Application of Behavior Change Techniques (BCTTv1) to Reduce Antimicrobial Use in Livestock: A Scoping Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Research Questions
2.2. Search Strategy, Eligibility Criteria, and Screening Process
2.3. Data Synthesis and Quality Assessment
2.4. Selection and Characteristics of Sources of Evidence
3. Results
3.1. Identification of Behavior Change Techniques (BCTs) Used in Interventions to Reduce AMU
3.2. Explicit vs. Implicit Use of BCTs in Interventions
3.3. Effectiveness of BCTs Across Intervention Strategies
3.4. Geographic and Sectoral Distribution of Interventions
3.5. Key Barriers and Enablers to Effective Implementation of BCTs
4. Discussion
5. Conclusions
- Explicit integration and systematic reporting of BCTs using taxonomies like BCTTv1 to enhance transparency, replicability, and comparability across interventions, enabling more effective evidence synthesis.
- Context-specific intervention designs adaptable to regional, cultural, and economic settings to ensure feasibility, relevance, and a higher likelihood of adoption among key stakeholders.
- Focused efforts in underrepresented regions and sectors, particularly Asia, Africa, and poultry farming to address existing gaps, ensure the equitable distribution of resources, and maximize the global impact of AMU reduction strategies.
- Sustainability mechanisms, including financial and structural models for long-term viability to support continued implementation beyond the initial phases, ensuring that improvements in AMU practices are sustained over time.
- Robust monitoring and evaluation frameworks to track long-term impacts and refine approaches to enable continuous assessment, facilitate early identification of challenges, and support the iterative adaptation of interventions.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ventola, C.L. The Antibiotic Resistance Crisis. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Jin, M.; Osman, M.; Green, B.A.; Yang, Y.; Ahuja, A.; Lu, Z.; Cazer, C.L. Evidence for the Transmission of Antimicrobial Resistant Bacteria between Humans and Companion Animals: A Scoping Review. One Health 2023, 17, 100593. [Google Scholar] [CrossRef] [PubMed]
- Caudell, M.A.; Dorado-Garcia, A.; Eckford, S.; Creese, C.; Byarugaba, D.K.; Afakye, K.; Chansa-Kabali, T.; Fasina, F.O.; Kabali, E.; Kiambi, S.; et al. Towards a Bottom-up Understanding of Antimicrobial Use and Resistance on the Farm: A Knowledge, Attitudes, and Practices Survey across Livestock Systems in Five African Countries. PLoS ONE 2020, 15, e0220274. [Google Scholar] [CrossRef] [PubMed]
- Kasimanickam, V.; Kasimanickam, M.; Kasimanickam, R. Antibiotics Use in Food Animal Production: Escalation of Antimicrobial Resistance: Where Are We Now in Combating AMR? Med. Sci. 2021, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.; Cooke, P.; Ahorlu, C.; Arjyal, A.; Baral, S.; Carter, L.; Dasgupta, R.; Fieroze, F.; Fonseca-Braga, M.; Huque, R.; et al. Community Engagement: The Key to Tackling Antimicrobial Resistance (AMR) across a One Health Context? Glob. Public Health 2021, 17, 2647–2664. [Google Scholar] [CrossRef]
- Fletcher-Miles, H.; Gammon, J. A Scoping Review on the Influential Cognitive Constructs Informing Public AMR Behavior Compliance and the Attribution of Personal Responsibility. Am. J. Infect. Control 2020, 48, 1381–1386. [Google Scholar] [CrossRef] [PubMed]
- Llanos-Soto, S.G.; Vezeau, N.; Wemette, M.; Bulut, E.; Greiner Safi, A.; Moroni, P.; Shapiro, M.A.; Ivanek, R. Survey of Perceptions and Attitudes of an International Group of Veterinarians Regarding Antibiotic Use and Resistance on Dairy Cattle Farms. Prev. Vet. Med. 2021, 188, 105253. [Google Scholar] [CrossRef]
- Regan, Á.; Burrell, A.; McKernan, C.; Martin, H.; Benson, T.; McAloon, C.; Manzanilla, E.G.; Dean, M. Behaviour Change Interventions for Responsible Antimicrobial Use on Farms. Ir. Vet. J. 2023, 76, 8. [Google Scholar] [CrossRef]
- Padda, H.; Wemette, M.; Safi, A.G.; Beauvais, W.; Shapiro, M.A.; Moroni, P.; Ivanek, R. New York State Dairy Veterinarians’ Perceptions of Antibiotic Use and Resistance: A Qualitative Interview Study. Prev. Vet. Med. 2021, 194, 105428. [Google Scholar] [CrossRef]
- Speksnijder, D.C.; Wagenaar, J.A. Reducing Antimicrobial Use in Farm Animals: How to Support Behavioral Change of Veterinarians and Farmers. Anim. Front. Rev. Mag. Anim. Agric. 2018, 8, 4–9. [Google Scholar] [CrossRef]
- Hoffmann, T.C.; Glasziou, P.P.; Boutron, I.; Milne, R.; Perera, R.; Moher, D.; Altman, D.G.; Barbour, V.; Macdonald, H.; Johnston, M.; et al. Better Reporting of Interventions: Template for Intervention Description and Replication (TIDieR) Checklist and Guide. BMJ 2014, 348, g1687. [Google Scholar] [CrossRef] [PubMed]
- Abraham, C.; Michie, S. A Taxonomy of Behavior Change Techniques Used in Interventions. Health Psychol. 2008, 27, 379–387. [Google Scholar] [CrossRef]
- Michie, S.; Richardson, M.; Johnston, M.; Abraham, C.; Francis, J.; Hardeman, W.; Eccles, M.P.; Cane, J.; Wood, C.E. The Behavior Change Technique Taxonomy (v1) of 93 Hierarchically Clustered Techniques: Building an International Consensus for the Reporting of Behavior Change Interventions. Ann. Behav. Med. Publ. Soc. Behav. Med. 2013, 46, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.E.; Richardson, M.; Johnston, M.; Abraham, C.; Francis, J.; Hardeman, W.; Michie, S. Applying the Behaviour Change Technique (BCT) Taxonomy v1: A Study of Coder Training. Transl. Behav. Med. 2015, 5, 134–148. [Google Scholar] [CrossRef]
- Chakraborty, D.; Bailey, B.A.; Seidler, A.L.; Yoong, S.; Hunter, K.E.; Hodder, R.K.; Webster, A.C.; Johnson, B.J. Exploring the Application of Behaviour Change Technique Taxonomies in Childhood Obesity Prevention Interventions: A Systematic Scoping Review. Prev. Med. Rep. 2022, 29, 101928. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.; Sriram, A.; Sadoff, R.; Bennett, S.; Bahati, F.; Beauvais, W. Behavior-Change Interventions to Improve Antimicrobial Stewardship in Human Health, Animal Health, and Livestock Agriculture: A Systematic Review. PLoS Glob. Public Health 2023, 3, e0001526. [Google Scholar] [CrossRef]
- Martin, J.; Chater, A.; Lorencatto, F. Effective Behaviour Change Techniques in the Prevention and Management of Childhood Obesity. Int. J. Obes. 2013, 37, 1287–1294. [Google Scholar] [CrossRef]
- Tate, D.F.; Lytle, L.A.; Sherwood, N.E.; Haire-Joshu, D.; Matheson, D.; Moore, S.M.; Loria, C.M.; Pratt, C.; Ward, D.S.; Belle, S.H.; et al. Deconstructing Interventions: Approaches to Studying Behavior Change Techniques across Obesity Interventions. Transl. Behav. Med. 2016, 6, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Webb Girard, A.; Waugh, E.; Sawyer, S.; Golding, L.; Ramakrishnan, U. A Scoping Review of Social-Behaviour Change Techniques Applied in Complementary Feeding Interventions. Matern. Child Nutr. 2020, 16, e12882. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping Studies: Towards a Methodological Framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Bennedsgaard, T.W.; Klaas, I.C.; Vaarst, M. Reducing Use of Antimicrobials—Experiences from an Intervention Study in Organic Dairy Herds in Denmark. Livest. Sci. 2010, 131, 183–192. [Google Scholar] [CrossRef]
- Caekebeke, N.; Ringenier, M.; Jonquiere, F.J.; Tobias, T.J.; Postma, M.; van den Hoogen, A.; Houben, M.A.M.; Velkers, F.C.; Sleeckx, N.; Stegeman, A.; et al. Coaching Belgian and Dutch Broiler Farmers Aimed at Antimicrobial Stewardship and Disease Prevention. Antibiotics 2021, 10, 590. [Google Scholar] [CrossRef] [PubMed]
- Collineau, L.; Rojo-Gimeno, C.; Léger, A.; Backhans, A.; Loesken, S.; Nielsen, E.O.; Postma, M.; Emanuelson, U.; Beilage, E.G.; Sjölund, M.; et al. Herd-Specific Interventions to Reduce Antimicrobial Usage in Pig Production without Jeopardising Technical and Economic Performance. Prev. Vet. Med. 2017, 144, 167–178. [Google Scholar] [CrossRef]
- Gelaude, P.; Schlepers, M.; Verlinden, M.; Laanen, M.; Dewulf, J. Biocheck.UGent: A Quantitative Tool to Measure Biosecurity at Broiler Farms and the Relationship with Technical Performances and Antimicrobial Use. Poult. Sci. 2014, 93, 2740–2751. [Google Scholar] [CrossRef] [PubMed]
- Gerber, M.; Dürr, S.; Bodmer, M. Reducing Antimicrobial Use by Implementing Evidence-Based, Management-Related Prevention Strategies in Dairy Cows in Switzerland. Front. Vet. Sci. 2020, 7, 611682. [Google Scholar] [CrossRef] [PubMed]
- Jensen, V.F.; de Knegt, L.V.; Andersen, V.D.; Wingstrand, A. Temporal Relationship between Decrease in Antimicrobial Prescription for Danish Pigs and the “Yellow Card” Legal Intervention Directed at Reduction of Antimicrobial Use. Prev. Vet. Med. 2014, 117, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Maeschli, A.; Schmidt, A.; Ammann, W.; Schurtenberger, P.; Maurer, E.; Walkenhorst, M. Einfluss eines komplementärmedizinischen telefonischen Beratungssystems auf den Antibiotikaeinsatz bei Nutztieren in der Schweiz. Complement. Med. Res. 2019, 26, 174–181. [Google Scholar] [CrossRef]
- Morgans, L.C.; Bolt, S.; Bruno-McClung, E.; van Dijk, L.; Escobar, M.P.; Buller, H.J.; Main, D.C.J.; Reyher, K.K. A Participatory, Farmer-Led Approach to Changing Practices around Antimicrobial Use on UK Farms. J. Dairy Sci. 2021, 104, 2212–2230. [Google Scholar] [CrossRef]
- Pempek, J.; Masterson, M.; Portillo-Gonzalez, R.; Creutzinger, K.; Cheng, T.-Y.; Habing, G. The Impact of Antimicrobial Stewardship Training on Calf Producers’ Knowledge, Treatment Behaviors and Quantified Antimicrobial Use. Microorganisms 2022, 10, 1525. [Google Scholar] [CrossRef] [PubMed]
- Postma, M.; Vanderhaeghen, W.; Sarrazin, S.; Maes, D.; Dewulf, J. Reducing Antimicrobial Usage in Pig Production without Jeopardizing Production Parameters. Zoonoses Public Health 2017, 64, 63–74. [Google Scholar] [CrossRef]
- Roulette, C.J.; Caudell, M.A.; Roulette, J.W.; Quinlan, R.J.; Quinlan, M.B.; Subbiah, M.; Call, D.R. A Two-Month Follow-up Evaluation Testing Interventions to Limit the Emergence and Spread of Antimicrobial Resistant Bacteria among Maasai of Northern Tanzania. BMC Infect. Dis. 2017, 17, 770. [Google Scholar] [CrossRef] [PubMed]
- Schreuder, J.; Simitopoulou, M.; Angastiniotis, K.; Ferrari, P.; Wolthuis-Fillerup, M.; Kefalas, G.; Papasolomontos, S. Development and Implementation of a Risk Assessment Tool for Broiler Farm Biosecurity and a Health Intervention Plan in the Netherlands, Greece, and Cyprus. Poult. Sci. 2023, 102, 102394. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.; Jensen, V.; Emborg, H.-D.; Jacobsen, E.; Wegener, H. Changes in the Use of Antimicrobials and the Effects on Productivity of Swine Farms in Denmark. Am. J. Vet. Res. 2010, 71, 726–733. [Google Scholar] [CrossRef]
- Becker, J.; van Aken, A. Evaluation of voluntary incentive--based animal welfare programs to decrease antimicrobial use on source dairies and veal calf fattening operations. Schweiz. Arch. Tierheilkd. 2021, 163, 577–594. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.E.; Arroyo, L.G.; Renaud, D.L.; Viel, L.; Weese, J.S. A Multidisciplinary Approach to Reduce and Refine Antimicrobial Drugs Use for Diarrhoea in Dairy Calves. Vet. J. 2021, 274, 105713. [Google Scholar] [CrossRef]
- Lago, A.; Godden, S.M.; Bey, R.; Ruegg, P.L.; Leslie, K. The Selective Treatment of Clinical Mastitis Based on On-Farm Culture Results: I. Effects on Antibiotic Use, Milk Withholding Time, and Short-Term Clinical and Bacteriological Outcomes. J. Dairy Sci. 2011, 94, 4441–4456. [Google Scholar] [CrossRef] [PubMed]
- Phu, D.H.; Cuong, N.V.; Truong, D.B.; Kiet, B.T.; Hien, V.B.; Thu, H.T.V.; Yen, L.K.; Minh, N.T.T.; Padungtod, P.; Setyawan, E.; et al. Reducing Antimicrobial Usage in Small-Scale Chicken Farms in Vietnam: A 3-Year Intervention Study. Front. Vet. Sci. 2021, 7, 612993. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; James Dyar, O.; Sun, Q.; Wei, X.; Yang, D.; Sun, C.; Wang, Y.; Li, H.; Liu, Y.; Luo, Y.; et al. The Effectiveness of an Educational Intervention on Knowledge, Attitudes and Reported Practices on Antibiotic Use in Humans and Pigs: A Quasi-Experimental Study in Twelve Villages in Shandong Province, China. Int. J. Environ. Res. Public Health 2021, 18, 1940. [Google Scholar] [CrossRef] [PubMed]
- Raymond, M.J.; Wohrle, R.D.; Call, D.R. Assessment and Promotion of Judicious Antibiotic Use on Dairy Farms in Washington State. J. Dairy Sci. 2006, 89, 3228–3240. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Verliat, F.; Hemonic, A.; Chouet, S.; Le Coz, P.; Liber, M.; Jouy, E.; Perrin-Guyomard, A.; Chevance, A.; Delzescaux, D.; Chauvin, C. An Efficient Cephalosporin Stewardship Programme in French Swine Production. Vet. Med. Sci. 2021, 7, 432–439. [Google Scholar] [CrossRef]
- Lipkens, Z.; Piepers, S.; De Vliegher, S. Impact of Selective Dry Cow Therapy on Antimicrobial Consumption, Udder Health, Milk Yield, and Culling Hazard in Commercial Dairy Herds. Antibiotics 2023, 12, 901. [Google Scholar] [CrossRef]
- Raasch, S.; Postma, M.; Dewulf, J.; Stärk, K.D.C.; Grosse Beilage, E. Association between Antimicrobial Usage, Biosecurity Measures as Well as Farm Performance in German Farrow-to-Finish Farms. Porc. Health Manag. 2018, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- van Aken, A.; Hoop, D.; Friedli, K.; Mann, S. Udder Health, Veterinary Costs, and Antibiotic Usage in Free Stall Compared with Tie Stall Dairy Housing Systems: An Optimized Matching Approach in Switzerland. Res. Vet. Sci. 2022, 152, 333–353. [Google Scholar] [CrossRef]
- Morgan, G.; Pinchbeck, G.; Haldenby, S.; Schmidt, V.; Williams, N. Raw Meat Diets Are a Major Risk Factor for Carriage of Third-Generation Cephalosporin-Resistant and Multidrug-Resistant E. coli by Dogs in the UK. Front. Microbiol. 2024, 15, 1460143. [Google Scholar] [CrossRef]
- Becker, J.; Schüpbach-Regula, G.; Steiner, A.; Perreten, V.; Wüthrich, D.; Hausherr, A.; Meylan, M. Effects of the Novel Concept ‘Outdoor Veal Calf’ on Antimicrobial Use, Mortality and Weight Gain in Switzerland. Prev. Vet. Med. 2020, 176, 104907. [Google Scholar] [CrossRef]
- Charani, E.; Castro-Sánchez, E.; Holmes, A. The Role of Behavior Change in Antimicrobial Stewardship. Infect. Dis. Clin. N. Am. 2014, 28, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Moore, L.S.P.; Tivey, A.M.; Tsao, A.; Gilchrist, M.; Charani, E.; Holmes, A.H. Behaviour Change Interventions to Influence Antimicrobial Prescribing: A Cross-Sectional Analysis of Reports from UK State-of-the-Art Scientific Conferences. Antimicrob. Resist. Infect. Control 2017, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Dubbeldeman, E.M.; Crone, M.R.; Kiefte-de Jong, J.C.; van der Kleij, R.M.J.J. Optimizing Implementation: Elucidating the Role of Behavior Change Techniques and Corresponding Strategies on Determinants and Implementation Performance: A Cross-Sectional Study. Implement. Sci. Commun. 2024, 5, 68. [Google Scholar] [CrossRef] [PubMed]
- Matthews, L.; Simpson, S.A. Evaluation of Behavior Change Interventions. In The Handbook of Behavior Change; Hamilton, K., Cameron, L.D., Hagger, M.S., Hankonen, N., Lintunen, T., Eds.; Cambridge Handbooks in Psychology; Cambridge University Press: Cambridge, UK, 2020; pp. 318–332. ISBN 978-1-108-49639-1. [Google Scholar]
- Nadal, I.P.; Angkurawaranon, C.; Singh, A.; Choksomngam, Y.; Sadana, V.; Kock, L.; Wattanapisit, A.; Wiwatkunupakarn, N.; Kinra, S. Effectiveness of Behaviour Change Techniques in Lifestyle Interventions for Non-Communicable Diseases: An Umbrella Review. BMC Public Health 2024, 24, 3082. [Google Scholar] [CrossRef] [PubMed]
Category | Component |
---|---|
Population | Livestock stakeholders, including farmers and animal health service providers, are involved in the management of farm animals (e.g., cattle, poultry, swine, sheep) who are responsible for the administration of antibiotics. |
Intervention | Interventions that utilize behavior change techniques to reduce on-farm AMU. |
Comparator | Interventions that do not use behavioral change techniques to reduce on-farm AMU. |
Outcome | On-farm antimicrobial reduction (primary). Other improvements in biosecurity. |
Intervention Strategy | Key BCTs Applied | Example Studies | Challenges | Key Insights |
---|---|---|---|---|
Optimization of Herd Management | Problem Solving, Action Planning, Feedback on Behavior, Goal Setting (Outcome), Monitoring of Outcomes Without Feedback | [21,23,25,29,31,41] | High initial costs, infrastructure limitations, logistical constraints. | Tailored interventions with participatory planning enhance herd management outcomes. |
Antimicrobial Stewardship Training | Instruction on How to Perform the Behavior, Self-Monitoring, Credible Sources, Behavioral Practice/Rehearsal | [25,28,29,35,36,44] | Resistance to change, logistical barriers, inconsistency in training delivery. | Combining theoretical training with hands-on practice improves adoption and effectiveness. |
Incentives-Based Systems | Material Incentives, Social Rewards, Comparative Imagining of Future Outcomes, Financial Compensation | [24,25,27,30,37] | Sustainability of incentives, bureaucratic complexities, resource dependency. | Financial and material incentives must align with long-term sustainability goals. |
Regulatory Frameworks | Restructuring of Social and Physical Environments, Adding Objects to the Environment, Behavior Cost | [22,25,31,32,37] | Compliance costs, distrust in enforcement, unintended consequences (e.g., increased disease incidents). | Integrating education, incentives, and regulatory frameworks fosters compliance. |
Targeted Treatments and Alternative Approaches | Instruction on How to Perform Behavior, Feedback on the Outcomes of Behavior, Goal Setting, Comparative Outcomes | [29,30,35,36,39,45] | Skepticism, resource constraints, need for ongoing validation and demonstration. | Regular technical support and trust-building measures are essential for sustained adoption. |
Theme | Barrier/Enabler | Key Insights | Examples | Citations |
---|---|---|---|---|
Financial | Barrier | High costs for veterinary services, diagnostics, and infrastructure hinder adoption. | Costs of training programs, diagnostic tools, and biosecurity infrastructure. | [23,31,42] |
Enabler | Financial incentives and subsidies motivate compliance with stewardship practices. | Annual stipends, free inspections, and equipment subsidies. | [24,27,33,42] | |
Logistical | Barrier | Inconsistent follow-ups, fragmented extension services, and limited monitoring tools hinder sustainability. | Limited access to diagnostic tools and poor follow-up support. | [21,31,35] |
Cultural | Barrier | Entrenched traditions, reliance on prophylactic AMU, and stigma resist change. | Generational reliance on antimicrobials; stigma against compliance. | [22,28,45] |
Behavioral | Enabler | Self-monitoring tools and participatory approaches drive accountability and ownership. | Use of treatment logs, mobile apps, and participatory planning. | [28,31,34] |
Technical | Barrier | Limited access to trusted experts and inconsistent veterinary services limit adoption. | Gaps in advisory visits and inconsistent peer-led programs. | [29,30,34] |
Enabler | Veterinarians, agricultural officers, and peer leaders serve as trusted sources of guidance. | Peer-based learning sessions and trusted veterinary oversight. | [26,32,37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omani, R.; Fasina, F.O.; Kimeli, P.; Antoine-Moussiaux, N. Application of Behavior Change Techniques (BCTTv1) to Reduce Antimicrobial Use in Livestock: A Scoping Review. Vet. Sci. 2025, 12, 172. https://doi.org/10.3390/vetsci12020172
Omani R, Fasina FO, Kimeli P, Antoine-Moussiaux N. Application of Behavior Change Techniques (BCTTv1) to Reduce Antimicrobial Use in Livestock: A Scoping Review. Veterinary Sciences. 2025; 12(2):172. https://doi.org/10.3390/vetsci12020172
Chicago/Turabian StyleOmani, Ruth, Folorunso O. Fasina, Peter Kimeli, and Nicolas Antoine-Moussiaux. 2025. "Application of Behavior Change Techniques (BCTTv1) to Reduce Antimicrobial Use in Livestock: A Scoping Review" Veterinary Sciences 12, no. 2: 172. https://doi.org/10.3390/vetsci12020172
APA StyleOmani, R., Fasina, F. O., Kimeli, P., & Antoine-Moussiaux, N. (2025). Application of Behavior Change Techniques (BCTTv1) to Reduce Antimicrobial Use in Livestock: A Scoping Review. Veterinary Sciences, 12(2), 172. https://doi.org/10.3390/vetsci12020172