen, L.; Qian, Y.; Wang, X.; Jia, Q.; Weng, R.; Zhang, X.; Li, Y.; Qiu, J. A nationwide characterization of organochlorine pesticides (OCPs) in livestock and poultry food products across China: Residual levels, origin and the associated health risks. Chemosphere 2024, 322, 142999. [Google Scholar] [CrossRef] [PubMed]
- Vyas, N.B.; Henry, P.F.P.; Binkowski, Ł.J.; Hladik, M.L.; Gross, M.S.; Schroeder, M.A.; Davis, D.M. Persistence of pesticide residues in weathered avian droppings. Environ. Res. 2024, 119475. [Google Scholar] [CrossRef]
- Wang, Z.; Du, Z.; Shi, Y.; Qi, P.; Di, S.; Zhao, H.; Ji, X.; Lu, C.; Wang, X. Transfer and risk assessment of fipronil in laying hen tissues and eggs. Sci. Total Environ. 2024, 932, 172811. [Google Scholar] [CrossRef] [PubMed]
- Gržinić, G.; Piotrowicz-Cieślak, A.; Klimkowicz-Pawlas, A.; Górny, R.L.; Ławniczek-Wałczyk, A.; Piechowicz, L.; Olkowska, E.; Potrykus, M.; Tankiewicz, M.; Krupka, M.; et al. Intensive poultry farming: A review of the impact on the environment and human health. Sci. Total Environ. 2022, 850, 160014. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.K. Advances in biological control strategies for sustainable pest management. Uttar Pradesh J. Zool. 2024, 45, 214–232. [Google Scholar] [CrossRef]
- Daneti, S.R. Constraints in Adopting Biological Based Pest Management Strategies. Eco. Env. Cons. 2024, 30, 305–308. [Google Scholar] [CrossRef]
- Emden, V.H.F. Conservation biological control of insect pests. CAB Rev. 2022, 17, 024. [Google Scholar] [CrossRef]
- Shang, H.; He, D.; Li, B.; Chen, X.; Luo, K.; Li, G. Environmentally friendly and effective alternative approaches to pest management: Recent advances and challenges. Agronomy 2024, 14, 1807. [Google Scholar] [CrossRef]
- Majeed, M.; Fiaz, M.; Ma, C.S.; Afzal, M. Entomopathogenicity of three muscardine fungi, Beauveria bassiana, Isaria fumosorosea and Metarhizium anisopliae, against the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Egypt. J. Biol. Pest Control 2017, 27, 211–215. [Google Scholar]
- Bamisile, B.S.; Akutse, K.S.; Siddiqui, J.A.; Xu, Y. Model application of entomopathogenic fungi as alternatives to chemical pesticides: Prospects, challenges, and insights for next-generation sustainable agriculture. Front. Plant Sci. 2021, 12, 741804. [Google Scholar] [CrossRef]
- Bihal, R.; Al-Khayri, J.M.; Banu, A.N.; Kudesia, N.; Ahmed, F.K.; Sarkar, R.; Arora, A.; Abd-Elsalam, K.A. Entomopathogenic fungi: An eco-friendly synthesis of sustainable nanoparticles and their nanopesticide properties. Microorganisms 2023, 11, 1617. [Google Scholar] [CrossRef]
- Zibaee, A.; Bandani, A.R.; Talaei-Hassanlouei, R.; Malagoli, D. Cellular immune reactions of the sunn pest, Eurygaster integriceps, to the entomopathogenic fungus Beauveria bassiana and its secondary metabolites. J. Insect Sci. 2011, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Freed, S.; Feng-Liang, J.; Naeem, M.; Shun-Xiang, R.; Hussian, M. Toxicity of proteins secreted by entomopathogenic fungi against Plutella xylostella (Lepidoptera: Plutellidae). Int. J. Agric. Biol. 2012, 14. [Google Scholar]
- Sultana, R.; Kumar, S.; Yanar, D. Application of entomopathogenic fungi for insect pests control. J. Entomol. Zool. Stud. 2017, 5, 7–13. [Google Scholar]
- Maina, U.M.; Galadima, I.B.; Gambo, F.M.; Zakaria, D.J.O.E. A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J. Entomol. Zool. Stud. 2018, 6, 27–32. [Google Scholar]
- Batta, Y.A.; Kavallieratos, N.G. The use of entomopathogenic fungi for the control of stored-grain insects. Int. J. Pest Manag. 2018, 64, 77–87. [Google Scholar] [CrossRef]
- Ortiz-Urquiza, A.; Keyhani, N.O. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 2013, 4, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; St Leger, R.J. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot. Cell 2007, 6, 808–816. [Google Scholar] [CrossRef]
- Inglis, G.D.; Goettel, M.S.; Butt, T.M.; Strasser, H. Use of Hyphomycetous Fungi for Managing Insect Pests. In Fungi as Biocontrol Agents: Progress, Problems, and Potential; Butt, T.M., Jackson, C., Magan, N., Eds.; CABI Publishing: Wallingford, UK, 2001; pp. 23–69. [Google Scholar]
- Shah, P.A.; Pell, J.K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 2003, 61, 413–423. [Google Scholar] [CrossRef]
- Zimmermann, G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Biocontrol Sci. Technol. 2007, 17, 553–596. [Google Scholar] [CrossRef]
- Ortiz-Urquiza, A.; Keyhani, N.O. Molecular genetics of Beauveria bassiana infection of insects. Adv. Genet. 2016, 94, 165–249. [Google Scholar]
- Baek, S.; Noh, M.Y.; Mun, S.; Lee, S.J.; Arakane, Y.; Kim, J.S. Ultrastructural analysis of beetle larva cuticles during infection with the entomopathogenic fungus, Beauveria bassiana. Pest Manag. Sci. 2022, 78, 3356–3364. [Google Scholar] [CrossRef] [PubMed]
- Chernaki-Leffer, A.M.; Sosa-Gómez, D.R.; Almeida, L.M. Selection for entomopathogenic fungi and LD50 of Metarhizium anisopliae (Metsch.) Sorok. for the lesser mealworm Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Braz. J. Poult. Sci. 2007, 9, 187–191. [Google Scholar] [CrossRef]
- Popowska-Nowak, E.; Tumialis, D.; Pezowicz, E. Susceptibility of lesser mealworm (Alphitobius diaperinus) to entomopathogenic fungi isolated from poultry houses litter and nearby soil. J. Invertebr. Pathol. 2017, 15, 31–39. [Google Scholar]
- Santoro, P.H.; Neves, P.M.O.J.; Cavaguchi, S.A.; Constanski, K.; Amaro, J.T.; Alves, L.F.A. Associated control of Alphitobius diaperinus and effect of effective microorganisms in the development of Beauveria bassiana. Pesq. Agropecu. Bras. 2008, 43, 1–8. [Google Scholar] [CrossRef]
- Gindin, G.; Glazer, I.; Mishoutchenko, A.; Samish, M. Entomopathogenic fungi as a potential control agent against the lesser mealworm, Alphitobius diaperinus, in broiler houses. BioControl 2009, 54, 549–558. [Google Scholar] [CrossRef]
- Rice, S.J.; Baker, D.K.; Mayer, D.G.; Leemon, D.M. Mycoinsecticide formulations of Beauveria bassiana and Metarhizium anisopliae reduce populations of lesser mealworm, Alphitobius diaperinus, in chicken-broiler houses. Biol. Control 2020, 144, 104234. [Google Scholar] [CrossRef]
- Rice, S.J.; Furlong, M.J. Synergistic interactions between three insecticides and Beauveria bassiana in lesser mealworm (Alphitobius diaperinus) larvae. J. Invertebr. Pathol. 2023, 200, 107974. [Google Scholar] [CrossRef] [PubMed]
- Daniel, J.F.S.; Scalco, A.V.; de Souza, R.M.; Ocampos, F.M.M.; Barison, A.; Alves, L.F.A.; Neves, P.M.O.J. Susceptibility of Alphitobius diaperinus to Beauveria bassiana extracts. Nat. Prod. Res. 2019, 33, 3033–3036. [Google Scholar] [CrossRef]
- Alexandre, T.M.; Alves, L.F.; Neves, P.M.; Alves, S.B. Effect of temperature and poultry litter in Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) virulence against the lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Neotrop. Entomol. 2006, 35, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Bode, H.B. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 2009, 13, 224–230. [Google Scholar] [CrossRef]
- Ruiu, L. Insect pathogenic bacteria in integrated pest management. Insects 2015, 6, 352–367. [Google Scholar] [CrossRef] [PubMed]
- Ben-Dov, E. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins 2014, 6, 1222–1243. [Google Scholar]
- Su, T.; Mulla, M.S. Documentation of high-level Bacillus sphaericus 2362 resistance in field populations of Culex quinquefasciatus breeding in polluted water in Thailand. J. Am. Mosq. Control Assoc. 2004, 20, 405–411. [Google Scholar]
- McDonald, R.C. Impact of the Microbial Pesticide Bacillus thuringiensis Berliner subsp. kurstaki on Hymenopterous Parasites of the Imported Cabbageworm, Pieris rapae (L.) (Lepidoptera: Pieridae). Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1990. [Google Scholar]
- Huang, F.; Higgins, R.A.; Buschman, L.L. Baseline susceptibility and changes in susceptibility to Bacillus thuringiensis subsp. kurstaki under selection pressure in European corn borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 1997, 90, 1137–1143. [Google Scholar]
- Pierce, C.M.F.; Solter, L.F.; Weinzierl, R.A. Interactions between Nosema pyrausta (Microsporidia: Nosematidae) and Bacillus thuringiensis subsp. kurstaki in the European corn borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 2001, 94, 1361–1368. [Google Scholar]
- Oztemiz, S.; Küden, A.; Nas, S.; Lavkor, I. Efficacy of Trichogramma evanescens and Bacillus thuringiensis var. kurstaki in control of Cydia pomonella (L.) in Turkey. Turk. J. Agric. For. 2017, 41, 201–207. [Google Scholar]
- Smith, J.L.; Farhan, Y.; Schaafsma, A.W. Practical resistance of Ostrinia nubilalis (Lepidoptera: Crambidae) to Cry1F Bacillus thuringiensis maize discovered in Nova Scotia, Canada. Sci. Rep. 2019, 9, 18247. [Google Scholar] [CrossRef]
- Zago, H.B.; Siqueira, H.Á.; Pereira, E.J.; Picanço, M.C.; Barros, R. Resistance and behavioural response of Plutella xylostella (Lepidoptera: Plutellidae) populations to Bacillus thuringiensis formulations. Pest Manag. Sci. 2014, 70, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Arrizabalaga, M.; Villanueva, M.; Fernandez, A.B.; Caballero, P. A strain of Bacillus thuringiensis containing a novel cry7Aa2 gene that is toxic to Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Insects 2019, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Lobo, K.D.S.; Soares-da-Silva, J.; Silva, M.C.D.; Tadei, W.P.; Polanczyk, R.A.; Pinheiro, V.C.S. Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Rev. Bras. Entomol. 2018, 62, 5–12. [Google Scholar] [CrossRef]
- Tarasco, E.; Fanelli, E.; Salvemini, C.; El-Khoury, Y.; Troccoli, A.; Vovlas, A.; De Luca, F. Entomopathogenic nematodes and their symbiotic bacteria: From genes to field uses. Front. Insect Sci. 2023, 3, 1195254. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.A.; Thönen, L.; Arce, C.; Theepan, V.; Prada, F.; Wüthrich, D.; Robert, C.A.; Vogiatzaki, E.; Shi, Y.M.; Schaeren, O.P.; et al. Engineering bacterial symbionts of nematodes improves their biocontrol potential to counter the western corn rootworm. Nat. Biotechnol. 2020, 38, 600–608. [Google Scholar] [CrossRef]
- Abd El-Salam, A.M.E.; Nemat, A.M.; Magdy, A. Potency of Bacillus thuringiensis and Bacillus subtilis against the cotton leafworm, Spodoptera littoralis (Bosid.) larvae. Arch. Phytopathol. Plant Prot. 2011, 44, 204–215. [Google Scholar] [CrossRef]
- Chandrasekaran, R.; Revathi, K.; Nisha, S.; Kirubakaran, S.A.; Sathish-Narayanan, S.; Senthil-Nathan, S. Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab. Pestic. Biochem. Physiol. 2012, 104, 65–71. [Google Scholar] [CrossRef]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Forst, S.; Dowds, B.; Boemare, N.; Stackebrandt, E. Xenorhabdus and Photorhabdus spp.: Bugs that kill bugs. Annu. Rev. Microbiol. 1997, 51, 47–72. [Google Scholar] [CrossRef]
- Goodrich-Blair, H. They’ve got a ticket to ride: Xenorhabdus nematophila–Steinernema carpocapsae symbiosis. Curr. Opin. Microbiol. 2007, 10, 225–230. [Google Scholar] [CrossRef]
- Castagnola, A.; Stock, S.P. Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of lepidopteran pests. Insects 2014, 5, 139–166. [Google Scholar] [CrossRef]
- Hua, G.; Park, Y.; Adang, M.J. Cadherin AdCad1 in Alphitobius diaperinus larvae is a receptor of Cry3Bb toxin from Bacillus thuringiensis. Insect Biochem. Mol. Biol. 2014, 45, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Maciel, R.M.A. Patogenicidade de Bacillus thuringiensis Para Alphitobius diaperinus Panzer 1797 (Coleoptera: Tenebrionidae) em Condições de Laboratório e Semi-Campo. Master’s Thesis, Federal University Technology–Paraná, Dois Vizinhos, Brazil, 2019; p. 49. [Google Scholar]
- Koc, S.; Polat, B.; Cengiz, A.; Kahraman, S.; Tufan-Cetin, O.; Cetin, H. Effectiveness of some microbial biopesticides based on Bacillus against lesser mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae). Fres. Environ. Bull. 2022, 31, 1537–1540. [Google Scholar]
- Berretta, M.F.; Pedarros, A.S.; Sauka, D.H.; Pérez, M.P.; Onco, M.I.; Benintende, G.B. Susceptibility of agricultural pests of regional importance in South America to a Bacillus thuringiensis Cry1Ia protein. J. Invertebr. Pathol. 2020, 172, 107354. [Google Scholar] [CrossRef] [PubMed]
- Hickle, L.A.; Bradfisch, G.A.; Payne, J.M. Use of Bacillus thuringiensis Microbe for Controlling Lesser Mealworm, Alphitobius diaperinus. U.S. Patent 5,064,648, 12 November 1991. [Google Scholar]
- Hasan, M.M.; Parween, S.; Reza, A.S.; Easmin, N. Response of Alphitobius diaperinus Panzer to Bacillus thuringiensis Berliner var. kurstaki. Entomon-Trivandrum 2002, 27, 441–446. [Google Scholar]
- Sauka, D.H.; Peralta, C.; Pérez, M.P.; Onco, M.I.; Fiodor, A.; Caballero, J.; Caballero, P.; Berry, C.; Del Valle, E.E.; Palma, L. Bacillus toyonensis biovar thuringiensis: A novel entomopathogen with insecticidal activity against lepidopteran and coleopteran pests. Biol. Control 2022, 167, 104838. [Google Scholar] [CrossRef]
- Park, Y.; Hua, G.; Taylor, M.D.; Adang, M.J. A coleopteran cadherin fragment synergizes toxicity of Bacillus thuringiensis toxins Cry3Aa, Cry3Bb, and Cry8Ca against lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). J. Invertebr. Pathol. 2014, 123, 1–5. [Google Scholar] [CrossRef]
- Poinar, G.O., Jr. Taxonomy and Biology of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological Control; Gauglar, R., Kaya, H.K., Eds.; CRC Press: Boca Raton, FL, USA, 1990; pp. 23–61. [Google Scholar]
- Pezowicz, E. Effects of Steinernematidae and Heterorhabditidae on the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). IOBC/WPRS Bull. 2003, 26, 193–197. [Google Scholar]
- Poinar, G.O., Jr.; Grewal, P.S. History of entomopathogenic nematology. J. Nematol. 2012, 44, 153. [Google Scholar] [PubMed]
- Stock, S.P. Partners in crime: Symbiont-assisted resource acquisition in Steinernema entomopathogenic nematodes. Curr. Opin. Insect Sci. 2019, 32, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Koppenhöfer, H.S. Bacterial Symbionts of Steinernema and Heterorhabditis. In Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Symbionts; Nguyen, K.B., Hunt, D.J., Eds.; Brill: Leiden, The Netherlands, 2010; pp. 735–808. [Google Scholar]
- Bhat, A.H.; Chaubey, A.K.; Askary, T.H. Global distribution of entomopathogenic nematodes, Steinernema and Heterorhabditis. Egypt. J. Biol. Pest Control 2020, 30, 1–15. [Google Scholar] [CrossRef]
- Kepenekci, İ.; İnal, B.; Atay, T.; Yeşilayer, A. Effect of entomopathogenic nematodes on the black cherry aphid, Myzus cerasi (F.) (Hemiptera: Aphididae). Egypt. J. Biol. Pest Control 2014, 24, 157–161. [Google Scholar]
- Li, J.; Li, Y.; Wei, X.; Cui, Y.; Gu, X.; Li, X.; Yoshiga, T.; Abd-Elgawad, M.M.; Shapiro-Ilan, D.; Weibin, R.; et al. Direct antagonistic effect of entomopathogenic nematodes and their symbiotic bacteria on root-knot nematodes migration toward tomato roots. Plant Soil 2023, 484, 441–455. [Google Scholar] [CrossRef]
- Ebssa, L. Efficacy of Entomopathogenic Nematodes for the Control of the Western Flower Thrips Frankliniella occidentalis. Ph.D. Thesis, Hannover University, Hannover, Germany, 2005. [Google Scholar]
- Rezaei, N.; Karimi, J.; Hosseini, M.; Goldani, M.; Campos-Herrera, R. Pathogenicity of two species of entomopathogenic nematodes against the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), in laboratory and greenhouse experiments. J. Nematol. 2015, 47, 60. [Google Scholar] [PubMed]
- Barta, M.; Horáková, M.K.M.; Georgieva, M.; Mirchev, P.; Zaemdzhikova, G.; Pilarska, D.; Takov, D.; Todorov, M.; Hubeno, Z.; Pilarski, P.; et al. Entomopathogenic fungi (Ascomycota: Hypocreales) as natural antagonists of the pine processionary moth Thaumetopoea pityocampa (Denis & Schiffermüller, 1775) (Lepidoptera: Notodontidae) in Bulgaria. Acta Zool. Bulg. 2020, 15, 89–96. [Google Scholar]
- Shapiro-Ilan, D.I.; Leite, L.G.; Han, R. Production of Entomopathogenic Nematodes. In Mass Production of Beneficial Organisms; Academic Press: Amsterdam, The Netherlands, 2023; pp. 293–315. [Google Scholar]
- Lewis, E.E.; Campbell, J.; Griffin, C.; Kaya, H.; Peters, A. Behavioral ecology of entomopathogenic nematodes. Biol. Control 2006, 38, 66–79. [Google Scholar] [CrossRef]
- Geden, C.J.; Arends, J.J.; Axtell, R.C. Field trials of Steinernema feltiae (Nematoda: Steinernematidae) for control of Alphitobius diaperinus (Coleoptera: Tenebrionidae) in commercial broiler and turkey houses. J. Econ. Entomol. 1987, 80, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.C.R.; Dias, R.J.P.; Morenz, M.J.F. Determining the adaptation potential of entomopathogenic nematodes Heterorhabditis riobravus and Steinernema carpocapsae in larvae of Alphitobius diaperinus and Galleria mellonella. Parasitol. Res. 2007, 102, 139–144. [Google Scholar] [CrossRef]
- Kucharska, K.; Zajdel, B.; Pezowicz, E.; Jarmuł-Pietraszczyk, J.; Mazurkiewicz, A.; Tumialis, D. Control of the lesser mealworm Alphitobius diaperinus using entomopathogenic nematodes (EPNs) combined with nanoparticles. Ann. Wars. Univ. Life Sci.—SGGW Anim. Sci. 2016, 55, 57–67. [Google Scholar]
- Kucharska, K.; Zajdel, B.; Pezowicz, E.; Jarmuł-Pietraszczyk, J. Compatibility of entomopathogenic nematodes with active substances of popular biocidal products in controlling the lesser mealworm beetle Alphitobius diaperinus. Ann. Wars. Univ. Life Sci.—SGGW Anim. Sci. 2018, 57, 243–256. [Google Scholar]
- Koc, S.; Polat, B.; Cengiz, A.; Kahraman, S.; Tufan-Cetin, O.; Cetin, H. Pathogenicity of an entomopathogenic nematode, Steinernema carpocapsae, on Alphitobius diaperinus (Coleoptera: Tenebrionidae) strains from Turkey. J. Econ. Entomol. 2022, 115, 1303–1309. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Athanassiou, C.G. Insecticidal effect of six entomopathogenic nematode strains against Lasioderma serricorne (F.) (Coleoptera: Anobiidae) and Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 2012, 50, 21–26. [Google Scholar] [CrossRef]
- Del Valle, E.E.; Frizzo, L.S.; Malmierca, M.; Zbrun, M.V.; Lax, P.; Doucet, M.E. Biological control of Alphitobius diaperinus with Steinernema rarum CUL and Heterorhabditis bacteriophora SMC and feasibility of application in rice hull. J. Pest Sci. 2016, 89, 161–170. [Google Scholar] [CrossRef]
- Szalanski, A.L.; Palmer, T.W.; McKay, T.; Steelman, C.D. Infectivity of Steinernema spp. (Nematoda: Steinernematidae) to Adult Litter Beetles, Alphitobius diaperinus (Coleoptera: Tenebrionidae) in the Laboratory. Biocontrol Sci. Technol. 2004, 14, 81–85. [Google Scholar] [CrossRef]
- Kucharska, K.; Pezowicz, E.; Tumialis, D.; Kucharski, D.; Zajdel, B. Nanoparticles of copper and entomopathogenic nematodes Steinernema feltiae (Filipjev, 1934) in reducing the number of the lesser mealworm beetle Alphitobius diaperinus (Panzer, 1797). Ann. Wars. Univ. Life Sci.—SGGW Anim. Sci. 2014, 53, 29–35. [Google Scholar]
- Pezowicz, E.; Mazurkiewicz, A.; Tumialis, D. Sensitivity of imago and larvae of the lesser mealworm Alphitobius diaperinus in a sawdust litter to selected species and strains of Steinernematidae and Heterorhabditidae under laboratory conditions. Ann. Wars. Univ. Life Sci.–SGGW Anim. Sci. 2013, 52, 161–166. [Google Scholar]
- Geden, C.J.; Axtell, R.C.; Brooks, W.M. Susceptibility of the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae) to the entomogenous nematodes Steinernema feltiae, S. glaseri (Steinernematidae) and Heterorhabditis heliothidis (Heterorhabditidae). J. Entomol. Sci. 1985, 20, 331–339. [Google Scholar] [CrossRef]
- Alves, V.S.; Neves, P.M.J.O.; Moino, A.; Holz, N. Entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae) screening for lesser mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae) control. Rev. Colomb. Entomol. 2012, 38, 76–80. [Google Scholar] [CrossRef]
- Dua, V.K.; Pandey, A.C.; Raghavendra, K.; Gupta, A.; Sharma, T.; Dash, A.P. Larvicidal activity of neem oil (Azadirachta indica) formulation against mosquitoes. Malar. J. 2009, 8, 1–6. [Google Scholar] [CrossRef]
- Roychoudhury, R. Neem Products. In Ecofriendly Pest Management for Food Security; Academic Press: Amsterdam, The Netherlands, 2016; pp. 545–562. [Google Scholar]
- Campos, E.V.; De Oliveira, J.L.; Pascoli, M.; De Lima, R.; Fraceto, L.F. Neem oil and crop protection: From now to the future. Front. Plant Sci. 2016, 7, 1494. [Google Scholar] [CrossRef] [PubMed]
- Tavares, W.R.; Barreto, M.D.C.; Seca, A.M. Aqueous and ethanolic plant extracts as bio-insecticides—Establishing a bridge between raw scientific data and practical reality. Plants 2021, 10, 920. [Google Scholar] [CrossRef] [PubMed]
- Solomon, B.; Gebre-Mariam, T.; Asres, K. Mosquito repellent actions of the essential oils of Cymbopogon citratus, Cymbopogon nardus and Eucalyptus citriodora: Evaluation and formulation studies. J. Essent. Oil Bear. Plants 2012, 15, 766–773. [Google Scholar] [CrossRef]
- Kaur, H.; Bhardwaj, U.; Kaur, R. Cymbopogon nardus essential oil: A comprehensive review on its chemistry and bioactivity. J. Essent. Oil Res. 2021, 33, 205–220. [Google Scholar] [CrossRef]
- Raveen, R.; Kumar, L.; Sugirtha, A.; Karthikeyan, N.; Tennyson, S.; Arivoli, S.; Jayakumar, M. Efficacy of tobacco leaf extracts on the larva of the dengue vector mosquito. J. Sci. Front. Res. 2019, 19, 1. [Google Scholar]
- Kanmani, S.; Kumar, L.; Raveen, R.; Tennyson, S.; Arivoli, S.; Jayakumar, M. Toxicity of tobacco Nicotiana tabacum Linnaeus (Solanaceae) leaf extracts to the rice weevil Sitophilus oryzae Linnaeus 1763 (Coleoptera: Curculionidae). J. Basic Appl. Zool. 2021, 82, 1–12. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Kumar, S.; Mahapatro, G.K.; Yadav, D.K.; Tripathi, K.; Koli, P.; Kaushik, P.; Sharma, H.; Nebapure, S. Essential oils as green pesticides: An overview. Ind. J. Agric. Sci. 2022, 92, 1298–1305. [Google Scholar] [CrossRef]
- González Armijos, M.J.; Viteri Jumbo, L.; D’Antonino Faroni, L.R.; Oliveira, E.E.; Flores, A.F.; Haddi, K. Fumigant toxicity of eugenol and its negative effects on biological development of Callosobruchus maculatus L. Rev. Cienc. Agric. 2019, 36, 5–15. [Google Scholar] [CrossRef]
- Kim, J.R.; Jeong, I.H.; Lee, Y.S.; Lee, S.G. Insecticidal activity of cinnamon essential oils, constituents, and (E)-cinnamaldehyde analogues against Metcalfa pruinosa Say (Hemiptera: Flatidae) nymphs and adults. Korean J. Appl. Entomol. 2015, 54, 375–382. [Google Scholar] [CrossRef]
- Gaire, S.; O’Connell, M.; Holguin, F.O.; Amatya, A.; Bundy, S.; Romero, A. Insecticidal properties of essential oils and some of their constituents on the Turkestan cockroach (Blattodea: Blattidae). J. Econ. Entomol. 2017, 110, 584–592. [Google Scholar] [CrossRef]
- Arena, J.S.; Zygadlo, J.A.; Defagó, M.T. Bioactive essential oil-treated feed as a potential tool for the management of Alphitobius diaperinus in poultry farms. Int. J. Trop. Insect Sci. 2022, 42, 3447–3454. [Google Scholar] [CrossRef]
- Velusamy, R.; Ponnudurai, G.; Harikrishnan, T.J. Evaluation of the effect of essential oils (eucalyptus and lemon grass) against the darkling beetle, Alphitobius diaperinus. J. Entomol. Zool. Stud. 2020, 8, 1592–1595. [Google Scholar]
- Santana, C.B.; Souza, J.G.L.; Toledo, A.G.; Alves, L.F.A.; Alves, D.S.; Corrêa, J.M.; Pinto, F.G.S. Antimicrobial and insecticidal effects of essential oil and plant extracts of Myrcia oblongata DC in pathogenic bacteria and Alphitobius diaperinus. Braz. J. Biol. 2022, 82, e233425. [Google Scholar] [CrossRef] [PubMed]
- Do Prado, G.P.; Stefani, L.M.; Da Silva, A.S.; Smaniotto, L.F.; Garcia, F.R.M.; De Moura, N.F. Alphitobius diaperinus (Coleoptera: Tenebrionidae) susceptibility to Cunila angustifolia essential oil. J. Med. Entomol. 2013, 50, 1040–1045. [Google Scholar] [CrossRef]
- Charlie-Silva, I.; Souza, L.M.; Pereira, C.C.; Mazzonetto, F.; Belo, M.A.A. Insecticidal efficacy of aqueous extracts of Ricinus communis, Baccharis trimera, and Chenopodium ambrosioides on adults of Alphitobius diaperinus. Ars Vet. 2019, 35, 7–11. [Google Scholar] [CrossRef]
- Szczepanik, M.; Walczak, M.; Zawitowska, B.; Michalska-Sionkowska, M.; Szumny, A.; Wawrzeńczyk, C. Chemical composition, antimicrobial activity, and insecticidal activity of Origanum vulgare L. ssp. hirtum and Artemisia dracunculus L. essential oils against the lesser mealworm (Alphitobius diaperinus). J. Sci. Food Agric. 2018, 98, 767–774. [Google Scholar]
- Szczepanik, M.; Raszkowska-Kaczor, A.; Olkiewicz, D.; Bajer, D.; Bajer, K. Use of starch granules enriched with carvacrol for the lesser mealworm, Alphitobius diaperinus, control in chicken houses: Effects on insects and poultry. J. Poult. Sci. 2020, 57, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Pinto Junior, A.R.; Carvalho, R.I.N.; Netto, S.P.; Weber, S.H.; de Souza, E.; Furiatti, R.S. Bioactivity of essential oils of Brazilian sassafras and eucalyptus against lesser mealworm. Ciênc. Rural 2010, 40, 637–643. [Google Scholar] [CrossRef]
- Szczepanik, M.; Szumny, A. Insecticidal activity of star anise (Illicum verum) fruit extracts against the lesser mealworm, Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae). Allelopath. J. 2011, 27, 277–288. [Google Scholar]
- Peter, R.; Josende, M.E.; Barreto, J.S.; Silva, D.G.C.; Maciel, F.E. Effect of Illicium verum essential oil on cholinesterase and locomotor activity of Alphitobius diaperinus. Pestic. Biochem. Physiol. 2022, 181, 105027. [Google Scholar] [CrossRef]
- Pereira, B.G.S.; Guarda, C.; Roman Junior, W.A.; Busato, M.A.; Lutinski, J.A. Insecticidal effect of synthetic products and plant extracts on Alphitobius diaperinus. Bol. Mus. Int. Roraima 2021, 14, 93–104. [Google Scholar]
- Yao, J.L.K.; Boga, J.P.; Dao, H.; Tano, Y. Bioefficacy of Eucalyptus citriodora essential oil in the control of Alphitobius diaperinus (Coleoptera: Tenebrionidae) in chicken farms in Côte d’Ivoire. J. Entomol. Zool. Stud. 2022, 10, 42–47. [Google Scholar] [CrossRef]
- Francikowski, J.; Baran, B.; Cup, M.; Janiec, J.; Krzyżowski, M. Commercially available essential oil formulas as repellents against the stored-product pest Alphitobius diaperinus. Insects 2019, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.R.G.; Mikami, A.Y.; Pissinati, A.; Piva, L.B.; Santos, O.J.A.P.; Ventura, M.U. Mortality of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) by neem and citronella oils. Semin. Ciências Agrárias 2013, 34, 2565–2574. [Google Scholar] [CrossRef]
- Volpato, A.; Baretta, D.; Zortéa, T.; Campigotto, G.; Galli, G.M.; Glombowsky, P.; Santos, R.C.V.; Quatrin, P.M.; Ourique, A.F.; Baldissera, M.D.; et al. Larvicidal and insecticidal effect of Cinnamomum zeylanicum oil (pure and nanostructured) against mealworm (Alphitobius diaperinus) and its possible environmental effects. J. Asia-Pac. Entomol. 2016, 19, 1159–1165. [Google Scholar] [CrossRef]
- Gebauer, S.; Pompermayer, K.; Oliveira, D.G.P.; Silva, F.G.P.; Rosset, J.; Bandeira, D.M.; Souza, G.T.; Oliveira, M.S.; Silva, G.H.; Alves, L.F.A.; et al. Mentha spp. essential oils: Toxicity to Alphitobius diaperinus, activity against poultry pathogenic bacteria, and Beauveria bassiana compatibility. Environ. Sci. Pollut. Res. 2024, 31, 34010–34027. [Google Scholar] [CrossRef]
- Witzgall, P.; Kirsch, P.; Cork, A. Sex pheromones and their impact on pest management. J. Chem. Ecol. 2010, 36, 80–100. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.M.; Suckling, D.M.; Byers, J.A.; Jang, E.B.; Wearing, C.H. Potential of “lure and kill” in long-term pest management and eradication of invasive species. J. Econ. Entomol. 2009, 102, 815–835. [Google Scholar] [CrossRef] [PubMed]
- Hassemer, M.J.; Borges, M.; Withall, D.M.; Pickett, J.A.; Laumann, R.A.; Birkett, M.A.; Blassioli-Moraes, M.C. Development of pull and push–pull systems for management of lesser mealworm, Alphitobius diaperinus, in poultry houses using alarm and aggregation pheromones. Pest Manag. Sci. 2019, 75, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
- Sewify, G.H.; Belal, M.H.; Saeed, M.Q. Using pheromone mass-trapping and the entomopathogenic fungus Beauveria bassiana in IPM programs for controlling the red palm weevil, Rhyncophorus ferrugineus Olivier (Coleoptera: Rhynchophoridae). Egypt. J. Biol. Pest Control 2014, 24, 197. [Google Scholar]
- Bartelt, R.J.; Zilkowski, B.W.; Cossé, A.A.; Steelman, C.D.; Singh, N. Male-produced aggregation pheromone of the lesser mealworm beetle, Alphitobius diaperinus. J. Chem. Ecol. 2009, 35, 422–434. [Google Scholar] [CrossRef]
- Hassemer, M.J.; Sant’Ana, J.; Borges, M.; Withall, D.; Pickett, J.A.; de Oliveira, M.W.; Laumann, R.A.; Birkett, M.A.; Blassioli-Moraes, M.C. Revisiting the Male-Produced Aggregation Pheromone of the Lesser Mealworm, Alphitobius diaperinus (Coleoptera, Tenebrionidae): Identification of a Six-Component Pheromone from a Brazilian Population. J. Agric. Food Chem. 2016, 64, 6809–6818. [Google Scholar] [CrossRef]
- Vaz Júnior, S.; Gravina, É.G.; Moraes, M.C.B.; Zaioncz, S.; Valadares, L.F.; Borges, M.; Magalhães, W.L.E. Synthesis of an organic–inorganic composite from calcium carbonate and Kraft lignin and its use as carrier material for controlled release of semiochemical agents. Environ. Sci. Pollut. Res. 2022, 29, 72670–72682. [Google Scholar] [CrossRef]
- Singh, N.; Johnson, D.T. Attractiveness of an aggregation pheromone lure and chicken droppings to adults and larvae of Alphitobius diaperinus (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2012, 105, 2196–2206. [Google Scholar] [CrossRef]
- Rigopoulou, M.; Baliota, G.V.; Athanassiou, C.G. Persistence and efficacy of diatomaceous earth against stored product insects in semi-field trials. Crop Prot. 2023, 174, 106416. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Economou, L.P.; Dimizas, C.B.; Vayias, B.J.; Tomanović, S.; Milutinović, M. Persistence and efficacy of three diatomaceous earth formulations against Sitophilus oryzae (Coleoptera: Curculionidae) on wheat and barley. J. Econ. Entomol. 2005, 98, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Fields, P.; Korunic, Z. The effect of grain moisture content and temperature on the efficacy of diatomaceous earths from different geographical locations against stored-product beetles. J. Stored Prod. Res. 2000, 36, 1–13. [Google Scholar] [CrossRef]
- Alves, L.F.; Oliveira, D.G.; Neves, P.M. Factors affecting diatomaceous earth effectiveness in the control of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) adults. Neotrop. Entomol. 2008, 37, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.G.P.; Bonini, A.K.; Alves, L.F.A. Field assessments to control the lesser mealworm (Coleoptera: Tenebrionidae) using diatomaceous earth in poultry houses. J. Econ. Entomol. 2017, 110, 2716–2723. [Google Scholar] [CrossRef]
- Oliveira, D.G.P.; Alves, L.F.A.; Marchese, L.P.C.; Thomazoni, D. Persistence of insecticidal activity and repellency of the diatomaceous earth against the lesser mealworm Alphitobius diaperinus (Panzer, 1797) (Coleoptera: Tenebrionidae). Semin. Ciênc. Agrár. 2009, 30, 201–210. [Google Scholar] [CrossRef]
- Lambkin, T.A.; Swain, A.J.; Rice, S.J.; Bartlett, J.S.; Zalucki, M.P. Field assessments of control agents for lesser mealworm (Coleoptera: Tenebrionidae) using litter sampling. J. Econ. Entomol. 2012, 105, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Agrafioti, P.; Vrontaki, M.; Rigopoulou, M.; Lampiri, E.; Grigoriadou, K.; Ioannidis, P.M.; Rumbos, C.I.; Athanassiou, C.G. Insecticidal effect of diatomaceous earth formulations for the control of a wide range of stored-product beetle species. Insects 2023, 14, 656. [Google Scholar] [CrossRef]
- Alves, L.F.A.; Oliveira, D.G.P.; Pares, R.B. Liquid preparation of diatomaceous earth against the lesser mealworm, Alphitobius diaperinus (Panzer, 1797) (Coleoptera: Tenebrionidae). Arq. Inst. Biol. 2022, 89, 1–9. [Google Scholar] [CrossRef]
- Santoro, P.H.; Neves, P.M.O.J.; Amaro, J.T.; Constanski, K.; López, E.A.L.; Alves, L.F.A. Association of inert powders with the entomopathogenic fungi for darkling beetle (Alphitobius diaperinus) control. Ciênc. Rural 2010, 40, 1354–1359. [Google Scholar] [CrossRef]
Types of Biological Control Agents | Some Effective Species | Summary of Action Mechanism |
Entomopathogenic fungi (EF) | Beauveria bassiana Isaria farinosa I. fumosorosea Metarhizium anisopliae | Entomopathogenic fungi infect insect hosts by directly penetrating their cuticle using enzymatic and mechanical mechanisms, proliferating within the host, producing toxic metabolites, and eventually sporulating to continue their life cycle. |
Entomopathogenic bacteria (EB) | Bacillus thuringiensis | Entomopathogenic bacteria kill insect hosts by producing toxins that either attack gut cells or suppress the immune system, leading to septicemia and death, with some bacteria, like Bacillus thuringiensis acting through gut disruption and others, like Photorhabdus and Xenorhabdus, working in symbiosis with nematodes. |
Entomopathogenic nematodes (EN) | Steinernema carpocapsae S. affine S. affinis S. feltiae Heterorhabditis bacteriophora H. riobrave H. indica | Entomopathogenic nematodes kill their insect hosts either by releasing symbiotic bacteria that cause toxic effects or by direct mechanical damage and nutrient depletion, thriving in moist environments where they invade through natural openings, reproduce within the host, and effectively control pests without leaving harmful residues or inducing resistance. |
Types of sustainable control agents | Some effective compounds | Summary of action mechanism |
Plant essential oils (PEO) Extracts (PE) | Azadirachta indica oil Cymbopogon citratus oil Origanum vulgare oil Syzygium aromaticum oil Ricinus communis extract Illicium verum extract Cinnamomum verum extract | Plant essential oils and plant extracts exert insecticidal effects by disrupting ion channels and neurotransmitter signaling, damaging the cuticle, suppressing gut bacteria, interfering with hormonal regulation, inducing oxidative stress, and impairing mitochondrial function, ultimately leading to insect mortality. |
Pheromones (P) | (E,E)-α-farnesene (S)-linalool (R)-daucene (R)-limonene 2-nonanone (E)-ocimene 1,4-benzoquinone | Pheromones, including aggregation and alarm types, are used to attract or repel male and female beetles, enabling behavior-based pest control strategies such as “push-pull” systems and integration with biological agents like Beauveria bassiana for enhanced management. |
Diatomaceous earth (DE) | Silica cell walls of ancient diatoms | Diatomaceous earth is a non-toxic, long-lasting insect control method that physically damages insect exoskeletons, causing dehydration without the risk of resistance, but its effectiveness depends on environmental conditions like humidity and substrate type. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tufan-Cetin, O.; Cetin, H. A Review of Biological and Sustainable Management Approaches for Alphitobius diaperinus, a Major Pest in Poultry Facilities. Vet. Sci. 2025, 12, 158. https://doi.org/10.3390/vetsci12020158
Tufan-Cetin O, Cetin H. A Review of Biological and Sustainable Management Approaches for Alphitobius diaperinus, a Major Pest in Poultry Facilities. Veterinary Sciences. 2025; 12(2):158. https://doi.org/10.3390/vetsci12020158
Chicago/Turabian StyleTufan-Cetin, Ozge, and Huseyin Cetin. 2025. "A Review of Biological and Sustainable Management Approaches for Alphitobius diaperinus, a Major Pest in Poultry Facilities" Veterinary Sciences 12, no. 2: 158. https://doi.org/10.3390/vetsci12020158
APA StyleTufan-Cetin, O., & Cetin, H. (2025). A Review of Biological and Sustainable Management Approaches for Alphitobius diaperinus, a Major Pest in Poultry Facilities. Veterinary Sciences, 12(2), 158. https://doi.org/10.3390/vetsci12020158