Late Gestation Maternal Nutrition Has a Stronger Impact on Offspring Liver Transcriptome than Full-Gestation Supplementation in Beef Cattle
Simple Summary
Abstract
1. Introduction
2. Method
2.1. Experimental Design
2.2. Liver Tissue Sample Collection
2.3. RNA Extraction, Processing, and Sequencing
2.4. RNA-Seq Data Filtering and Alignment
2.5. Principal Component Analysis, Differential Gene Expression, and Functional Enrichment Analysis
3. Results
3.1. Principal Component Analysis (PCA)
3.2. Differentially Expressed Genes (DEGs)
3.3. Gene Functional Enrichment Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AK | Adenylate kinase |
ARRIVE | Animal Research: Reporting of In Vivo Experiments |
ATP | Adenosine triphosphate |
BW | Body weight |
CP | Crude protein |
CPM | Counts per million |
DEGs | Differentially expressed genes |
ECT2L | Epithelial cell transforming 2 like |
ERO1B | Endoplasmic reticulum oxidoreductin 1-like beta |
FP | Full programming |
IL4I1 | Interleukin 4 induced 1 |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
NP | Not programmed |
ORA | Over-representation analysis |
PCA | Principal component analysis |
PP | Partial programming |
PPARα | Peroxisome proliferator-activated receptor alpha |
RIN | RNA integrity number |
SLC22A5 | Solute carrier family 22 member 5 |
TDN | Total digestible nutrients |
References
- Barker, D.J.P. In Utero Programming of Chronic Disease. Clin. Sci. 1998, 95, 115–128. [Google Scholar] [CrossRef]
- Barker, D.J.P.; Eriksson, J.G.; Forsén, T.; Osmond, C. Fetal Origins of Adult Disease: Strength of Effects and Biological Basis. Int. J. Epidemiol. 2002, 31, 1235–1239. [Google Scholar] [CrossRef]
- Mossa, F.; Bebbere, D.; Ledda, A.; Burrai, G.P.; Chebli, I.; Antuofermo, E.; Ledda, S.; Cannas, A.; Fancello, F.; Atzori, A.S. Testicular Development in Male Lambs Prenatally Exposed to a High-Starch Diet. Mol. Reprod. Dev. 2018, 85, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Clouard, C.; Kemp, B.; Val-Laillet, D.; Gerrits, W.J.J.; Bartels, A.C.; Bolhuis, J.E. Prenatal, but Not Early Postnatal, Exposure to a Western Diet Improves Spatial Memory of Pigs Later in Life and Is Paired with Changes in Maternal Prepartum Blood Lipid Levels. FASEB J. 2016, 30, 2466–2475. [Google Scholar] [CrossRef] [PubMed]
- Funston, R.N.; Summers, A.F. Effect of Prenatal Programming on Heifer Development. Vet. Clin. N. Am.-Food Anim. Pract. 2013, 29, 517–536. [Google Scholar] [CrossRef]
- Redifer, C.A.; Wichman, L.G.; Davies-Jenkins, S.L.; Rathert-Williams, A.R.; Freetly, H.C.; Meyer, A.M. Late Gestational Nutrient Restriction in Primiparous Beef Females: Performance and Metabolic Status of Lactating Dams and Pre-Weaning Calves. J. Anim. Sci. 2024, 102, skae015. [Google Scholar] [CrossRef]
- Shibamori, K.; Kyoda, Y.; Shindo, T.; Hashimoto, K.; Kobayashi, K.; Tanaka, T.; Suzuki, H.; Masumori, N. Maternal Diet during Gestation Affect Prostatic Tissue Component in SHR/Izm Offspring. Prostate 2024, 84, 303–314. [Google Scholar] [CrossRef]
- Underwood, K.R.; Tong, J.F.; Price, P.L.; Roberts, A.J.; Grings, E.E.; Hess, B.W.; Means, W.J.; Du, M. Nutrition during Mid to Late Gestation Affects Growth, Adipose Tissue Deposition, and Tenderness in Cross-Bred Beef Steers. Meat Sci. 2010, 86, 588–593. [Google Scholar] [CrossRef]
- Long, N.M.; Tousley, C.B.; Underwood, K.R.; Paisley, S.I.; Means, W.J.; Hess, B.W.; Du, M.; Ford, S.P. Effects of Early- to Mid-Gestational Undernutrition with or without Protein Supplementation on Offspring Growth, Carcass Characteristics, and Adipocyte Size in Beef Cattle. J. Anim. Sci. 2012, 90, 197–206. [Google Scholar] [CrossRef]
- Du, M.; Tong, J.; Zhao, J.; Underwood, K.R.; Zhu, M.; Ford, S.P.; Nathanielsz, P.W. Fetal Programming of Skeletal Muscle Development in Ruminant Animals. J. Anim. Sci. 2010, 88, E51–E60. [Google Scholar] [CrossRef]
- Funston, R.N.; Larson, D.M.; Vonnahme, K.A. Effects of Maternal Nutrition on Conceptus Growth and Offspring Performance: Implications for Beef Cattle Production. J. Anim. Sci. 2010, 88, E205–E215. [Google Scholar] [CrossRef] [PubMed]
- Larson, D.M.; Martin, J.L.; Adams, D.C.; Funston, R.N. Winter Grazing System and Supplementation during Late Gestation Influence Performance of Beef Cows and Steer Progeny. J. Anim. Sci. 2009, 87, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Menezes, A.C.B.; Dahlen, C.R.; McCarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.T.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; et al. Fetal Hepatic Lipidome Is More Greatly Affected by Maternal Rate of Gain Compared with Vitamin and Mineral Supplementation at Day 83 of Gestation. Metabolites 2023, 13, 175. [Google Scholar] [CrossRef]
- Anas, M.; Ward, A.K.; McCarthy, K.L.; Borowicz, P.P.; Reynolds, L.P.; Caton, J.S.; Dahlen, C.R.; Diniz, W.J.S. LncRNA-Gene Network Analysis Reveals the Effects of Early Maternal Nutrition on Mineral Homeostasis and Energy Metabolism in the Fetal Liver Transcriptome of Beef Heifers. J. Nutr. Biochem. 2024, 132, 109691. [Google Scholar] [CrossRef]
- Polizel, G.H.G.; Cançado, F.A.C.Q.; Dias, E.F.F.; Fernandes, A.C.; Cracco, R.C.; Carmona, B.T.; Castellar, H.H.; Poleti, M.D.; de Almeida Santana, M.H. Effects of Different Prenatal Nutrition Strategies on the Liver Metabolome of Bulls and Its Correlation with Body and Liver Weight. Metabolites 2022, 12, 441. [Google Scholar] [CrossRef] [PubMed]
- Zachary, J.F.; McGavin, M.D. Pathologic Basis of Veterinary Disease5: Pathologic Basis of Veterinary Disease; Stringer, S., Ed.; Elsevier Health Sciences: St. Louis, MO, USA, 2012; ISBN 978-0-323-07533-6. [Google Scholar]
- Reynolds, C.K. Metabolism of Nitrogenous Compounds by Ruminant Liver. J. Nutr. 1992, 122, 850–854. [Google Scholar] [CrossRef]
- Emery, R.S.; Liesman, J.S.; Herdt, T.H. Metabolism of Long Chain Fatty Acids by Ruminant Liver. J. Nutr. 1992, 122, 832–837. [Google Scholar] [CrossRef]
- McBride, B.W.; Kelly, J.M. Energy Cost of Absorption and Metabolism in the Ruminant Gastrointestinal Tract and Liver: A Review. J. Anim. Sci. 1990, 68, 2997–3010. [Google Scholar] [CrossRef]
- Cônsolo, N.R.B.; Buarque, V.L.M.; Silva, J.; Poleti, M.D.; Barbosa, L.C.G.S.; Higuera-Padilla, A.; Gómez, J.F.M.; Colnago, L.A.; Gerrard, D.E.; Saran Netto, A.; et al. Muscle and Liver Metabolomic Signatures Associated with Residual Feed Intake in Nellore Cattle. Anim. Feed. Sci. Technol. 2021, 271, 114757. [Google Scholar] [CrossRef]
- Fonseca, L.D.; Eler, J.P.; Pereira, M.A.; Rosa, A.F.; Alexandre, P.A.; Moncau, C.T.; Salvato, F.; Rosa-Fernandes, L.; Palmisano, G.; Ferraz, J.B.S.; et al. Liver Proteomics Unravel the Metabolic Pathways Related to Feed Efficiency in Beef Cattle. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Alexandre, P.A.; Reverter, A.; Berezin, R.B.; Porto-Neto, L.R.; Ribeiro, G.; Santana, M.H.A.; Ferraz, J.B.S.; Fukumasu, H. Exploring the Regulatory Potential of Long Non-Coding RNA in Feed Efficiency of Indicine Cattle. Genes 2020, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Long, N.M.; Prado-Cooper, M.J.; Krehbiel, C.R.; Desilva, U.; Wettemann, R.P. Effects of Nutrient Restriction of Bovine Dams during Early Gestation on Postnatal Growth, Carcass and Organ Characteristics, and Gene Expression in Adipose Tissue and Muscle. J. Anim. Sci. 2010, 88, 3251–3261. [Google Scholar] [CrossRef]
- Diniz, W.J.S.; Crouse, M.S.; Cushman, R.A.; McLean, K.J.; Caton, J.S.; Dahlen, C.R.; Reynolds, L.P.; Ward, A.K. Cerebrum, Liver, and Muscle Regulatory Networks Uncover Maternal Nutrition Effects in Developmental Programming of Beef Cattle during Early Pregnancy. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Crouse, M.S.; Caton, J.S.; Cushman, R.A.; McLean, K.J.; Dahlen, C.R.; Borowicz, P.P.; Reynolds, L.P.; Ward, A.K. Moderate Nutrient Restriction of Beef Heifers Alters Expression of Genes Associated with Tissue Metabolism, Accretion, and Function in Fetal Liver, Muscle, and Cerebrum by Day 50 of Gestation. Transl. Anim. Sci. 2019, 3, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Devos, J.; Behrouzi, A.; Paradis, F.; Straathof, C.; Li, C.; Colazo, M.; Block, H.; Fitzsimmons, C. Genetic Potential for Residual Feed Intake and Diet Fed during Early- to Mid-Gestation Influences Post-Natal DNA Methylation of Imprinted Genes in Muscle and Liver Tissues in Beef Cattle. J. Anim. Sci. 2021, 99, skab140. [Google Scholar] [CrossRef]
- Schalch Junior, F.J.; Polizel, G.H.G.; Cançado, F.A.C.Q.; Fernandes, A.C.; Mortari, I.; Pires, P.R.L.; Fukumasu, H.; Santana, M.H.d.A.; Saran Netto, A. Prenatal Supplementation in Beef Cattle and Its Effects on Plasma Metabolome of Dams and Calves. Metabolites 2022, 12, 347. [Google Scholar] [CrossRef] [PubMed]
- Polizel, G.H.G.; Fantinato-Neto, P.; Rangel, R.B.; Grigoletto, L.; Bussiman, F.d.O.; Cracco, R.C.; Garcia, N.P.; Ruy, I.M.; Ferraz, J.B.S.; Santana, M.H. de A. Evaluation of Reproductive Traits and the Effect of Nutrigenetics on Bulls Submitted to Fetal Programming. Livest. Sci. 2021, 247, 104487. [Google Scholar] [CrossRef]
- Zhbannikov, I.Y.; Hunter, S.S.; Foster, J.A.; Settles, M.L. Seqyclean: A Pipeline for High-Throughput Sequence Data Preprocessing. In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, Boston, MA, USA, 20–23 August 2017; Volume 17, pp. 407–416. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 1–21. [Google Scholar] [CrossRef]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Robinson, J.J.; McDonald, I.; Fraser, C.; Crofts, R.M.J. Studies on Reproduction in Prolific Ewes I. Growth of the Products of Conception. J. Agric. Sci. 1977, 88, 539–552. [Google Scholar] [CrossRef]
- Panayiotou, C.; Solaroli, N.; Karlsson, A. The Many Isoforms of Human Adenylate Kinases. Int. J. Biochem. Cell Biol. 2014, 49, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Vogel, P.; Read, R.W.; Hansen, G.M.; Payne, B.J.; Small, D.; Sands, A.T.; Zambrowicz, B.P. Regulation of Adenine Nucleotide Metabolism by Adenylate Kinase Isozymes: Physiological Roles and Diseases. Int. J. Mol. Sci. 2023, 24, 5561. [Google Scholar] [CrossRef]
- Simpson, K.J.; Selfors, L.M.; Bui, J.; Reynolds, A.; Leake, D.; Khvorova, A.; Brugge, J.S. Identification of Genes That Regulate Epithelial Cell Migration Using an SiRNA Screening Approach. Nat. Cell Biol. 2008, 10, 1027–1038. [Google Scholar] [CrossRef]
- Townsend, J.; Braz, C.U.; Taylor, T.; Khatib, H. Effects of Paternal Methionine Supplementation on Sperm DNA Methylation and Embryo Transcriptome in Sheep. Environ. Epigenet 2023, 9, dvac029. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pun, P.; Kwee, L.; Craig, D.; Hanynes, C.; Hauser, E.; Gregory, S.; Pollak, M.; Svetkey, L.; Patel, U.; et al. Genetic Modifiers of Renal Dysfunction in African-American APOL1 Carriers Identified Through a Genome-Wide Screen. Circulation 2016, 134, A18788. [Google Scholar]
- Zhang, J.; Ding, L.; Holmfeldt, L.; Wu, G.; Heatley, S.L.; Payne-Turner, D.; Easton, J.; Chen, X.; Wang, J.; Rusch, M.; et al. The Genetic Basis of Early T-Cell Precursor Acute Lymphoblastic Leukaemia. Nature 2012, 481, 157–163. [Google Scholar] [CrossRef] [PubMed]
- McRae, K.M.; Good, B.; Hanrahan, J.P.; McCabe, M.S.; Cormican, P.; Sweeney, T.; O’Connell, M.J.; Keane, O.M. Transcriptional Profiling of the Ovine Abomasal Lymph Node Reveals a Role for Timing of the Immune Response in Gastrointestinal Nematode Resistance. Vet. Parasitol. 2016, 224, 96–108. [Google Scholar] [CrossRef]
- Bai, X.; Moraes, T.F.; Reithmeier, R.A.F. Structural Biology of Solute Carrier (SLC) Membrane Transport Proteins. Mol. Membr. Biol. 2017, 34, 1–32. [Google Scholar] [CrossRef]
- Longo, N.; Frigeni, M.; Pasquali, M. Carnitine Transport and Fatty Acid Oxidation. Biochim. Et Biophys. Acta (BBA)—Mol. Cell Research 2016, 1863, 2422–2435. [Google Scholar] [CrossRef]
- VAZ, F.M.; WANDERS, R.J.A. Carnitine Biosynthesis in Mammals. Biochem. J. 2002, 361, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Dunning, K.R.; Robker, R.L. The Role of L-Carnitine during Oocyte in Vitro Maturation: Essential Co-Factor? Anim. Reprod. 2017, 14, 469–475. [Google Scholar] [CrossRef]
- Polizel, G.H.G.; Fanalli, S.L.; Diniz, W.J.S.; Cesar, A.S.M.; Cônsolo, N.R.B.; Fukumasu, H.; Cánovas, A.; Fernandes, A.C.; Prati, B.C.T.; Furlan, É.; et al. Liver Transcriptomics-Metabolomics Integration Reveals Biological Pathways Associated with Fetal Programming in Beef Cattle. Sci. Rep. 2024, 14, 1–20. [Google Scholar] [CrossRef]
- Awazawa, M.; Futami, T.; Sakada, M.; Kaneko, K.; Ohsugi, M.; Nakaya, K.; Terai, A.; Suzuki, R.; Koike, M.; Uchiyama, Y.; et al. Deregulation of Pancreas-Specific Oxidoreductin ERO1β in the Pathogenesis of Diabetes Mellitus. Mol. Cell Biol. 2014, 34, 1290–1299. [Google Scholar] [CrossRef] [PubMed]
- Zito, E.; Chin, K.T.; Blais, J.; Harding, H.P.; Ron, D. ERO1-β, a Pancreas-Specific Disulfide Oxidase, Promotes Insulin Biogenesis and Glucose Homeostasis. J. Cell Biol. 2010, 188, 821–832. [Google Scholar] [CrossRef]
- Pagani, M.; Fabbri, M.; Benedetti, C.; Fassio, A.; Pilati, S.; Bulleid, N.J.; Cabibbo, A.; Sitia, R. Endoplasmic Reticulum Oxidoreductin 1-Lβ (ERO1-Lβ), a Human Gene Induced in the Course of the Unfolded Protein Response. J. Biol. Chem. 2000, 275, 23685–23692. [Google Scholar] [CrossRef]
- Berger, J.H.; Charron, M.J.; Silver, D.L. Major Facilitator Superfamily Domain-Containing Protein 2a (MFSD2A) Has Roles in Body Growth, Motor Function, and Lipid Metabolism. PLoS ONE 2012, 7, e50629. [Google Scholar] [CrossRef]
- Patsouris, D.; Mandard, S.; Voshol, P.J.; Escher, P.; Tan, N.S.; Havekes, L.M.; Koenig, W.; März, W.; Tafuri, S.; Wahli, W.; et al. PPARα Governs Glycerol Metabolism. J. Clin. Investig. 2004, 114, 94–103. [Google Scholar] [CrossRef]
- Hashimoto, T.; Fujita, T.; Usuda, N.; Cook, W.; Qi, C.; Peters, J.M.; Gonzalez, F.J.; Yeldandi, A.V.; Rao, M.S.; Reddy, J.K. Peroxisomal and Mitochondrial Fatty Acid β-Oxidation in Mice Nullizygous for Both Peroxisome Proliferator-Activated Receptor and Peroxisomal Fatty Acyl-CoA Oxidase: Genotype Correlation with Fatty Liver Phenotype. J. Biol. Chem. 1999, 274, 19228–19236. [Google Scholar] [CrossRef]
- Sabnis, R.W. Novel IL4I1 Inhibitors for Treating Cancer. ACS Med. Chem. Lett. 2023, 14, 700–701. [Google Scholar] [CrossRef]
- Sadik, A.; Somarribas Patterson, L.F.; Öztürk, S.; Mohapatra, S.R.; Panitz, V.; Secker, P.F.; Pfänder, P.; Loth, S.; Salem, H.; Prentzell, M.T.; et al. IL4I1 Is a Metabolic Immune Checkpoint That Activates the AHR and Promotes Tumor Progression. Cell 2020, 182, 1252–1270.e34. [Google Scholar] [CrossRef] [PubMed]
- Fattal-Valevski, A. Thiamine (Vitamin B 1). Complement. Health Pract. Rev. 2011, 16, 12–20. [Google Scholar] [CrossRef]
- Subramanya, S.B.; Subramanian, V.S.; Said, H.M. Chronic Alcohol Consumption and Intestinal Thiamin Absorption: Effects on Physiological and Molecular Parameters of the Uptake Process. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, 23–31. [Google Scholar] [CrossRef]
- Chai, J.; Wang, Y.; Guo, S.; Wang, Z.; Chen, H.; Wang, X.; Xie, D.; Cai, Y.; Wang, S.; Hu, Z.; et al. Proteomics Exploration of Metformin Hydrochloride for Diabetic Kidney Disease Treatment via the Butanoate Metabolism Pathway. J. Pharm. Biomed. Anal. 2025, 254, 116584. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Mineral Supplement | Protein–Energy Supplement |
---|---|---|
Corn (%) | 35.00 | 60.00 |
Soybean meal (%) | - | 30.00 |
Dicalcium phosphate (%) | 10.00 | - |
Urea 45% (%) | - | 2.50 |
Salt (%) | 30.00 | 5.00 |
Minerthal 160 MD (%) * | 25.00 | 2.50 |
Total digestible nutrients (%) | 26.76 | 67.55 |
Crude protein (%) | 2.79 | 24.78 |
Non-protein nitrogen (%) | - | 7.03 |
Acid detergent fiber (%) | 1.25 | 4.76 |
Neutral detergent fiber (%) | 4.29 | 11.24 |
Fat (%) | 1.26 | 2.61 |
Calcium (g/kg) | 74.11 | 6.20 |
Phosphorus (g/kg) | 59.38 | 7.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polizel, G.H.G.; Santos, M.E.P.d.; Cesar, A.S.M.; Diniz, W.J.S.; Ramírez-Zamudio, G.D.; Fantinato-Neto, P.; Fernandes, A.C.; Prati, B.C.T.; Furlan, É.; Pombo, G.d.V.; et al. Late Gestation Maternal Nutrition Has a Stronger Impact on Offspring Liver Transcriptome than Full-Gestation Supplementation in Beef Cattle. Vet. Sci. 2025, 12, 406. https://doi.org/10.3390/vetsci12050406
Polizel GHG, Santos MEPd, Cesar ASM, Diniz WJS, Ramírez-Zamudio GD, Fantinato-Neto P, Fernandes AC, Prati BCT, Furlan É, Pombo GdV, et al. Late Gestation Maternal Nutrition Has a Stronger Impact on Offspring Liver Transcriptome than Full-Gestation Supplementation in Beef Cattle. Veterinary Sciences. 2025; 12(5):406. https://doi.org/10.3390/vetsci12050406
Chicago/Turabian StylePolizel, Guilherme Henrique Gebim, Maria Elis Perissin dos Santos, Aline Silva Mello Cesar, Wellison J. S. Diniz, German D. Ramírez-Zamudio, Paulo Fantinato-Neto, Arícia Christofaro Fernandes, Barbara Carolina Teixeira Prati, Édison Furlan, Gabriela do Vale Pombo, and et al. 2025. "Late Gestation Maternal Nutrition Has a Stronger Impact on Offspring Liver Transcriptome than Full-Gestation Supplementation in Beef Cattle" Veterinary Sciences 12, no. 5: 406. https://doi.org/10.3390/vetsci12050406
APA StylePolizel, G. H. G., Santos, M. E. P. d., Cesar, A. S. M., Diniz, W. J. S., Ramírez-Zamudio, G. D., Fantinato-Neto, P., Fernandes, A. C., Prati, B. C. T., Furlan, É., Pombo, G. d. V., & Santana, M. H. d. A. (2025). Late Gestation Maternal Nutrition Has a Stronger Impact on Offspring Liver Transcriptome than Full-Gestation Supplementation in Beef Cattle. Veterinary Sciences, 12(5), 406. https://doi.org/10.3390/vetsci12050406