Standardization of Beef, Pork, Chicken, and Soy Protein Extracts for Patch Testing and Their Accuracy in Diagnosing Adverse Food Reactions in Dogs with Chronic Pruritus
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Group
2.2. Experimental Protocol
2.2.1. Preparation of the Experimental Groups and Elimination Diet
2.2.2. Atopic Patch Test
2.2.3. Preparation of the Food Extracts
2.2.4. Preparation of the Containers and Patch Test with Food Extracts
2.2.5. Interpretation of the Patch Test with Food Extracts
2.2.6. Oral Provocation Test (OPT) in Group 2 Animals
2.2.7. Statistical Analysis
3. Results
3.1. Demographic and Epidemiological Data
3.2. Reactions Observed in Group 1 Dogs
3.3. Response to Elimination Diet (ED) in Group 2 Dogs
3.4. Reactions to APT in Group 2 Dogs After ED
3.5. Reactions to the Tape and Chambers Used
3.6. Evaluation of the OPT in Patients from Group 2
3.7. Evaluation of the Accuracy Indices of the APT
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matricoti, I.; Noli, C. An open label clinical trial to evaluate the utility of a hydrolysed fish and rice starch elimination diet for the diagnosis of adverse food reactions in dogs. Vet. Dermatol. 2018, 29, 408-e134. [Google Scholar] [CrossRef] [PubMed]
- Possebom, J.; Cruz, A.; Gmyterco, V.C.; de Farias, M.R. Combined prick and patch tests for diagnosis of food hypersensitivity in dogs with chronic pruritus. Vet. Dermatol. 2022, 33, 124-e36. [Google Scholar] [CrossRef] [PubMed]
- Hensel, P.; Santoro, D.; Favrot, C.; Hill, P.; Griffin, C. Canine atopic dermatitis: Detailed guidelines for diagnosis and allergen identification. BMC Vet. Res. 2015, 11, 196–197. [Google Scholar] [CrossRef]
- Nuttal, T.J.; Marsella, R.; Rosenbaum, M.R.; Gonzales, A.J.; Fadok, V.A. Update on pathogenesis, diagnosis, and treatment of atopic dermatitis in dogs. J. Am. Vet. Med. Assoc. 2019, 254, 1291–1300. [Google Scholar] [CrossRef]
- Olivry, T.; Bizikova, P. A systematic review of the evidence of reduced allergenicity and clinical benefit of food hydrolysates in dogs with cutaneous adverse food reactions. Vet. Dermatol. 2010, 21, 32–41. [Google Scholar] [CrossRef]
- Day, M.J. The canine model of dietary hypersensitivity. Proc. Nutr. Soc. 2005, 64, 458–464. [Google Scholar] [CrossRef]
- Fritsch, D.A.; Allen, T.A.; Dodd, C.E.; Jewell, D.E.; Sixby, K.A.; Leventhal, P.S.; Brejda, J.; Hahn, K.A. A multicenter study of the effect of dietary supplementation with fish oil omega-3 fatty acids on carprofen dosage in dogs with osteoarthritis. J. Am. Vet. Med. Assoc. 2010, 236, 535–539. [Google Scholar] [CrossRef]
- Bhagat, R.A.S.; Wazir, V.S.; Mishra, A.; Maibam, U. Food allergy in canines: A review. J. Entomol. Zool St. 2017, 5, 1522–1525. [Google Scholar]
- Alcalá, C.O.; Possebom, J.; Ludwig, L.A.; Cerdeiro, A.P.; Gaertner, R.; Farias, M.R. Evaluation of skin prick test, exclusion diet and dietary challenge in the diagnosis of food allergy in dogs with chronic pruritus. Pesqui. Vet. Bras. 2023, 43, e07196. [Google Scholar] [CrossRef]
- Olivry, T.; Mueller, R.S.; Prélaud, P. Critically appraised topic on adverse food reactions of companion animals (1): Duration of elimination diets. BMC Vet. Res. 2015, 11, 225. [Google Scholar] [CrossRef] [PubMed]
- Johansen, C.; Mariani, C.; Mueller, R.S. Evaluation of canine adverse food reactions by patch testing with single proteins, single carbohydrates and commercial foods. Vet. Dermatol. 2017, 28, 473-e109. [Google Scholar] [CrossRef] [PubMed]
- Noli, C.; Beltrando, G. The usefulness of a hydrolysed fish and rice starch elimination diet for the diagnosis of adverse food reactions in cats: An open clinical trial. Vet. Dermatol. 2021, 32, 326-e90. [Google Scholar] [CrossRef] [PubMed]
- Mueller, R.S.; Olivry, T. Critically appraised topic on adverse food reactions of companion animals (6): Prevalence of noncutaneous manifestations of adverse food reactions in dogs and cats. BMC Vet. Res. 2018, 14, 341. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Lozano, C.; Mas-Fontao, A.; Auxilia, S.T.; Welters, M.; Olivri, A.; Mueller, R.S.; Olivry, T. Evaluation of a direct lymphocyte proliferation test for the diagnosis of canine food allergies with delayed reactions after oral food challenge. Vet. Dermatol. 2024. [Google Scholar] [CrossRef]
- Resende, E.R.M.A.; Segundo, G.R.S. Testes cutâneos de leitura tardia para alimentos—revisão da literatura. Rev. Bras. Alerg. Imunolpatol. 2010, 33, 184–189. [Google Scholar]
- Solé, D.; Silva, L.R.; Cocco, R.R.; Ferreira, C.T.; Sarni, R.O.; Oliveira, L.C.; Pastorino, A.C.; Weffort, V.; Morais, M.B.; Barreto, B.P.; et al. Consenso Brasileiro sobre Alergia Alimentar:—Parte 2—Diagnóstico, tratamento e prevenção. Documento conjunto elaborado pela Sociedade Brasileira de Pediatria e Associação Brasileira de Alergia e Imunologia. Arq. Asma. Alerg. Imunol. 2018, 2, 39–82. [Google Scholar] [CrossRef]
- Mansouri, M.; Rafiee, E.; Darougar, S.; Mesdaghi, M.; Chavoshzadeh, Z. Is the Atopy Patch Test Reliable in the Evaluation of Food Allergy-Related Atopic Dermatitis? Int. Arch. Allergy Immunol. 2018, 175, 85–90. [Google Scholar] [CrossRef]
- Bethlehem, S.; Bexley, J.; Mueller, R.S. Patch testing and allergen-specific serum IgE and IgG antibodies in the diagnosis of canine adverse food reactions. Vet. Immunol. Immunopathol. 2012, 145, 582–589. [Google Scholar] [CrossRef]
- Favrot, C.; Steffan, J.; Seewald, W.; Picco, F. A prospective study on the clinical features of chronic canine atopic dermatitis and its diagnosis. Vet. Dermatol. 2010, 21, 23–31. [Google Scholar] [CrossRef]
- Rybnícek, J.; Lau-Gillard, P.J.; Harvey, R.; Hill, P.B. Further validation of a pruritus severity scale for use in dogs. Vet. Dermatol. 2009, 20, 115–122. [Google Scholar] [CrossRef]
- Olivry, T.; Saridomichelakis, M.; Nuttall, T.; Bensignor, E.; Griffin, C.E.; Hill, P.B.; International Committe on Allergic Diseases of Animals (ICADA). Validation of the Canine Atopic Dermatitis Extent and Severity Index (CADESI)-4, a simplified severity scale for assessing skin lesions of atopic dermatitis in dogs. Vet. Dermatol. 2014, 25, 77–85.e25. [Google Scholar] [CrossRef] [PubMed]
- Université de Montreal; Centre Hospitalier Universitaire Véterinaire; Faculté de Médicine Vétérinaire. DIAGNOSTIC DE L’ALLERGIE ALIMENTAIRE CHEZ LE CHIEN. 2020. Available online: https://chuv.umontreal.ca/le-chuv/hopital-des-animaux-de-compagnie/ressources/allergie-alimentaire-chez-le-chien-diagnostic-et-traitement/ (accessed on 8 February 2025).
- Pucheu-Haston, C.M.; Mougeot, I. Serum IgE and IgG responses to dietary antigens in dogs with and without cutaneous adverse food reactions. Vet. Dermatol. 2020, 31, 116–127. [Google Scholar] [CrossRef]
- Chesney, C.J. Food sensitivity in the dog: A quantitative study. J. Small Anim. Pract. 2002, 43, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, R. Revised nomenclature for veterinary allergy. Vet. Immunol. Immunopathol. 2006, 114, 207–208. [Google Scholar] [CrossRef] [PubMed]
- Mueller, R.S.; Olivry, T.; Prélaud, P. Critically appraised topic on adverse food reactions of companion animals (2): Common food allergen sources in dogs and cats. BMC Vet. Res. 2016, 12, 9. [Google Scholar] [CrossRef]
- Marsella, R.; Papastavros, V.; Ahrens, K.; Santoro, D. Decreased expression of caspase-14 in an experimental model of canine atopic dermatitis. Vet. J. 2016, 209, 201–203. [Google Scholar] [CrossRef]
- Reiter, L.V.; Torres, S.M.; Wertz, P.W. Characterization and quantification of ceramides in the nonlesional skin of canine patients with atopic dermatitis compared with controls. Vet. Dermatol. 2009, 20, 260–266. [Google Scholar] [CrossRef]
- Chermprapai, S.; Broere, F.; Gooris, G.; Schlotter, Y.M.; Rutten, V.P.M.G.; Bouwstra, J.A. Altered lipid properties of the stratum corneum in Canine Atopic Dermatitis. Biochim. Biophys. Acta Biomembr. 2018, 1860, 526–533. [Google Scholar] [CrossRef]
- Ungar, B.; Correa da Rosa, J.; Shemer, A.; Czarnowicki, T.; Estrada, Y.D.; Fuentes-Duculan, J.; Xu, H.; Zheng, X.; Peng, X.; Suárez-Fariñas, M.; et al. Patch testing of food allergens promotes Th17 and Th2 responses with increased IL-33: A pilot study. Exp. Dermatol. 2017, 26, 272–275. [Google Scholar] [CrossRef]
0 = no visible reaction or irritation; |
1+ = mild erythema; |
2+ = moderate erythema; |
3+ = intense erythema; |
4+ = erythema and plaque; |
5+ = erythema with vesiculation and/or pustules, or more intense lesions |
Group 1 | Group 2 | ||
---|---|---|---|
n (20) | n (23) | ||
Breed | Breed | ||
Maltese Terrier | 1 | Golden Retriever | 2 |
Poodle | 6 | Border Collie | 1 |
Schnauzer | 1 | French Bulldog | 1 |
Shih Tzu | 2 | English Bulldog | 1 |
Yorkshire Terrier | 1 | Maltese Terrier | 1 |
Mixed breed | 9 | Poodle | 2 |
Pug | 1 | ||
Shih Tzu | 5 | ||
Yorkshire Terrier | 4 | ||
SRD | 5 | ||
Gender | Gender | ||
Male (neutered) | 13 | Male (neutered) | 10 |
Female (neutered) | 7 | Male (intact) | 1 |
Female (neutered) | 12 | ||
Age (mean) | 7.95 | Age (mean) | 6.14 |
pVAS | CADESI-4 | |||||
---|---|---|---|---|---|---|
Time | pVAS (Mean) | Percentage Reduction (Compared to T0) | Pvas (SD) | CADESI (Mean) | Percentage Reduction (Compared to T0) | CADESI (SD) |
D0 | 8.61 | - | 1.040 | 18.54 | - | 2.818 |
D45 | 2.96 | 66% | 1.473 | 8.46 | 54.4% | 1.337 |
Protein | Beef | Pork | ||||||
100 | 250 | 500 | 1000 | 100 | 250 | 500 | 1000 | |
Reaction | ||||||||
1+ | 1 | 2 | 2 | 1 | 1 | 3 | 2 | |
2+ | 1 | 2 | 3 | 2 | 4 | |||
3+ | 1 | 1 | 1 | |||||
4+ | 1 | |||||||
5+ | 1 | 1 | ||||||
Total | 1 | 5 | 6 | 6 | 1 | 5 | 6 | |
Protein | Chicken | Soy | ||||||
100 | 250 | 500 | 1000 | 100 | 250 | 500 | 1000 | |
Reaction | ||||||||
1+ | 4 | 7 | 6 | 5 | 1 | 6 | 7 | 7 |
2+ | 2 | 2 | 1 | |||||
3+ | 1 | |||||||
4+ | ||||||||
5+ | ||||||||
Total | 4 | 7 | 8 | 8 | 1 | 6 | 7 | 8 |
Diet Day | Mean | SD | Minimum | Maximum |
---|---|---|---|---|
D0 | 8.681 | 1.113 | 7 | 10 |
D45 | 2.863 | 1.568 | 0 | 5 |
OPT+ | 6.918 | 0.791 | 5,5 | 8 |
Protein | Positive APT | Positive OPT | Negative APT | Negative OPT |
---|---|---|---|---|
Chicken | 8 | 8 | 3 | 3 |
Soy | 8 | 8 | 3 | 3 |
Beef | 6 | 6 | 5 | 5 |
Pork | 6 | 5 | 5 | 6 |
Beef Protein Positive ≥ 1+ | SE% | SP% | PPV% | NPV% |
---|---|---|---|---|
100 mg/0.2 mL | 17 (0–64) | 100 (48–100) | 100 (3–100) | 50 (19–81) |
250 mg/0.2 Ml | 83 (36–100) | 100 (48–100) | 100 (48–100) | 83 (36–100) |
500 mg/0.2 mL | 100 (54–100) | 100 (48–100) | 100 (54–100) | 100 (48–100) |
1000 mg/0.2 mL | 100 (54–100) | 100 (48–100) | 100 (54–100) | 100 (48–100) |
Beef protein positive ≥ 2+ | ||||
100 mg/0.2 mL | 100 (54–100) | 0 (0–52) | 55 (23–83) | NA * (0–100) |
250 mg/0.2 mL | 50 (12–88) | 100 (48–100) | 100 (29–100) | 62 (24–91) |
500 mg/0.2 mL | 67 (22–96) | 100 (48–100) | 100 (40–100) | 71 (29–96) |
1000 mg/0.2 mL | 83 (36–100) | 100 (48–100) | 100 (48–100) | 83 (36–100) |
Beef protein positive ≥ 3+ | ||||
100 mg/0.2 mL | 100 (54–100) | 0 (0–52) | 55 (23–83) | NA * (0–100) |
250 mg/0.2 mL | 33 (4–78) | 100 (48–100) | 100 (16–100) | 56 (21–86) |
500 mg/0.2 mL | 33 (4–78) | 100 (48–100) | 100 (16–100) | 56 (21–86) |
1000 mg/0.2 mL | 33 (4–78) | 100 (48–100) | 100 (16–100) | 56 (21–86) |
Beef protein positive ≥ 4+ | ||||
100 mg/0.2 mL | 100 (54–100) | 0 (0–52) | 55 (23–83) | NA * (0–100) |
250 mg/0.2 mL | 17 (0–64) | 100 (48–100) | 100 (3–100) | 50 (19–81) |
500 mg/0.2 mL | 17 (0–64) | 100 (48–100) | 100 (3–100) | 50 (19–81) |
1000 mg/0.2 mL | 17 (0–64) | 100 (48–100) | 100 (3–100) | 50 (19–81) |
Beef protein positive ≥ 5+ | ||||
100 mg/0.2 mL | 100 (54–100) | 0 (0–52) | 55 (23–83) | NA * (0–100) |
250 mg/0.2 mL | 100 (54–100) | 0 (0–52) | 55 (23–83) | NA * (0–100) |
500 mg/0.2 mL | 17 (0–64) | 100 (48–100) | 100 (3–100) | 50 (19–81) |
1000 mg/0.2 mL | 17 (0–64) | 100 (48–100) | 100 (3–100) | 50 (19–81) |
Pork protein positive ≥ 1+ | SE% | SP% | PPV% | NPV% |
100 mg/0.2 mL | 100 (48–100) | 0 (0–46) | 45 (17–77) | NA * (0–100) |
250 mg/0.2 mL | 0 (0–52) | 83 (36–100) | 0 (0–97) | 50 (19–81) |
500 mg/0.2 mL | 80 (28–99) | 83 (36–100) | 80 (28–99) | 83 (36–100) |
1000 mg/0, 2mL | 100 (48–100) | 83 (36–100) | 83 (36–100) | 100 (48–100) |
Pork protein positive ≥ 2+ | ||||
100 mg/0.2 mL | 100 (54–100) | 0 (0–52) | 55 (23–83) | NA * (0–100) |
250 mg/0.2 mL | 100 (54–100) | 0 (0–52) | 55 (23–83) | NA * (0–100) |
500 mg/0.2 mL | 40 (5–85) | 100 (54–100) | 100 (16–100) | 67 (30–93) |
1000 mg/0.2 mL | 80 (28–99) | 100 (54–100) | 100 (40–100) | 86 (42–100) |
Chicken protein positive ≥ 1+ | SE% | SP% | PPV% | NPV% |
100 mg/0.2 mL | 50 (16–84) | 100 (29–100) | 100 (40–100) | 43 (10–82) |
250 mg/0.2 mL | 88 (47–100) | 100 (29–100) | 100 (59–100) | 75 (19–99) |
500 mg/0.2 mL | 100 (63–100) | 100 (29–100) | 100 (63–100) | 100 (29–100) |
1000 mg/0.2 mL | 100 (63–100) | 100 (29–100) | 100 (63–100) | 100 (29–100) |
Chicken protein positive ≥ 2+ | ||||
100 mg/0.2 mL | 100 (63–100) | 0 (0–71) | 73 (39–94) | NA * (0–100) |
250 mg/0.2 mL | 100 (63–100) | 0 (0–71) | 73 (39–94) | NA * (0–100) |
500 mg/0.2 mL | 25 (3–65) | 100 (29–100) | 100 (16–100) | 33 (7–70) |
1000 mg/0.2 mL | 38 (9–76) | 100 (29–100) | 100 (29–100) | 38 (9–76) |
Chicken protein positive ≥ 3+ | ||||
100 mg/0.2 mL | 100 (63–100) | 0 (0–71) | 73 (39–94) | NA * (0–100) |
250 mg/0.2 mL | 100 (63–100) | 0 (0–71) | 73 (39–94) | NA * (0–100) |
500 mg/0.2 mL | 100 (63–100) | 0 (0–71) | 73 (39–94) | NA * (0–100) |
1000 mg/0.2 mL | 12 (0–53) | 100 (29–100) | 100 (3–100) | 30 (7–65) |
Soy protein positive ≥ 1+ | SE% | SP% | PPV% | NPV% |
100 mg/0.2 mL | 12 (0–53) | 100 (29–100) | 100 (3–100) | 30 (7–65) |
250 mg/0.2 mL | 75 (35–97) | 100 (29–100) | 100 (54–100) | 60 (5–95) |
500 mg/0.2 mL | 88 (47–100) | 100 (29–100) | 100 (59–100) | 75 (19–99) |
1000 mg/0.2 mL | 100 (63–100) | 100 (29–100) | 100 (63–100) | 100 (29–100) |
Soy protein positive ≥ 2+ | ||||
100 mg/0.2 mL | 100 (63–100) | 0 (0–71) | 73 (39–94) | NA * (0–100) |
250 mg/0.2 mL | 100 (63–100) | 0 (0–71) | 73 (39–94) | NA * (0–100) |
500 mg/0.2 mL | 100 (63–100) | 0 (0–71) | 73 (39–94) | NA * (0–100) |
1000 mg/0.2 mL | 12 (0–53) | 100 (29–100) | 100 (3–100) | 30 (7–65) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaertner, R.; Gmyterco, V.C.; Severo, J.S.; Alcalá, C.; Paulo, M.R.; Daros, R.; de Farias, M.R. Standardization of Beef, Pork, Chicken, and Soy Protein Extracts for Patch Testing and Their Accuracy in Diagnosing Adverse Food Reactions in Dogs with Chronic Pruritus. Vet. Sci. 2025, 12, 383. https://doi.org/10.3390/vetsci12040383
Gaertner R, Gmyterco VC, Severo JS, Alcalá C, Paulo MR, Daros R, de Farias MR. Standardization of Beef, Pork, Chicken, and Soy Protein Extracts for Patch Testing and Their Accuracy in Diagnosing Adverse Food Reactions in Dogs with Chronic Pruritus. Veterinary Sciences. 2025; 12(4):383. https://doi.org/10.3390/vetsci12040383
Chicago/Turabian StyleGaertner, Raniere, Vanessa Cunningham Gmyterco, Júlia Só Severo, Camilla Alcalá, Maicon Roberto Paulo, Ruan Daros, and Marconi Rodrigues de Farias. 2025. "Standardization of Beef, Pork, Chicken, and Soy Protein Extracts for Patch Testing and Their Accuracy in Diagnosing Adverse Food Reactions in Dogs with Chronic Pruritus" Veterinary Sciences 12, no. 4: 383. https://doi.org/10.3390/vetsci12040383
APA StyleGaertner, R., Gmyterco, V. C., Severo, J. S., Alcalá, C., Paulo, M. R., Daros, R., & de Farias, M. R. (2025). Standardization of Beef, Pork, Chicken, and Soy Protein Extracts for Patch Testing and Their Accuracy in Diagnosing Adverse Food Reactions in Dogs with Chronic Pruritus. Veterinary Sciences, 12(4), 383. https://doi.org/10.3390/vetsci12040383