Advancements in Stem Cell Applications for Livestock Research: A Review
Simple Summary
Abstract
1. Introduction
2. Overview of Stem Cells and Their Biological Function
3. Research Development on Herbivore Stem Cells
3.1. Bovine Stem Cell Research
3.1.1. Role of Stem Cells in Mastitis Treatment in Bovine
3.1.2. Role of Stem Cells in Cultured Meat in Bovine
3.2. Goat Stem Cell Research
3.2.1. Regulation Mechanism Related to Muscle Development Based on Non-Coding RNAs
3.2.2. Regulation of Hair Follicle Development via Multiple Signaling Pathways
3.3. Deer Stem Cell Research
3.4. Horse Stem Cell Research
3.4.1. Application of Stem Cell Derivatives in Osteoarthritis of Horses
3.4.2. Application of Stem Cells in Tendon Injury in Horses
3.5. Camel Stem Cell Research
Species | Types of Stem Cells | Sources | Applications | References |
---|---|---|---|---|
Bovine | Mesenchymal Stem Cells | Adipose tissue | Adipogenic differentiation of cultivated meat | [79,80,149,150] |
Umbilical cord | [81] | |||
Adipose tissue | Treatment of mastitis | [75] | ||
Mammary gland tissue | [151] | |||
Bone marrow and adipose tissue | [35,56] | |||
Adipose tissue | Relieve follicular puncture injury | [152] | ||
Goat | Mesenchymal Stem Cells | Adipose tissue | Treatment of mastitis | [153] |
Iliac wing | Bone regeneration | [154] | ||
Embryonic Stem Cells | Blastocyst | Improve infertility symptoms | [89] | |
Deer | Antler stem cell | Pedicle periosteum | Relieve type 1 diabetes | [55] |
Blastema tissue | Anti-aging effects | [41] | ||
Reducing liver fibrosis | [27] | |||
Reserve mesenchyme | Repair of osteochondral defects | [155] | ||
Blastema tissue | [120,156] | |||
Reserve mesenchyme | Regenerative wound healing | [7] | ||
Pedicle periosteum | Regeneration of alveolar bone defects | [21] | ||
Horse | Mesenchymal Stem Cells | Synovial membrane | Treatment of tendon/ligament injuries | [143] |
Tendon | [57] | |||
Bone marrow | Treatment of osteoarthritis | [135] | ||
Muscle | Repair of laminitis | [39] | ||
Bone marrow | Regenerative wound healing | [157] | ||
Umbilical cord | [11] | |||
Adipose tissue | Relieve equine recurrent uveitis (ERU) | [158] | ||
Treatment of corneal non-healing ulcer | [159] | |||
Camel | Mesenchymal Stem Cells | Bone marrow | Cartilage regeneration | [146] |
Induced pluripotent stem cells | Fetus | Genetic breeding of superior camels | [145] |
4. Challenges and Limitations in Stem Cell Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ajeeb, B.; Kiyotake, E.A.; Keefe, P.A.; Phillips, J.N.; Hatzel, J.N.; Goodrich, L.R.; Detamore, M.S. Comparison of the Chondrogenic Potential of eBMSCs and eUCMSCs in Response to Selected Peptides and Compounds. BMC Vet. Res. 2025, 21, 70. [Google Scholar] [CrossRef]
- Danev, N.; Harman, R.M.; Sipka, A.S.; Oliveira, L.; Huntimer, L.; Van de Walle, G.R. The Secretomes of Bovine Mammary Epithelial Cell Subpopulations Differentially Modulate Macrophage Function. Vet. Q. 2025, 45, 1–14. [Google Scholar] [CrossRef]
- Eom, K.-H.; Jeong, D.; Choi, J.-Y.; Gim, G.-M.; Yum, S.-Y.; Jin, S.; Bae, H.; Jang, G. MSTN Knockout Enhances the Production of MYOD1-Mediated Steak-Type Cultivated Meat. J. Anim. Sci. Biotechnol. 2025, 16, 41. [Google Scholar] [CrossRef]
- Kolios, G.; Moodley, Y. Introduction to Stem Cells and Regenerative Medicine. Respiration 2013, 85, 3–10. [Google Scholar] [CrossRef]
- Rossant, J. Stem Cells from the Mammalian Blastocyst. Stem Cells 2001, 19, 477–482. [Google Scholar] [CrossRef]
- Du, P.; Wu, J. Hallmarks of Totipotent and Pluripotent Stem Cell States. Cell Stem Cell 2024, 31, 312–333. [Google Scholar] [CrossRef]
- Rong, X.; Chu, W.; Zhang, H.; Wang, Y.; Qi, X.; Zhang, G.; Wang, Y.; Li, C. Antler Stem Cell-Conditioned Medium Stimulates Regenerative Wound Healing in Rats. Stem Cell Res. Ther. 2019, 10, 326. [Google Scholar] [CrossRef]
- Lien, W.-H.; Polak, L.; Lin, M.; Lay, K.; Zheng, D.; Fuchs, E. In Vivo Transcriptional Governance of Hair Follicle Stem Cells by Canonical Wnt Regulators. Nat. Cell Biol. 2014, 16, 179–190. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Zhang, J.; Chang, Z.; Li, J.; Yan, Z.; Husile; Zhang, W. Hoxc13/β-Catenin Correlation with Hair Follicle Activity in Cashmere Goat. J. Integr. Agric. 2012, 11, 1159–1166. [Google Scholar] [CrossRef]
- Richardson, L.E.; Dudhia, J.; Clegg, P.D.; Smith, R. Stem Cells in Veterinary Medicine—Attempts at Regenerating Equine Tendon after Injury. Trends Biotechnol. 2007, 25, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Iribarne, A.; Palma, M.B.; Andrini, L.; Riccillo, F.; Rodriguez, D.; Casella, M.; Garay, F.; Zabala, J.S.; Mazza, L.; Muro, A.; et al. Therapeutic Potential in Wound Healing of Allogeneic Use of Equine Umbilical Cord Mesenchymal Stem Cells. Int. J. Mol. Sci. 2024, 25, 2350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, Y.; Li, X.; Zhang, F.; Cheng, Z.; Shi, Y.; Zhou, X.; Wang, X. An Anti-Sense lncRNA of the a-FABP Gene Regulates the Proliferation of Hair Follicle Stem Cells via the Chi-miR-335-5p/DKK1/β-Catenin Axis. Int. J. Biol. Macromol. 2024, 283, 137511. [Google Scholar] [CrossRef] [PubMed]
- Smith, A. A Glossary for Stem-Cell Biology. Nature 2006, 441, 1060. [Google Scholar] [CrossRef]
- Xu, W.; Hao, R.; Wang, J.; Gao, L.; Han, X.; Li, C.; Fang, S.; Zhang, H.; Li, X. Methanol Fixed Feeder Layers Altered the Pluripotency and Metabolism of Bovine Pluripotent Stem Cells. Sci. Rep. 2022, 12, 9177. [Google Scholar] [CrossRef]
- Xiao, Y.; Amaral, T.F.; Ross, P.J.; Soto, D.A.; Diffenderfer, K.E.; Pankonin, A.R.; Jeensuk, S.; Tríbulo, P.; Hansen, P.J. Importance of WNT-Dependent Signaling for Derivation and Maintenance of Primed Pluripotent Bovine Embryonic Stem Cells. Biol. Reprod. 2021, 105, 52. [Google Scholar] [CrossRef]
- Wu, X.; Song, M.; Yang, X.; Liu, X.; Liu, K.; Jiao, C.; Wang, J.; Bai, C.; Su, G.; Liu, X.; et al. Establishment of Bovine Embryonic Stem Cells after Knockdown of CDX2. Sci. Rep. 2016, 6, 28343. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Y.; Xu, H.; Ma, Y.; Andersson, G.; Bongcam-Rudloff, E.; Li, T.; Zhang, J.; Li, Y.; Han, J.; et al. Role of Csdc2 in Regulating Secondary Hair Follicle Growth in Cashmere Goats. Int. J. Mol. Sci. 2024, 25, 8349. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, N.; Zhang, T.; Wang, M.; Ge, W.; Wang, X. Roles of Melatonin in Goat Hair Follicle Stem Cell Proliferation and Pluripotency through Regulating the Wnt Signaling Pathway. Front. Cell Dev. Biol. 2021, 9, 686805. [Google Scholar] [CrossRef]
- Johnson, K.; Zhu, S.; Tremblay, M.S.; Payette, J.N.; Wang, J.; Bouchez, L.C.; Meeusen, S.; Althage, A.; Cho, C.Y.; Wu, X.; et al. A Stem Cell–Based Approach to Cartilage Repair. Science 2012, 336, 717–721. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, C.; Guo, W.; Peng, X.; Wang, M.; Yang, Z.; Li, X.; Zhang, X.; Chen, M.; Sui, X.; et al. Co-Culture of hWJMSCs and pACs in Double Biomimetic ACECM Oriented Scaffold Enhances Mechanical Properties and Accelerates Articular Cartilage Regeneration in a Caprine Model. Stem Cell Res. Ther. 2020, 11, 180. [Google Scholar] [CrossRef]
- Guo, Q.; Zheng, J.; Lin, H.; Han, Z.; Wang, Z.; Ren, J.; Zhai, J.; Zhao, H.; Du, R.; Li, C. Conditioned Media of Deer Antler Stem Cells Accelerate Regeneration of Alveolar Bone Defects in Rats. Cell Prolif. 2023, 56, e13454. [Google Scholar] [CrossRef] [PubMed]
- Reis, I.L.; Lopes, B.; Sousa, P.; Sousa, A.C.; Rêma, A.; Caseiro, A.R.; Briote, I.; Rocha, A.M.; Pereira, J.P.; Mendonça, C.M.; et al. Case Report: Equine Metacarpophalangeal Joint Partial and Full Thickness Defects Treated with Allogenic Equine Synovial Membrane Mesenchymal Stem/Stromal Cell Combined with Umbilical Cord Mesenchymal Stem/Stromal Cell Conditioned Medium. Front. Vet. Sci. 2024, 11, 1403174. [Google Scholar] [CrossRef]
- De Sousa, P.A.; Ritchie, D.; Green, A.; Chandran, S.; Knight, R.; Head, M.W. Renewed Assessment of the Risk of Emergent Advanced Cell Therapies to Transmit Neuroproteinopathies. Acta Neuropathol. 2019, 137, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.Z.; Li, L.; Wang, T.; Liu, X.; Chen, W.; Ma, Q.; Zahoor, M.; Wang, C. Bioactive compounds and probiotics mitigate mastitis by targeting NF-κB signaling pathway. Biomolecules 2024, 14, 1011. [Google Scholar] [CrossRef] [PubMed]
- Mediano, D.R.; Sanz-Rubio, D.; Ranera, B.; Bolea, R.; Martín-Burriel, I. The Potential of Mesenchymal Stem Cell in Prion Research. Zoonoses Public Health 2015, 62, 165–178. [Google Scholar] [CrossRef]
- Sharun, K.; Dhama, K.; Tiwari, R.; Gugjoo, M.B.; Iqbal Yatoo, M.; Patel, S.K.; Pathak, M.; Karthik, K.; Khurana, S.K.; Singh, R.; et al. Advances in Therapeutic and Managemental Approaches of Bovine Mastitis: A Comprehensive Review. Vet. Q. 2021, 41, 107–136. [Google Scholar] [CrossRef]
- Rong, X.; Yang, Y.; Zhang, G.; Zhang, H.; Li, C.; Wang, Y. Antler Stem Cells as a Novel Stem Cell Source for Reducing Liver Fibrosis. Cell Tissue Res. 2020, 379, 195–206. [Google Scholar] [CrossRef]
- Hargrave-Thomas, E.J.; Thambyah, A.; McGlashan, S.R.; Broom, N.D. The Bovine Patella as a Model of Early Osteoarthritis. J. Anat. 2013, 223, 651. [Google Scholar] [CrossRef]
- Yu, X.; Hu, Y.; Zou, L.; Yan, S.; Zhu, H.; Zhang, K.; Liu, W.; He, D.; Yin, J. A Bilayered Scaffold with Segregated Hydrophilicity-Hydrophobicity Enables Reconstruction of Goat Hierarchical Temporomandibular Joint Condyle Cartilage. Acta Biomater. 2021, 121, 288–302. [Google Scholar] [CrossRef]
- Behboodi, E.; Bondareva, A.; Begin, I.; Rao, K.; Neveu, N.; Pierson, J.T.; Wylie, C.; Piero, F.D.; Huang, Y.J.; Zeng, W.; et al. Establishment of Goat Embryonic Stem Cells from in Vivo Produced Blastocyst-stage Embryos. Mol. Reprod. Dev. 2011, 78, 202–211. [Google Scholar] [CrossRef]
- Kumar De, A.; Malakar, D.; Akshey, Y.S.; Jena, M.K.; Dutta, R. Isolation and Characterization of Embryonic Stem Cell-like Cells from in Vitro Produced Goat (Capra hircus) Embryos. Anim. Biotechnol. 2011, 22, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Bogliotti, Y.S.; Wu, J.; Vilarino, M.; Okamura, D.; Soto, D.A.; Zhong, C.; Sakurai, M.; Sampaio, R.V.; Suzuki, K.; Belmonte, J.C.I.; et al. Efficient Derivation of Stable Primed Pluripotent Embryonic Stem Cells from Bovine Blastocysts. Proc. Natl. Acad. Sci. USA 2018, 115, 2090. [Google Scholar] [CrossRef]
- Kim, D.; Roh, S. Strategy to Establish Embryo-Derived Pluripotent Stem Cells in Cattle. Int. J. Mol. Sci. 2021, 22, 5011. [Google Scholar] [CrossRef] [PubMed]
- Moonshi, S.S.; Adelnia, H.; Wu, Y.; Ta, H.T. Placenta-derived Mesenchymal Stem Cells for Treatment of Diseases: A Clinically Relevant Source. Adv. Ther. 2022, 5, 2200054. [Google Scholar] [CrossRef]
- Cahuascanco, B.; Bahamonde, J.; Huaman, O.; Jervis, M.; Cortez, J.; Palomino, J.; Escobar, A.; Retamal, P.; Torres, C.G.; Peralta, O.A. Bovine Fetal Mesenchymal Stem Cells Exert Antiproliferative Effect against Mastitis Causing Pathogen Staphylococcus Aureus. Vet. Res. 2019, 50, 25. [Google Scholar] [CrossRef]
- Shang, Y.; Guan, H.; Zhou, F. Biological Characteristics of Umbilical Cord Mesenchymal Stem Cells and Its Therapeutic Potential for Hematological Disorders. Front. Cell Dev. Biol. 2021, 9, 570179. [Google Scholar] [CrossRef]
- Soukup, R.; Gerner, I.; Mohr, T.; Gueltekin, S.; Grillari, J.; Jenner, F. Mesenchymal Stem Cell Conditioned Medium Modulates Inflammation in Tenocytes: Complete Conditioned Medium Has Superior Therapeutic Efficacy than Its Extracellular Vesicle Fraction. Int. J. Mol. Sci. 2023, 24, 10857. [Google Scholar] [CrossRef]
- Elashry, M.I.; Speer, J.; De Marco, I.; Klymiuk, M.C.; Wenisch, S.; Arnhold, S. Extracellular Vesicles: A Novel Diagnostic Tool and Potential Therapeutic Approach for Equine Osteoarthritis. Curr. Issues Mol. Biol. 2024, 46, 13078–13104. [Google Scholar] [CrossRef]
- Serteyn, D.; Storms, N.; Mouithys-Mickalad, A.; Sandersen, C.; Niesten, A.; Duysens, J.; Graide, H.; Ceusters, J.; Franck, T. Revealing the Therapeutic Potential of Muscle-Derived Mesenchymal Stem/Stromal Cells: An In Vitro Model for Equine Laminitis Based on Activated Neutrophils, Anoxia–Reoxygenation, and Myeloperoxidase. Animals 2024, 14, 2681. [Google Scholar] [CrossRef]
- Fraile, M.; Eiro, N.; Costa, L.A.; Martín, A.; Vizoso, F.J. Aging and Mesenchymal Stem Cells: Basic Concepts, Challenges and Strategies. Biology 2022, 11, 1678. [Google Scholar] [CrossRef]
- Pham, T.L.-B.; Thi, T.T.; Nguyen, H.T.-T.; Lao, T.D.; Binh, N.T.; Nguyen, Q.D. Anti-Aging Effects of a Serum Based on Coconut Oil Combined with Deer Antler Stem Cell Extract on a Mouse Model of Skin Aging. Cells 2022, 11, 597. [Google Scholar] [CrossRef] [PubMed]
- Solter, D. From Teratocarcinomas to Embryonic Stem Cells and beyond: A History of Embryonic Stem Cell Research. Nat. Rev. Genet. 2006, 7, 319–327. [Google Scholar] [CrossRef]
- Miguel, M.P.D.; Fuentes-Julián, S.; Alcaina, Y. Pluripotent Stem Cells: Origin, Maintenance and Induction. Stem Cell Rev. Rep. 2010, 6, 633–649. [Google Scholar] [CrossRef] [PubMed]
- Jaenisch, R.; Young, R. Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming. Cell 2008, 132, 567. [Google Scholar] [CrossRef]
- Baksh, D.; Song, L.; Tuan, R.S. Adult Mesenchymal Stem Cells: Characterization, Differentiation, and Application in Cell and Gene Therapy. J. Cell. Mol. Med. 2007, 8, 301. [Google Scholar] [CrossRef]
- Notta, F.; Zandi, S.; Takayama, N.; Dobson, S.; Gan, O.I.; Wilson, G.; Kaufmann, K.B.; McLeod, J.; Laurenti, E.; Dunant, C.F.; et al. Distinct Routes of Lineage Development Reshape the Human Blood Hierarchy across Ontogeny. Science 2016, 351, aab2116. [Google Scholar] [CrossRef]
- Ko, K.; Araúzo-Bravo, M.J.; Kim, J.; Stehling, M.; Schöler, H.R. Conversion of Adult Mouse Unipotent Germline Stem Cells into Pluripotent Stem Cells. Nat. Protoc. 2010, 5, 921–928. [Google Scholar] [CrossRef]
- Mauck, R.L.; Yuan, X.; Tuan, R.S. Chondrogenic Differentiation and Functional Maturation of Bovine Mesenchymal Stem Cells in Long-Term Agarose Culture. Osteoarthr. Cartil. 2006, 14, 179–189. [Google Scholar] [CrossRef]
- Shojaee, A.; Parham, A. Strategies of Tenogenic Differentiation of Equine Stem Cells for Tendon Repair: Current Status and Challenges. Stem Cell Res. Ther. 2019, 10, 181. [Google Scholar] [CrossRef]
- Harrell, C.R.; Jovicic, N.; Djonov, V.; Arsenijevic, N.; Volarevic, V. Mesenchymal Stem Cell-Derived Exosomes and Other Extracellular Vesicles as New Remedies in the Therapy of Inflammatory Diseases. Cells 2019, 8, 1605. [Google Scholar] [CrossRef]
- Jammes, M.; Cassé, F.; Velot, E.; Bianchi, A.; Audigié, F.; Contentin, R.; Galéra, P. Pro-Inflammatory Cytokine Priming and Purification Method Modulate the Impact of Exosomes Derived from Equine Bone Marrow Mesenchymal Stromal Cells on Equine Articular Chondrocytes. Int. J. Mol. Sci. 2023, 24, 14169. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, T.; Viana, I.S.; Queiroz, A.B.P.S.; de Oliveira, F.S.; Horvath-Pereira, B.d.O.; da Silva-Júnior, L.N.; Araujo, M.S.; Canola, P.A.; Dias, L.G.G.G.; Soares, M.M.; et al. PLLA/GO Scaffolds Filled with Canine Placenta Hydrogel and Mesenchymal Stem Cells for Bone Repair in Goat Mandibles. J. Funct. Biomater. 2024, 15, 311. [Google Scholar] [CrossRef] [PubMed]
- Achilleos, A.; Trainor, P.A. Neural Crest Stem Cells: Discovery, Properties and Potential for Therapy. Cell Res. 2012, 22, 288–304. [Google Scholar] [CrossRef]
- Liang, Z.; Sun, D.; Lu, S.; Lei, Z.; Wang, S.; Luo, Z.; Zhan, J.; Wu, S.; Jiang, Y.; Lu, Z.; et al. Implantation underneath the Abdominal Anterior Rectus Sheath Enables Effective and Functional Engraftment of Stem-Cell-Derived Islets. Nat. Metab. 2023, 5, 29–40. [Google Scholar] [CrossRef]
- Wang, D.; Ren, J.; Li, J.; Li, X.; Ying, J.; Jiang, T.; Wang, Z.; Pan, Z.; Guo, Q.; Li, C.; et al. Conditioned Media from Deer Antler Stem Cells Effectively Alleviate Type 1 Diabetes Mellitus Possibly via Inhibiting the NF-κB Signaling Pathway. Front. Biosci.-Landmark 2024, 29, 96. [Google Scholar] [CrossRef]
- Pokorska, J.; Sawicki, S.; Gabryś, J.; Kułaj, D.; Bauer, E.A.; Lenart-Boroń, A.; Bulanda, K.; Kuchta-Gładysz, M.; Grzesiakowska, A.; Kemilew, J.; et al. The Use of Stem Cells in the Treatment of Mastitis in Dairy Cows. Sci. Rep. 2024, 14, 10349. [Google Scholar] [CrossRef]
- Carlier, S.; Depuydt, E.; Suls, M.; Bocqué, C.; Thys, J.; Vandenberghe, A.; Martens, A.; Saunders, J.; Hellmann, K.; Braun, G.; et al. Equine Allogeneic Tenogenic Primed Mesenchymal Stem Cells: A Clinical Field Study in Horses Suffering from Naturally Occurring Superficial Digital Flexor Tendon and Suspensory Ligament Injuries. Equine Vet. J. 2024, 56, 924–935. [Google Scholar] [CrossRef]
- Beaumont, R.E.; Smith, E.J.; David, C.; Paterson, Y.Z.; Faull, E.; Guest, D.J. Equine Adult, Fetal and ESC-Tenocytes Have Differential Migratory, Proliferative and Gene Expression Responses to Factors Upregulated in the Injured Tendon. Cells Dev. 2025, 181, 204003. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, N.; Choudhary, S.; Luhach, P.; Choudhary, R.K. Understanding, Status, and Therapeutic Potentials of Stem Cells in Goat. Curr. Stem Cell Res. Ther. 2023, 18, 947–957. [Google Scholar] [CrossRef]
- Zeng, R.; Huang, X.; Fu, W.; Ji, W.; Cai, W.; Xu, M.; Lan, D. Construction of Lentiviral Vectors Carrying Six Pluripotency Genes in Yak to Obtain Yak iPSC Cells. Int. J. Mol. Sci. 2024, 25, 9431. [Google Scholar] [CrossRef]
- Na, Q.; Zhang, S.; Shao, P.; Jia, Y.; Wang, Y.; Wei, M.; Chen, Y.; Chen, C.; Zhao, L.; Wang, Z.; et al. In Vitro Generation of Trophoblast like Stem Cells from Goat Pluripotent Stem Cells. Theriogenology 2024, 226, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Berg, D.; Ba, H.; Sun, H.; Wang, Z.; Li, C. Deer Antler Stem Cells Are a Novel Type of Cells That Sustain Full Regeneration of a Mammalian Organ—Deer Antler. Cell Death Dis. 2019, 10, 443. [Google Scholar] [CrossRef] [PubMed]
- Feleke, M.; Bennett, S.; Chen, J.; Hu, X.; Williams, D.; Xu, J. New Physiological Insights into the Phenomena of Deer Antler: A Unique Model for Skeletal Tissue Regeneration. J. Orthop. Transl. 2020, 27, 57–66. [Google Scholar] [CrossRef]
- Luo, W.; Geng, Y.; Gao, M.; Cao, M.; Wang, J.; Yang, J.; Sun, C.; Yan, X. Isolation and Identification of Bone Marrow Mesenchymal Stem Cells from Forest Musk Deer. Animals 2022, 13, 17. [Google Scholar] [CrossRef]
- Fortier, L.A.; Travis, A.J. Stem Cells in Veterinary Medicine. Stem Cell Res. Ther. 2011, 2, 9. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, X.; Zheng, Y.; Wang, Z.; Zhao, G.; Ren, J.; Zhang, J.; Wu, J.; Wu, B.; Chen, Y.; et al. Establishment of Bovine Expanded Potential Stem Cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2018505118. [Google Scholar] [CrossRef]
- Chen, L.; Tang, B.; Xie, G.; Yang, R.; Zhang, B.; Wang, Y.; Zhang, Y.; Jiang, D.; Zhang, X. Bovine Pluripotent Stem Cells: Current Status and Prospects. Int. J. Mol. Sci. 2024, 25, 2120. [Google Scholar] [CrossRef]
- Cao, S.; Wang, F.; Liu, L. Isolation and Culture of Bovine Embryonic Stem Cells. In Epiblast Stem Cells; Alberio, R., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2013; Volume 1074, pp. 111–123. ISBN 978-1-62703-627-6. [Google Scholar]
- Soto, D.A.; Navarro, M.; Ross, P.J. Derivation of Bovine Primed Embryonic Stem Cells from Somatic Cell Nuclear Transfer Embryos. In Somatic Cell Nuclear Transfer Technology; Moura, M.T., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2023; Volume 2647, pp. 305–315. ISBN 978-1-0716-3063-1. [Google Scholar]
- Soto, D.A.; Navarro, M.; Zheng, C.; Halstead, M.M.; Zhou, C.; Guiltinan, C.; Wu, J.; Ross, P.J. Simplification of Culture Conditions and Feeder-Free Expansion of Bovine Embryonic Stem Cells. Sci. Rep. 2021, 11, 11045. [Google Scholar] [CrossRef]
- Han, X.; Han, J.; Ding, F.; Cao, S.; Lim, S.S.; Dai, Y.; Zhang, R.; Zhang, Y.; Lim, B.; Li, N. Generation of Induced Pluripotent Stem Cells from Bovine Embryonic Fibroblast Cells. Cell Res. 2011, 21, 1509. [Google Scholar] [CrossRef]
- Ledet, M.M.; Vasquez, A.K.; Rauner, G.; Bichoupan, A.A.; Moroni, P.; Nydam, D.V.; Van de Walle, G.R. The Secretome from Bovine Mammosphere-Derived Cells (MDC) Promotes Angiogenesis, Epithelial Cell Migration, and Contains Factors Associated with Defense and Immunity. Sci. Rep. 2018, 8, 5378. [Google Scholar] [CrossRef]
- Fu, X.; Liu, G.; Halim, A.; Ju, Y.; Luo, Q.; Song, G. Mesenchymal Stem Cell Migration and Tissue Repair. Cells 2019, 8, 784. [Google Scholar] [CrossRef] [PubMed]
- Meisel, R.; Brockers, S.; Heseler, K.; Degistirici, Ö.; Bülle, H.; Woite, C.; Stuhlsatz, S.; Schwippert, W.; Jäger, M.; Sorg, R.; et al. Human but Not Murine Multipotent Mesenchymal Stromal Cells Exhibit Broad-Spectrum Antimicrobial Effector Function Mediated by Indoleamine 2,3-Dioxygenase. Leukemia 2011, 25, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Peralta, O.A.; Carrasco, C.; Vieytes, C.; Tamayo, M.J.; Muñoz, I.; Sepulveda, S.; Tadich, T.; Duchens, M.; Melendez, P.; Mella, A.; et al. Safety and Efficacy of a Mesenchymal Stem Cell Intramammary Therapy in Dairy Cows with Experimentally Induced Staphylococcus Aureus Clinical Mastitis. Sci. Rep. 2020, 10, 2843. [Google Scholar] [CrossRef] [PubMed]
- Treich, N. Cultured Meat: Promises and Challenges. Environ. Resour. Econ. 2021, 79, 33–61. [Google Scholar] [CrossRef]
- Lee, M.; Park, S.; Choi, B.; Choi, W.; Lee, H.; Lee, J.M.; Lee, S.T.; Yoo, K.H.; Han, D.; Bang, G.; et al. Cultured Meat with Enriched Organoleptic Properties by Regulating Cell Differentiation. Nat. Commun. 2024, 15, 77. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, D.; Munawar, N.; Zan, L.; Zhu, J. A Rich-Nutritious Cultured Meat via Bovine Myocytes and Adipocytes Co-Culture: Novel Prospect for Cultured Meat Production Techniques. Food Chem. 2024, 460, 140696. [Google Scholar] [CrossRef]
- Klatt, A.; Wollschlaeger, J.O.; Albrecht, F.B.; Rühle, S.; Holzwarth, L.B.; Hrenn, H.; Melzer, T.; Heine, S.; Kluger, P.J. Dynamically Cultured, Differentiated Bovine Adipose-Derived Stem Cell Spheroids as Building Blocks for Biofabricating Cultured Fat. Nat. Commun. 2024, 15, 9107. [Google Scholar] [CrossRef]
- Louis, F.; Furuhashi, M.; Yoshinuma, H.; Takeuchi, S.; Matsusaki, M. Mimicking Wagyu Beef Fat in Cultured Meat: Progress in Edible Bovine Adipose Tissue Production with Controllable Fatty Acid Composition. Mater. Today Bio 2023, 21, 100720. [Google Scholar] [CrossRef]
- Ozhava, D.; Lee, K.; Bektas, C.; Jackson, A.; Patel, K.; Mao, Y. Optimized Adipogenic Differentiation and Delivery of Bovine Umbilical Cord Stem Cells for Cultivated Meat. Gels 2024, 10, 488. [Google Scholar] [CrossRef]
- Ben-Arye, T.; Levenberg, S. Tissue Engineering for Clean Meat Production. Front. Sustain. Food Syst. 2019, 3, 46. [Google Scholar] [CrossRef]
- Lee, D.Y.; Lee, S.Y.; Yun, S.H.; Choi, Y.; Han, D.; Park, J.; Kim, J.S.; Mariano, E.; Lee, J.; Choi, J.S.; et al. Study on the Feasibility of Using Livestock Blood as a Fetal Bovine Serum Substitute for Cultured Meat. J. Food Sci. 2024, 89, 7143–7156. [Google Scholar] [CrossRef]
- Yu, I.; Choi, S.Y.; Choi, J.; Kim, M.K.; Um, M.Y.; Ahn, J.H.; Kim, M.J. Grifola frondosa Extract as a Fetal Bovine Serum Supplement for the Culture of Bovine Muscle Satellite Cells under Low Serum Conditions. Food Res. Int. 2024, 197, 115173. [Google Scholar] [CrossRef]
- MacQueen, L.A.; Alver, C.G.; Chantre, C.O.; Ahn, S.; Cera, L.; Gonzalez, G.M.; O’Connor, B.B.; Drennan, D.J.; Peters, M.M.; Motta, S.E.; et al. Muscle Tissue Engineering in Fibrous Gelatin: Implications for Meat Analogs. NPJ Sci. Food 2019, 3, 20. [Google Scholar] [CrossRef]
- Bektas, C.; Lee, K.; Jackson, A.; Bhatia, M.; Mao, Y. Bovine Placentome-Derived Extracellular Matrix: A Sustainable 3D Scaffold for Cultivated Meat. Bioengineering 2024, 11, 854. [Google Scholar] [CrossRef]
- Gurel, M.; Rathod, N.; Cabrera, L.Y.; Voyton, S.; Yeo, M.; Ozogul, F.; Ozbolat, I.T. A Narrative Review: 3D Bioprinting of Cultured Muscle Meat and Seafood Products and Its Potential for the Food Industry. Trends Food Sci. Technol. 2024, 152, 104670. [Google Scholar] [CrossRef]
- Wei, Q.; Xi, Q.; Liu, X.; Meng, K.; Zhao, X.; Ma, B. Characterization of Goat Inner Cell Mass Derived Cells in Double Kinase Inhibition Condition. Biochem. Biophys. Res. Commun. 2017, 483, 325–331. [Google Scholar] [CrossRef]
- Malik, H.N.; Singhal, D.K.; Saini, S.; Malakar, D. Derivation of Oocyte-like Cells from Putative Embryonic Stem Cells and Parthenogenetically Activated into Blastocysts in Goat. Sci. Rep. 2020, 10, 10086. [Google Scholar] [CrossRef]
- Pramod, R.K.; Mitra, A. In Vitro Culture and Characterization of Spermatogonial Stem Cells on Sertoli Cell Feeder Layer in Goat (Capra hircus). J. Assist. Reprod. Genet. 2014, 31, 993–1001. [Google Scholar] [CrossRef]
- Quadri, S.A.; Singh, S.P.; Kharche, S.D.; Pathak, J.; Saxena, A.; Soni, Y.K.; Swain, D. Different Effects of Sugars and Methods to Preserve Post-Thaw Functional Properties of Cryopreserved Caprine Spermatogonial Stem Cells. Cells Tissues Organs 2023, 212, 399–415. [Google Scholar] [CrossRef]
- Yao, X.; Tang, F.; Yu, M.; Zhu, H.; Chu, Z.; Li, M.; Liu, W.; Hua, J.; Peng, S. Expression Profile of Nanos2 Gene in Dairy Goat and Its Inhibitory Effect on Stra8 during Meiosis. Cell Prolif. 2014, 47, 396–405. [Google Scholar] [CrossRef]
- Ma, F.; Zhou, Z.; Li, N.; Zheng, L.; Wu, C.; Niu, B.; Tang, F.; He, X.; Li, G.; Hua, J. Lin28a Promotes Self-Renewal and Proliferation of Dairy Goat Spermatogonial Stem Cells (SSCs) through Regulation of mTOR and PI3K/AKT. Sci. Rep. 2016, 6, 38805. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Du, X.; Wei, Y.; Zhou, Z.; Clotaire, D.Z.J.; Li, N.; Peng, S.; Li, G.; Hua, J. LIN28A Activates the Transcription of NANOG in Dairy Goat Male Germline Stem Cells. J. Cell. Physiol. 2019, 234, 8113–8121. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cang, M.; Lee, A.S.; Zhang, K.; Liu, D. Reprogramming of Sheep Fibroblasts into Pluripotency under a Drug-Inducible Expression of Mouse-Derived Defined Factors. PLoS ONE 2011, 6, e15947. [Google Scholar] [CrossRef]
- Bao, L.; He, L.; Chen, J.; Wu, Z.; Liao, J.; Rao, L.; Ren, J.; Li, H.; Zhu, H.; Qian, L.; et al. Reprogramming of Ovine Adult Fibroblasts to Pluripotency via Drug-Inducible Expression of Defined Factors. Cell Res. 2011, 21, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Costa, T.C.; Gionbelli, M.P.; Duarte, M.d.S. Fetal Programming in Ruminant Animals: Understanding the Skeletal Muscle Development to Improve Meat Quality. Anim. Front. Rev. Mag. Anim. Agric. 2021, 11, 66–73. [Google Scholar] [CrossRef]
- Relaix, F.; Zammit, P.S. Satellite Cells Are Essential for Skeletal Muscle Regeneration: The Cell on the Edge Returns Centre Stage. Development 2012, 139, 2845–2856. [Google Scholar] [CrossRef]
- Yin, H.; Price, F.; Rudnicki, M.A. Satellite Cells and the Muscle Stem Cell Niche. Physiol. Rev. 2013, 93, 23–67. [Google Scholar] [CrossRef]
- Nie, M.; Deng, Z.-L.; Liu, J.; Wang, D.-Z. Noncoding RNAs, Emerging Regulators of Skeletal Muscle Development and Diseases. BioMed Res. Int. 2015, 2015, 676575. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Yang, H.; Xu, X.; Chen, Y.; Dai, D.; Zhan, S.; Guo, J.; Zhong, T.; Wang, L.; et al. miR-193b-3p Promotes Proliferation of Goat Skeletal Muscle Satellite Cells through Activating IGF2BP1. Int. J. Mol. Sci. 2022, 23, 15760. [Google Scholar] [CrossRef]
- Shen, J.; Wang, J.; Zhen, H.; Liu, Y.; Li, L.; Luo, Y.; Hu, J.; Liu, X.; Li, S.; Hao, Z.; et al. MicroRNA-381 Regulates Proliferation and Differentiation of Caprine Skeletal Muscle Satellite Cells by Targeting PTEN and JAG2. Int. J. Mol. Sci. 2022, 23, 13587. [Google Scholar] [CrossRef]
- Zhan, S.; Jiang, R.; An, Z.; Zhang, Y.; Zhong, T.; Wang, L.; Guo, J.; Cao, J.; Li, L.; Zhang, H. CircRNA Profiling of Skeletal Muscle Satellite Cells in Goats Reveals circTGFβ2 Promotes Myoblast Differentiation. BMC Genom. 2024, 25, 1075. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Li, X.; Liu, C.; Han, Y.; E, G.; Huang, Y. Role and Regulatory Mechanism of circRNA_14820 in the Proliferation and Differentiation of Goat Skeletal Muscle Satellite Cells. Int. J. Mol. Sci. 2024, 25, 8900. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhan, S.; Zhao, S.; Zhong, T.; Wang, L.; Guo, J.; Dai, D.; Li, D.; Cao, J.; Li, L.; et al. HuR Promotes the Differentiation of Goat Skeletal Muscle Satellite Cells by Regulating Myomaker mRNA Stability. Int. J. Mol. Sci. 2023, 24, 6893. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Xiao, M.; Xu, X.; Song, M.; Dai, D.; Zhan, S.; Cao, J.; Guo, J.; Zhong, T.; Wang, L.; et al. ADAR1 Promotes Myogenic Proliferation and Differentiation of Goat Skeletal Muscle Satellite Cells. Cells 2024, 13, 1607. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, M.; Zhan, S.; Chen, Y.; Wei, C.; Cao, J.; Guo, J.; Dai, D.; Wang, L.; Zhong, T.; et al. Global A-to-I RNA Editing during Myogenic Differentiation of Goat MuSCs. Front. Vet. Sci. 2024, 11, 1439029. [Google Scholar] [CrossRef]
- Yin, R.H.; Zhao, S.J.; Jiao, Q.; Wang, Z.Y.; Bai, M.; Fan, Y.X.; Zhu, Y.B.; Bai, W.L. CircRNA-1926 Promotes the Differentiation of Goat SHF Stem Cells into Hair Follicle Lineage by miR-148a/b-3p/CDK19 Axis. Animals 2020, 10, 1552. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, Y.; Bai, M.; Zhu, Y.; Wang, Z.; Shen, J.; Xu, R.; Zheng, W.; Bai, W. CircERCC6 Positively Regulates the Induced Activation of SHF Stem Cells in Cashmere Goats via the miR-412-3p/BNC2 Axis in an m6A-Dependent Manner. Animals 2024, 14, 187. [Google Scholar] [CrossRef]
- Li, C.; Yang, F.; Sheppard, A. Adult Stem Cells and Mammalian Epimorphic Regeneration-Insights from Studying Annual Renewal of Deer Antlers. Curr. Stem Cell Res. Ther. 2009, 4, 237–251. [Google Scholar] [CrossRef]
- Li, C.; Suttie, J.M. Deer Antlerogenic Periosteum: A Piece of Postnatally Retained Embryonic Tissue? Anat. Embryol. 2001, 204, 375–388. [Google Scholar] [CrossRef]
- Li, C. Deer Antler Regeneration: A Stem Cell-Based Epimorphic Process. Birth Defects Res. Part C Embryo Today Rev. 2012, 96, 51–62. [Google Scholar] [CrossRef]
- Clark, D.E.; Li, C.; Wang, W.; Martin, S.K.; Suttie, J.M. Vascular Localization and Proliferation in the Growing Tip of the Deer Antler. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2006, 288A, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Littlejohn, R.P.; Corson, I.D.; Suttie, J.M. Effects of testosterone on pedicle formation and its transformation to antler in castrated male, freemartin and normal female red deer (Cervus elaphus). Gen. Comp. Endocrinol. 2003, 131, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shi, W.; Wei, G.; Lv, J.; Wang, D.; Xing, B.; Zhou, J.; Zhao, J.; Sun, H. Galectin-1 Promotes Angiogenesis and Chondrogenesis during Antler Regeneration. Cell. Mol. Biol. Lett. 2023, 28, 40. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, Z.; Li, J.; Ma, C.; Zheng, J.; Ba, H.; Zhang, G.; Li, C. BRCA1 Is Involved in Sustaining Rapid Antler Growth Possibly via Balancing of the P53/Endoplasmic Reticulum Stress Signaling Pathway. Biol. Direct 2025, 20, 13. [Google Scholar] [CrossRef]
- Li, C.; Suttie, J.M.; Clark, D.E. Histological Examination of Antler Regeneration in Red Deer (Cervus elaphus). Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2005, 282A, 163–174. [Google Scholar] [CrossRef]
- Berg, D.K.; Li, C.; Asher, G.; Wells, D.N.; Oback, B. Red Deer Cloned from Antler Stem Cells and Their Differentiated Progeny. Biol. Reprod. 2007, 77, 384–394. [Google Scholar] [CrossRef]
- Ba, H.; Wang, X.; Wang, D.; Ren, J.; Wang, Z.; Sun, H.-X.; Hu, P.; Zhang, G.; Wang, S.; Ma, C.; et al. Single-Cell Transcriptome Reveals Core Cell Populations and Androgen-RXFP2 Axis Involved in Deer Antler Full Regeneration. Cell Regen. 2022, 11, 43. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, D.; Ren, J.; Li, J.; Guo, Q.; Shi, L.; Li, C. Antler Stem Cell-Derived Exosomes Promote Regenerative Wound Healing via Fibroblast-to-Myofibroblast Transition Inhibition. J. Biol. Eng. 2023, 17, 67. [Google Scholar] [CrossRef]
- Meng, D.; Li, Y.; Chen, Z.; Guo, J.; Yang, M.; Peng, Y. Exosomes Derived from Antler Mesenchymal Stem Cells Promote Wound Healing by miR-21-5p/STAT3 Axis. Int. J. Nanomed. 2024, 19, 11257–11273. [Google Scholar] [CrossRef]
- Pispa, J.; Thesleff, I. Mechanisms of Ectodermal Organogenesis. Dev. Biol. 2003, 262, 195–205. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Wang, N.; Li, Z.; Heller, R.; Liu, R.; Zhao, Y.; Han, J.; Pan, X.; Zheng, Z.; et al. Genetic Basis of Ruminant Headgear and Rapid Antler Regeneration. Science 2019, 364, eaav6335. [Google Scholar] [CrossRef] [PubMed]
- Hisey, E.; Ross, P.J.; Meyers, S.A. A Review of OCT4 Functions and Applications to Equine Embryos. J. Equine Vet. Sci. 2021, 98, 103364. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, C.; Montano, C.; Cocchia, N.; De Chiara, M.; Gasparrini, B.; Pasolini, M.P. Use of Regenerative Medicine in the Treatment of Endometritis in Mares: A Systematic Review and Meta-Analysis. Theriogenology 2024, 227, 9–20. [Google Scholar] [CrossRef]
- Wong, Y.S.; Mançanares, A.C.; Navarrete, F.; Poblete, P.; Mendez-Pérez, L.; Cabezas, J.; Riadi, G.; Rodríguez-Alvarez, L.; Castro, F.O. Extracellular Vesicles Secreted by Equine Adipose Mesenchymal Stem Cells Preconditioned with Transforming Growth Factor β-1 Are Enriched in Anti-Fibrotic miRNAs and Inhibit the Expression of Fibrotic Genes in an in Vitro System of Endometrial Stromal Cells Fibrosis. Vet. Q. 2024, 44, 1–11. [Google Scholar] [CrossRef]
- Gaspari, G.; Lange-Consiglio, A.; Cremonesi, F.; Desantis, S. Role of Glycans in Equine Endometrial Cell Uptake of Extracellular Vesicles Derived from Amniotic Mesenchymal Stromal Cells. Int. J. Mol. Sci. 2025, 26, 1784. [Google Scholar] [CrossRef]
- Meissner, J.M.; Chmielińska, A.; Ofri, R.; Cisło-Sankowska, A.; Marycz, K. Extracellular Vesicles Isolated from Equine Adipose-Derived Stromal Stem Cells (ASCs) Mitigate Tunicamycin-Induced ER Stress in Equine Corneal Stromal Stem Cells (CSSCs). Curr. Issues Mol. Biol. 2024, 46, 3251–3277. [Google Scholar] [CrossRef]
- Shikh Alsook, M.K.; Gabriel, A.; Piret, J.; Waroux, O.; Tonus, C.; Connan, D.; Baise, E.; Antoine, N. Tissues from Equine Cadaver Ligaments up to 72 Hours of Post-Mortem: A Promising Reservoir of Stem Cells. Stem Cell Res. Ther. 2015, 6, 253. [Google Scholar] [CrossRef]
- Li, H.; Xiong, S.; Masieri, F.F.; Monika, S.; Lethaus, B.; Savkovic, V. Mesenchymal Stem Cells Isolated from Equine Hair Follicles Using a Method of Air-Liquid Interface. Stem Cell Rev. Rep. 2023, 19, 2943–2956. [Google Scholar] [CrossRef] [PubMed]
- Bavin, E.P.; Smith, O.; Baird, A.E.G.; Smith, L.C.; Guest, D.J. Equine Induced Pluripotent Stem Cells Have a Reduced Tendon Differentiation Capacity Compared to Embryonic Stem Cells. Front. Vet. Sci. 2015, 2, 55. [Google Scholar] [CrossRef]
- Schlueter, A.E.; Orth, M.W. Equine Osteoarthritis: A Brief Review of the Disease and Its Causes. Equine Comp. Exerc. Physiol. 2004, 1, 221–231. [Google Scholar] [CrossRef]
- Varas, L.; Ohlsson, L.B.; Honeth, G.; Olsson, A.; Bengtsson, T.; Wiberg, C.; Bockermann, R.; Järnum, S.; Richter, J.; Pennington, D.; et al. α 10 Integrin Expression Is up-Regulated on Fibroblast Growth Factor-2-Treated Mesenchymal Stem Cells with Improved Chondrogenic Differentiation Potential. Stem Cells Dev. 2007, 16, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Clarke, E.J.; Johnson, E.; Caamaño Gutierrez, E.; Andersen, C.; Berg, L.C.; Jenkins, R.E.; Lindegaard, C.; Uvebrant, K.; Lundgren-Åkerlund, E.; Turlo, A.; et al. Temporal Extracellular Vesicle Protein Changes Following Intraarticular Treatment with Integrin A10β1-Selected Mesenchymal Stem Cells in Equine Osteoarthritis. Front. Vet. Sci. 2022, 9, 1057667. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.; Walters, M.; Bundgaard, L.; Berg, L.C.; Vonk, L.A.; Lundgren-Åkerlund, E.; Henriksen, B.L.; Lindegaard, C.; Skovgaard, K.; Jacobsen, S. Intraarticular Treatment with Integrin A10β1-Selected Mesenchymal Stem Cells Affects microRNA Expression in Experimental Post-Traumatic Osteoarthritis in Horses. Front. Vet. Sci. 2024, 11, 1374681. [Google Scholar] [CrossRef]
- Sloet Van Oldruitenborgh-Oosterbaan, M.M.; Genzel, W.; Van Weeren, P.R. A Pilot Study on Factors Influencing the Career of Dutch Sport Horses. Equine Vet. J. 2010, 42, 28–32. [Google Scholar] [CrossRef]
- Dowling, B.A.; Dart, A.J.; Hodgson, D.R.; Smith, R.K.W. Superficial Digital Flexor Tendonitis in the Horse. Equine Vet. J. 2000, 32, 369–378. [Google Scholar] [CrossRef]
- Depuydt, E.; Broeckx, S.Y.; Chiers, K.; Patruno, M.; Da Dalt, L.; Duchateau, L.; Saunders, J.; Pille, F.; Martens, A.; Van Hecke, L.; et al. Cellular and Humoral Immunogenicity Investigation of Single and Repeated Allogeneic Tenogenic Primed Mesenchymal Stem Cell Treatments in Horses Suffering from Tendon Injuries. Front. Vet. Sci. 2022, 8, 789293. [Google Scholar] [CrossRef]
- Beaumont, R.E.; Smith, E.J.; Zhou, L.; Marr, N.; Thorpe, C.T.; Guest, D.J. Exogenous Interleukin-1 Beta Stimulation Regulates Equine Tenocyte Function and Gene Expression in Three-Dimensional Culture Which Can Be Rescued by Pharmacological Inhibition of Interleukin 1 Receptor, but Not Nuclear Factor Kappa B, Signaling. Mol. Cell. Biochem. 2024, 479, 1059–1078. [Google Scholar] [CrossRef]
- Smith, E.J.; Beaumont, R.E.; McClellan, A.; Sze, C.; Palomino Lago, E.; Hazelgrove, L.; Dudhia, J.; Smith, R.K.W.; Guest, D.J. Tumour Necrosis Factor Alpha, Interleukin 1 Beta and Interferon Gamma Have Detrimental Effects on Equine Tenocytes That Cannot Be Rescued by IL-1RA or Mesenchymal Stromal Cell–Derived Factors. Cell Tissue Res. 2023, 391, 523–544. [Google Scholar] [CrossRef]
- Smith, E.J.; Beaumont, R.E.; Dudhia, J.; Guest, D.J. Equine Embryonic Stem Cell-Derived Tenocytes Are Insensitive to a Combination of Inflammatory Cytokines and Have Distinct Molecular Responses Compared to Primary Tenocytes. Stem Cell Rev. Rep. 2024, 20, 1040–1059. [Google Scholar] [CrossRef]
- Shirasawa, S.; Sekiya, I.; Sakaguchi, Y.; Yagishita, K.; Ichinose, S.; Muneta, T. In Vitro Chondrogenesis of Human Synovium-Derived Mesenchymal Stem Cells: Optimal Condition and Comparison with Bone Marrow-Derived Cells. J. Cell. Biochem. 2006, 97, 84–97. [Google Scholar] [CrossRef]
- Leal Reis, I.; Lopes, B.; Sousa, P.; Sousa, A.C.; Branquinho, M.; Caseiro, A.R.; Pedrosa, S.S.; Rêma, A.; Oliveira, C.; Porto, B.; et al. Allogenic Synovia-Derived Mesenchymal Stem Cells for Treatment of Equine Tendinopathies and Desmopathies—Proof of Concept. Animals 2023, 13, 1312. [Google Scholar] [CrossRef] [PubMed]
- Rampin, A.; Skoufos, I.; Raghunath, M.; Tzora, A.; Diakakis, N.; Prassinos, N.; Zeugolis, D.I. Allogeneic Serum and Macromolecular Crowding Maintain Native Equine Tenocyte Function in Culture. Cells 2022, 11, 1562. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Y.; Zhang, Q.; Ge, W.; Zhang, Y.; Zhao, X.; Hu, J.; Yuan, L.; Zhang, W. Establishment of Bactrian Camel Induced Pluripotent Stem Cells and Prediction of Their Unique Pluripotency Genes. Int. J. Mol. Sci. 2023, 24, 1917. [Google Scholar] [CrossRef]
- Son, Y.-B.; Jeong, Y.I.; Jeong, Y.W.; Hossein, M.S.; Olsson, P.O.; Tinson, A.; Singh, K.K.; Lee, S.-Y.; Hwang, W.S. Cell Source-Dependent In Vitro Chondrogenic Differentiation Potential of Mesenchymal Stem Cell Established from Bone Marrow and Synovial Fluid of Camelus Dromedarius. Animals 2021, 11, 1918. [Google Scholar] [CrossRef]
- Saadeldin, I.M.; Swelum, A.A.-A.; Noreldin, A.E.; Tukur, H.A.; Abdelazim, A.M.; Abomughaid, M.M.; Alowaimer, A.N. Isolation and Culture of Skin-Derived Differentiated and Stem-Like Cells Obtained from the Arabian Camel (Camelus Dromedarius). Animals 2019, 9, 378. [Google Scholar] [CrossRef]
- Saadeldin, I.M.; Abdel-Aziz Swelum, A.; Alzahrani, F.A.; Alowaimer, A.N. The Current Perspectives of Dromedary Camel Stem Cells Research. Int. J. Vet. Sci. Med. 2018, 6, S27–S30. [Google Scholar] [CrossRef]
- Hanga, M.P.; Ali, J.; Moutsatsou, P.; De La Raga, F.A.; Hewitt, C.J.; Nienow, A.; Wall, I. Bioprocess Development for Scalable Production of Cultivated Meat. Biotechnol. Bioeng. 2020, 117, 3029–3039. [Google Scholar] [CrossRef]
- Zagury, Y.; Ianovici, I.; Landau, S.; Lavon, N.; Levenberg, S. Engineered Marble-like Bovine Fat Tissue for Cultured Meat. Commun. Biol. 2022, 5, 927. [Google Scholar] [CrossRef]
- Danev, N.; Harman, R.M.; Oliveira, L.; Huntimer, L.; Van de Walle, G.R. Bovine Milk-Derived Cells Express Transcriptome Markers of Pluripotency and Secrete Bioactive Factors with Regenerative and Antimicrobial Activity. Sci. Rep. 2023, 13, 12600. [Google Scholar] [CrossRef]
- Malard, P.F.; Peixer, M.A.S.; Grazia, J.G.; Brunel, H.d.S.S.; Feres, L.F.; Villarroel, C.L.; Siqueira, L.G.B.; Dode, M.A.N.; Pogue, R.; Viana, J.H.M.; et al. Intraovarian Injection of Mesenchymal Stem Cells Improves Oocyte Yield and in Vitro Embryo Production in a Bovine Model of Fertility Loss. Sci. Rep. 2020, 10, 8018. [Google Scholar] [CrossRef]
- Costa, C.R.M.; Feitosa, M.L.T.; Rocha, A.R.; Bezerra, D.O.; Leite, Y.K.C.; Argolo Neto, N.M.; Rodrigues, H.W.S.; Júnior, A.S.; Silva, A.S.; Sarmento, J.L.R.; et al. Adipose Stem Cells in Reparative Goat Mastitis Mammary Gland. PLoS ONE 2019, 14, e0223751. [Google Scholar] [CrossRef] [PubMed]
- de Silva, L.; Longoni, A.; Staubli, F.; Nurmohamed, S.; Duits, A.; Rosenberg, A.J.W.P.; Gawlitta, D. Bone Regeneration in a Large Animal Model Featuring a Modular Off-the-shelf Soft Callus Mimetic. Adv. Healthc. Mater. 2023, 12, 2301717. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-S.; Chu, W.-H.; Zhai, J.-J.; Wang, W.-Y.; He, Z.-M.; Zhao, Q.-M.; Li, C.-Y. High Quality Repair of Osteochondral Defects in Rats Using the Extracellular Matrix of Antler Stem Cells. World J. Stem Cells 2024, 16, 176–190. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, J.; Wang, Y.; Jiang, Y.; Li, X.; Wang, D.; Yue, Z.; Lv, J.; Sun, H. Repair of Mechanical Cartilage Damage Using Exosomes Derived from Deer Antler Stem Cells. Front. Biosci.-Landmark 2024, 29, 309. [Google Scholar] [CrossRef]
- Caruso, M.; Shuttle, S.; Amelse, L.; Elkhenany, H.; Schumacher, J.; Dhar, M.S. A Pilot Study to Demonstrate the Paracrine Effect of Equine, Adult Allogenic Mesenchymal Stem Cells in Vitro, with a Potential for Healing of Experimentally-Created, Equine Thoracic Wounds in Vivo. Front. Vet. Sci. 2022, 9, 1011905. [Google Scholar] [CrossRef]
- Cassano, J.M.; Leonard, B.C.; Martins, B.C.; Vapniarsky, N.; Morgan, J.T.; Dow, S.W.; Wotman, K.L.; Pezzanite, L.M. Preliminary Evaluation of Safety and Migration of Immune Activated Mesenchymal Stromal Cells Administered by Subconjunctival Injection for Equine Recurrent Uveitis. Front. Vet. Sci. 2023, 10, 1293199. [Google Scholar] [CrossRef]
- Casado-Santos, A.; González-Cubero, E.; González-Fernández, M.L.; González-Rodríguez, Y.; García-Rodríguez, M.B.; Villar-Suárez, V. Equine Corneal Wound Healing Using Mesenchymal Stem Cell Secretome: Case Report. Animals 2024, 14, 1842. [Google Scholar] [CrossRef]
- Narasimha, R.B.; Shreya, S.; Jayabal, V.A.; Yadav, V.; Rath, P.K.; Mishra, B.P.; Kancharla, S.; Kolli, P.; Mandadapu, G.; Kumar, S.; et al. Stem Cell Therapy for Diseases of Livestock Animals: An In-Depth Review. Vet. Sci. 2025, 12, 67. [Google Scholar] [CrossRef]
- Kwon, D.-H.; Gim, G.-M.; Yum, S.-Y.; Eom, K.-H.; Lee, S.-J.; Han, S.-E.; Kim, H.-S.; Kim, H.-J.; Lee, W.-S.; Choi, W.-J.; et al. Cas9-Expressing Cattle Using the PiggyBac Transposon All-in-One System. BMC Genom. 2025, 26, 217. [Google Scholar] [CrossRef]
- Severo, N.C.; Inês De Assumpção, T.; Silva Peixer, M.A.; Da Cunha Xavier, M.; Malard, P.F.; Brunel, H.D.S.S.; Lançoni, R. Effectiveness of Intraglandular Allogeneic Mesenchymal Stem Cell Administration for Treating Chronic Vesicular Adenitis in Bulls. Theriogenology 2025, 241, 117419. [Google Scholar] [CrossRef]
- Wei, Y.-D.; Du, X.-M.; Yang, D.-H.; Ma, F.-L.; Yu, X.-W.; Zhang, M.-F.; Li, N.; Peng, S.; Liao, M.-Z.; Li, G.-P.; et al. Dmrt1 Regulates the Immune Response by Repressing the TLR4 Signaling Pathway in Goat Male Germline Stem Cells. Zool. Res. 2021, 42, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Lee, E.J.; Kim, R.E.; Kil, T.Y.; Kim, M.K. Evaluation of Stability and Safety of Equine Mesenchymal Stem Cells Derived from Amniotic Fluid for Clinical Application. Front. Vet. Sci. 2024, 11, 1330009. [Google Scholar] [CrossRef] [PubMed]
- Finot, L.; Hue-Beauvais, C.; Aujean, E.; Provost, F.L.; Chanat, E. Sorted Stem/Progenitor Epithelial Cells of Pubertal Bovine Mammary Gland Present Limited Potential to Reconstitute an Organised Mammary Epithelium after Transplantation. PLoS ONE 2024, 19, e0296614. [Google Scholar] [CrossRef]
- Heyman, E.; Olenic, M.; De Vlieghere, E.; De Smet, S.; Devriendt, B.; Thorrez, L.; De Schauwer, C. Donor Age and Breed Determine Mesenchymal Stromal Cell Characteristics. Stem Cell Res. Ther. 2025, 16, 99. [Google Scholar] [CrossRef]
- Jammes, M.; Contentin, R.; Cassé, F.; Galéra, P. Equine Osteoarthritis: Strategies to Enhance Mesenchymal Stromal Cell-Based Acellular Therapies. Front. Vet. Sci. 2023, 10, 1115774. [Google Scholar] [CrossRef]
- Thampi, P.; Samulski, R.J.; Grieger, J.C.; Phillips, J.N.; McIlwraith, C.W.; Goodrich, L.R. Gene Therapy Approaches for Equine Osteoarthritis. Front. Vet. Sci. 2022, 9, 962898. [Google Scholar] [CrossRef]
- Bessi, B.W.; Botigelli, R.C.; Pieri, N.C.G.; Machado, L.S.; Cruz, J.B.; Moraes, P.D.; de Souza, A.F.; Recchia, K.; Barbosa, G.; de Castro, R.V.G.; et al. Cattle In Vitro Induced Pluripotent Stem Cells Generated and Maintained in 5 or 20% Oxygen and Different Supplementation. Cells 2021, 10, 1531. [Google Scholar] [CrossRef]
- Li, D.; Wang, X.; Yao, J.; Chen, S. Equine Adipose Tissue-Derived Extracellular Vesicles Enhance Adipose Mesenchymal Stem Cell Survival Ex Vivo. Vet. J. 2025, 310, 106319. [Google Scholar] [CrossRef]
- Broeckx, S.Y.; Martens, A.M.; Bertone, A.L.; Van Brantegem, L.; Duchateau, L.; Van Hecke, L.; Dumoulin, M.; Oosterlinck, M.; Chiers, K.; Hussein, H.; et al. The Use of Equine Chondrogenic-induced Mesenchymal Stem Cells as a Treatment for Osteoarthritis: A Randomised, Double-blinded, Placebo-controlled Proof-of-concept Study. Equine Vet. J. 2019, 51, 787–794. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Khan, M.Z.; Ullah, A.; Liang, H.; Geng, M.; Akhtar, M.F.; Na, J.; Han, Y.; Wang, C. Advancements in Stem Cell Applications for Livestock Research: A Review. Vet. Sci. 2025, 12, 397. https://doi.org/10.3390/vetsci12050397
Shi L, Khan MZ, Ullah A, Liang H, Geng M, Akhtar MF, Na J, Han Y, Wang C. Advancements in Stem Cell Applications for Livestock Research: A Review. Veterinary Sciences. 2025; 12(5):397. https://doi.org/10.3390/vetsci12050397
Chicago/Turabian StyleShi, Limeng, Muhammad Zahoor Khan, Abd Ullah, Huili Liang, Mingyang Geng, Muhammad Faheem Akhtar, Jincheng Na, Ying Han, and Changfa Wang. 2025. "Advancements in Stem Cell Applications for Livestock Research: A Review" Veterinary Sciences 12, no. 5: 397. https://doi.org/10.3390/vetsci12050397
APA StyleShi, L., Khan, M. Z., Ullah, A., Liang, H., Geng, M., Akhtar, M. F., Na, J., Han, Y., & Wang, C. (2025). Advancements in Stem Cell Applications for Livestock Research: A Review. Veterinary Sciences, 12(5), 397. https://doi.org/10.3390/vetsci12050397