Morphometric Analysis of the Common Raccoon Dog (Nyctereutes procyonoides) Teeth in Lithuania
Simple Summary
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balčiauskas, L.; Stratford, J.; Balčiauskienė, L.; Kučas, A. Roadkills as a Method to Monitor Raccoon Dog Populations. Animals 2021, 11, 3147. [Google Scholar] [CrossRef] [PubMed]
- Kontrimavičius, V.; Prusaite, J.; Mazeikyte, R.; Pauza, D.; Pauziene, N.; Juskaitis, R.; Mickus, A.; Grusas, A.; Skeiveris, R.; Bluzma, P.; et al. Lietuvos Fauna: Žinduoliai; Mokslas: Vilnius, Lietuva, 1988; ISBN 5-420-00055-5. [Google Scholar]
- Kauhala, K.; Auniola, M. Diet of Raccoon Dogs in Summer in the Finnish Archipelago. Ecography 2001, 24, 151–156. [Google Scholar] [CrossRef]
- Kauhala, K.; Helle, E. Population Ecology of the Raccoon Dog in Finland—A Synthesis. Wildl. Biol. 1995, 1, 3–10. [Google Scholar] [CrossRef]
- Sillero, C.; Hoffmann, M.; Macdonald, D. Canids: Foxes, Wolves, Jackals and Dogs. Status Survey and Conservation Action Plan; IUCN: Gland, Switzerland, 2004. [Google Scholar]
- Harada, Y.; Ogawa, K.; Mori, S.; Kobayashi, S.; Kubo, H.; Kiyosue, T. Variations of Dentition in Raccoon Dogs (Nyctereutes procynoides viverrinus T.) Anomalies in Number of the Teeth. Jpn. J. Oral Biol. 1989, 31, 257–264. [Google Scholar] [CrossRef]
- Szuma, E. Dental Abnormalities in the Red Fox Vulpes vulpes from Poland. Acta Theriol. 1999, 44, 393–412. [Google Scholar] [CrossRef]
- Baltrūnaitė, L. Diet and Winter Habitat Use of the Red Fox, Pine Marten and Raccoon Dog in Dzūkija National Park, Lithuania. Acta Zool. Litu. 2006, 16, 46–53. [Google Scholar] [CrossRef]
- Haba, C.; Oshida, T.; Sasaki, M.; Endo, H.; Ichikawa, H.; Masuda, Y. Morphological Variation of the Japanese Raccoon Dog: Implications for Geographical Isolation and Environmental Adaptation. J. Zool. 2008, 274, 239–247. [Google Scholar] [CrossRef]
- Kauhala, K.; Viranta, S.; Kishimoto, M.; Helle, E.; Obara, I. Skull and Tooth Morphology of Finnish and Japanese Raccoon Dogs. Ann. Zool. Fenn. 1998, 35, 1–16. [Google Scholar]
- Korablev, N.P.; Szuma, E. Variability of Native and Invasive Raccoon Dogs’ Nyctereutes procyonoides Populations: Looking at Translocation from a Morphological Point of View. Acta Theriol. 2014, 59, 61–79. [Google Scholar] [CrossRef]
- Nowicki, W.; Brudnicki, W.; Skoczylas, B. Studies of Interdependences Between Characteristics in Raccoon Dog (Nyctereutes procyonoides Gray). Electron. J. Pol. Agric. Univ. 2011, 14, 17. [Google Scholar]
- Kim SangIn, K.S.; Suzuki, S.; Oh JinWoo, O.J.; Koyabu, D.; Oshida, T.; Lee Hang, L.H.; Min MiSook, M.M.; Kimura, J. Sexual Dimorphism of Craniodental Morphology in the Raccoon Dog Nyctereutes procyonoides from South Korea. J. Vet. Med. Sci. 2012, 74, 1609–1616. [Google Scholar] [CrossRef]
- Jurgelėnas, E.; Daugnora, L. Rudosios lapės ir usūrinio šuns kaukolių osteometrinis tyrimas. Vet. Med. Zootech. 2005, 32, 11–15. [Google Scholar]
- Griciuvienė, L.; Paulauskas, A.; Radzijevskaja, J.; Gedminas, V. Variability of Skull Morphometric Characters in Nycetereutes procyonoides. Biologija 2013, 59, 151–156. [Google Scholar] [CrossRef]
- Dayan, T.; Wool, D.; Simberloff, D. Variation and Covariation of Skulls and Teeth: Modern Carnivores and the Interpretation of Fossil Mammals. Paleobiology 2002, 28, 508–526. [Google Scholar] [CrossRef]
- Trouth, C.O.; Winter, S.; Gupta, K.C.; Millis, R.M.; Holloway, J.A. Analysis of the Sexual Dimorphism in the Basioccipital Portion of the Dog’s Skull. Acta Anatomia 1977, 98, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Brassard, C.; Callou, C. Sex Determination of Archaeological Dogs Using the Skull: Evaluation of Morphological and Metric Traits on Various Modern Breeds. J. Archaeol. Sci. Rep. 2020, 31, 102294. [Google Scholar] [CrossRef]
- Evenhuis, J.V.; Zisman, I.; Kass, P.H.; Verstraete, F.J.M. Dental Pathology of the Grey Fox (Urocyon cinereoargenteus). J. Comp. Pathol. 2018, 158, 39–50. [Google Scholar] [CrossRef]
- Szuma, E. Geography of Sexual Dimorphism in the Tooth Size of the Red Fox Vulpes vulpes (Mammalia, Carnivora). J. Zool. Syst. Evol. Res. 2007, 46, 73–81. [Google Scholar] [CrossRef]
- Von den Driesch, A. A Guide to the Measurement of Animal Bones from Archaeological Sites; Bulletin (Peabody Museum of Natural History); Harvard University Press: Cambridge, MA, USA, 1976; ISBN 978-0-87365-950-5. [Google Scholar]
- Szuma, E. Variation and Correlation Patterns in the Dentition of the Red Fox from Poland. Ann. Zool. Fenn. 2000, 37, 113–127. [Google Scholar]
- Meiri, S.; Dayan, T.; Simberloff, D. Variability and Correlations in Carnivore Crania and Dentition. Funct. Ecol. 2005, 19, 337–343. [Google Scholar] [CrossRef]
- Meiri, S.; Dayan, T.; Simberloff, D. Body Size of Insular Carnivores: Little Support for the Island Rule. Am. Nat. 2004, 163, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Abramov, A.V.; Puzachenko, A.Y. Sexual Dimorphism of Craniological Characters in Eurasian Badgers, Meles spp. (Carnivora, Mustelidae). Zool. Anz. A J. Comp. Zool. 2005, 244, 11–29. [Google Scholar] [CrossRef]
- Van Valkenburgh, B.; Wayne, R.K. Shape Divergence Associated with Size Convergence in Sympatric East African Jackals. Ecology 1994, 75, 1567–1581. [Google Scholar] [CrossRef]
- Hatlauf, J.; Krendl, L.M.; Tintner, J.; Griesberger, P.; Heltai, M.; Markov, G.; Viranta, S.; Hackländer, K. The Canine Counts! Significance of a Craniodental Measure to Describe Sexual Dimorphism in Canids: Golden Jackals (Canis aureus) and African Wolves (Canis lupaster). Mamm. Biol. 2021, 101, 871–879. [Google Scholar] [CrossRef]
- Gittleman, J.; Van Valkenburgh, B. Sexual Dimorphism in the Canines and Skulls of Carnivores: Effects of Size, Phylogency, and Behavioural Ecology. J. Zool. 1997, 242, 97–117. [Google Scholar] [CrossRef]
- Gingerich, P.D.; Winkler, D.A. Patterns of Variation and Correlation in the Dentition of the Red Fox, Vulpes vulpes. J. Mammal. 1979, 60, 691–704. [Google Scholar] [CrossRef]
Males; n = 55 Mean (Std. Dev.) | Females; n = 35 Mean (Std. Dev.) | Mean Difference | p-Value (Student t-Test) | |
---|---|---|---|---|
UP4_L | 10.58 (0.6) | 10.33 (0.67) | 2.5% | 0.061 |
UP4_GB | 5.36 (0.54) | 5.46 (0.41) | −1.8% | 0.355 |
UP4_B | 4.46 (0.34) | 4.43 (0.26) | 0.7% | 0.668 |
UM1_L | 7.94 (0.66) | 7.97 (0.52) | −0.4% | 0.817 |
UM1_B | 8.85 (0.56) | 8.79 (0.49) | 0.7% | 0.618 |
UM2_L | 4.37 (0.40) | 4.56 (0.57) | −4.2% | 0.090 |
UM2_B | 6.26 (0.50) | 6.40 (0.63) | −2.1% | 0.258 |
UC_L | 5.67 (0.42) | 5.48 (0.39) | 3.4% | p < 0.05 |
UC_B | 4.10 (0.38) | 3.91 (0.26) | 4.9% | p < 0.01 |
UDR-1 | 38.39 (1.38) | 38.08 (0.98) | 0.8% | 0.256 |
UDR-2 | 45.47 (1.46) | 44.99 (1.17) | 1.1% | 0.107 |
U-PRE | 27.12 (2.55) | 26.28 (0.83) | 3.2% | p < 0.05 |
U-MOL | 13.15 (0.75) | 13.4 (0.72) | −1.8% | 0.125 |
LM1_L | 12.46 (0.54) | 12.37 (0.47) | 0.7% | 0.430 |
LM1_B | 5.00 (0.31) | 4.98 (0.30) | 0.5% | 0.733 |
LM2_L | 6.14 (0.43) | 6.30 (0.44) | −2.5% | 0.094 |
LM2_B | 4.05 (0.24) | 4.08 (0.36) | −0.7% | 0.666 |
LM3_L | 2.57 (0.47) | 2.89 (0.58) | −11.1% | p < 0.01 |
LM3_B | 2.19 (0.27) | 2.38 (0.33) | −8.1% | p < 0.01 |
LC_L | 5.75 (0.60) | 5.52 (0.45) | 4.1% | p < 0.05 |
LC_B | 4.15 (0.45) | 4.07 (0.37) | 1.9% | 0.383 |
LDR | 44.51 (1.53) | 44.32 (1.34) | 0.4% | 0.539 |
L-PRE | 22.99 (1.14) | 22.75 (0.78) | 1.0% | 0.243 |
L-MOL | 21.40 (1.01) | 21.38 (1.28) | 0.1% | 0.925 |
Canonical Discriminant Function Unstandardized Coefficients | Wilks’ Lambda | p-Value | |
---|---|---|---|
UP4_L | −0.199 | 0.951 | 0.061 |
UP4_GB | 1.731 | 0.988 | 0.355 |
UP4_B | −0.247 | 0.998 | 0.668 |
UM1_L | 0.465 | 0.999 | 0.817 |
UM1_B | −0.729 | 0.999 | 0.618 |
UM2_L | 0.389 | 0.963 | 0.067 |
UM2_B | 0.153 | 0.981 | 0.258 |
UC_L | −0.396 | 0.952 | p < 0.05 |
UC_B | −1.199 | 0.930 | p < 0.01 |
UDR-1 | −0.699 | 1.000 | 0.256 |
UDR-2 | 0.289 | 0.984 | 0.107 |
U-PRE | 0.833 | 0.984 | 0.065 |
U-MOL | −0.820 | 0.964 | 0.125 |
LM1_L | 0.239 | 0.989 | 0.430 |
LM1_B | 0.370 | 0.993 | 0.733 |
LM2_L | −0.817 | 0.972 | 0.094 |
LM2_B | 0.507 | 0.996 | 0.636 |
LM3_L | 2.012 | 0.886 | p < 0.01 |
LM3_B | −1.342 | 0.882 | p < 0.01 |
LC_L | 1.516 | 0.962 | 0.058 |
LC_B | 0.093 | 0.998 | 0.383 |
LDR | −0.259 | 1.000 | 0.539 |
L-PRE | −0.306 | 0.994 | 0.282 |
L-MOL | 0.389 | 1.000 | 0.925 |
DA Model and Analyzed Measurements | Wilks’ Lambda | Canonical Correlation | Correct Classification of Original Cases (%) | Box’s M | ||
---|---|---|---|---|---|---|
Total | Female | Male | ||||
Enter independents together (all measurements) | 0.574 (p < 0.05) | 0.652 | 82.9% | 73.5% | 89.6% | F = 1.156 p < 0.05 |
Enter independents together (only upper teeth and rows) | 0.743 (p < 0.05) | 0.532 | 75.9% | 61.8% | 85.7% | F = 1.267 p = 0.056 |
Enter independents together (only lower teeth and rows) | 0.807 (p = 0.089) | 0.439 | 73.3% | 65.7% | 78.2% | F = 1.325 p < 0.05 |
Enter stepwise together | 0.774 (p < 0.001) | 0.475 | 71.1% | 57.1% | 80.0% | F = 1.405 p = 0.208 |
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | |
---|---|---|---|---|---|---|
UP4_GB | 0.817 | 0.235 | 0.077 | −0.021 | 0.022 | −0.175 |
U-MOL | 0.761 | −0.069 | 0.211 | −0.069 | −0.038 | 0.158 |
UM2_B | 0.687 | −0.143 | −0.094 | 0.305 | 0.033 | −0.043 |
UM1_B | 0.673 | 0.126 | 0.317 | 0.230 | 0.139 | 0.100 |
LM2_B | 0.666 | −0.099 | 0.189 | 0.379 | 0.326 | 0.086 |
LM1_L | 0.652 | 0.213 | 0.242 | 0.365 | 0.032 | 0.298 |
UM1_L | 0.634 | 0.027 | 0.382 | 0.157 | 0.101 | 0.186 |
LM1_B | 0.625 | 0.039 | 0.207 | 0.200 | −0.017 | 0.221 |
UP4_L | 0.581 | 0.262 | 0.406 | 0.300 | −0.024 | 0.072 |
U-PRE | −0.259 | 0.850 | 0.004 | 0.213 | −0.039 | −0.044 |
L-PRE | 0.042 | 0.839 | −0.136 | −0.138 | 0.122 | −0.174 |
UDR-1 | 0.274 | 0.833 | 0.054 | 0.002 | −0.006 | 0.178 |
LDR | 0.164 | 0.707 | −0.100 | 0.461 | 0.040 | 0.109 |
UDR-2 | 0.033 | 0.692 | 0.468 | −0.139 | −0.210 | 0.281 |
LC_B | −0.020 | −0.007 | 0.802 | 0.305 | 0.217 | −0.046 |
UC_B | 0.270 | −0.078 | 0.785 | −0.069 | −0.042 | 0.052 |
LC_L | 0.426 | 0.001 | 0.748 | 0.096 | 0.188 | 0.174 |
UC_L | 0.332 | 0.055 | 0.722 | −0.139 | −0.270 | 0.001 |
LM2_L | 0.279 | 0.086 | 0.123 | 0.784 | −0.051 | 0.019 |
L-MOL | 0.308 | 0.047 | −0.027 | 0.783 | 0.259 | 0.205 |
LM3_L | −0.033 | −0.034 | −0.022 | −0.007 | 0.883 | 0.317 |
UP4_B | 0.462 | 0.065 | 0.139 | 0.255 | 0.636 | −0.200 |
LM3_B | 0.074 | 0.260 | −0.023 | 0.106 | 0.359 | 0.775 |
UM2_L | 0.418 | −0.179 | 0.268 | 0.187 | −0.064 | 0.593 |
Eigenvalues | 33.5 | 13.9 | 10.2 | 6.7 | 5.0 | 4.5 |
Rotation sums of squared loadings % of variance | 22.0 | 14.4 | 13.8 | 9.8 | 7.3 | 6.6 |
Rotation sums of squared loadings cumulative % | 22.0 | 36.3 | 50.1 | 59.9 | 67.2 | 73.7 |
UP4_GB | UP4_B | UM1_L | UM1_B | UM2_L | UM2_B | UC_L | UC_B | UDR-1 | UDR-2 | U-PRE | U-MOL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
UP4_L | 0.435 *** | 0.304 ** | 0.420 *** | 0.450 *** | 0.307 ** | 0.282 ** | 0.463 *** | 0.511 *** | 0.322 ** | 0.464 *** | 0.239 * | 0.332 *** |
UP4_GB | 0.380 *** | 0.391 *** | 0.509 *** | 0.251 * | 0.490 *** | 0.367 *** | 0.375 *** | 0.330 ** | 0.286 ** | 0.188 | 0.408 *** | |
UP4_B | 0.368 *** | 0.447 *** | 0.198 | 0.352 *** | 0.157 | 0.177 | 0.161 | 0.100 | 0.074 | 0.333 *** | ||
UM1_L | 0.568 *** | 0.344 *** | 0.415 *** | 0.409 *** | 0.382 *** | 0.324 ** | 0.261 * | 0.071 | 0.667 *** | |||
UM1_B | 0.425 *** | 0.591 *** | 0.318 ** | 0.444 *** | 0.318 ** | 0.312 ** | 0.162 | 0.460 *** | ||||
UM2_L | 0.465 *** | 0.179 | 0.127 | 0.218 * | 0.210 * | 0.116 | 0.405 *** | |||||
UM2_B | 0.154 | 0.206 | 0.258 * | 0.180 | 0.152 | 0.402 *** | ||||||
UC_L | 0.645 *** | 0.309 ** | 0.534 *** | 0.190 | 0.357 *** | |||||||
UC_B | 0.292 ** | 0.475 *** | 0.172 | 0.228 * | ||||||||
UDR-1 | 0.823 *** | 0.568 *** | 0.313 ** | |||||||||
UDR-2 | 0.494 *** | 0.245 * | ||||||||||
U-PRE | 0.090 |
LM1_B | LM2_L | LM2_B | LM3_L | LM3_B | LC_L | LC_B | LDR | L-PRE | L-MOL | |
---|---|---|---|---|---|---|---|---|---|---|
LM1_L | 0.551 *** | 0.431 *** | 0.432 *** | 0.002 | 0.169 | 0.536 *** | 0.316 ** | 0.349 *** | 0.142 | 0.385 *** |
LM1_B | 0.172 | 0.365 *** | −0.113 | −0.034 | 0.442 *** | 0.240 * | 0.166 | 0.067 | 0.205 | |
LM2_L | 0.480 *** | 0.277 ** | 0.397 *** | 0.169 | 0.191 | 0.270 * | −0.073 | 0.429 *** | ||
LM2_B | 0.249 * | 0.344 *** | 0.312 ** | 0.266 * | 0.319 ** | 0.051 | 0.474 *** | |||
LM3_L | 0.717 *** | 0.024 | 0.108 | 0.097 | −0.106 | 0.244 * | ||||
LM3_B | 0.113 | 0.120 | 0.260 * | −0.061 | 0.344 *** | |||||
LC_L | 0.629 *** | 0.301 ** | 0.150 | 0.242 * | ||||||
LC_B | 0.278 ** | 0.081 | 0.276 ** | |||||||
LDR | 0.571 *** | 0.703 *** | ||||||||
L-PRE | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurgelėnas, E.; Kerzienė, S.; Daugnora, L.; Makowiecki, D. Morphometric Analysis of the Common Raccoon Dog (Nyctereutes procyonoides) Teeth in Lithuania. Vet. Sci. 2025, 12, 338. https://doi.org/10.3390/vetsci12040338
Jurgelėnas E, Kerzienė S, Daugnora L, Makowiecki D. Morphometric Analysis of the Common Raccoon Dog (Nyctereutes procyonoides) Teeth in Lithuania. Veterinary Sciences. 2025; 12(4):338. https://doi.org/10.3390/vetsci12040338
Chicago/Turabian StyleJurgelėnas, Eugenijus, Sigita Kerzienė, Linas Daugnora, and Daniel Makowiecki. 2025. "Morphometric Analysis of the Common Raccoon Dog (Nyctereutes procyonoides) Teeth in Lithuania" Veterinary Sciences 12, no. 4: 338. https://doi.org/10.3390/vetsci12040338
APA StyleJurgelėnas, E., Kerzienė, S., Daugnora, L., & Makowiecki, D. (2025). Morphometric Analysis of the Common Raccoon Dog (Nyctereutes procyonoides) Teeth in Lithuania. Veterinary Sciences, 12(4), 338. https://doi.org/10.3390/vetsci12040338