Use of Cottonseed Meal in Feeding Yellow-Feathered Broilers: Effects on Performance Parameters, Digestibility and Meat Quality
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Test Material
2.3. Experimental Design and Diets
2.4. Measurements
2.5. Statistical Analyses
3. Results
3.1. Growth Performance
3.2. Dietary Apparent Metabolizability
3.3. Blood Biochemical Parameters
3.4. Slaughter Performance
3.5. Meat Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manyeula, F.; Mlambo, V.; Marume, U.; Sebola, N.A. Partial replacement of soybean products with canola meal in indigenous chicken diets: Size of internal organs, carcass characteristics and breast meat quality. Poult. Sci. 2020, 99, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Li, Z.; Wang, J.; Chen, J.; Jiang, Q.; Liu, N.; Liu, X.; Zhang, F.; Tan, B.; Li, H.; et al. Fermented cottonseed meal as a partial replacement for soybean meal could improve the growth performance, immunity and antioxidant properties, and nutrient digestibility by altering the gut microbiota profile of weaned piglets. Front. Microbiol. 2021, 12, 734389. [Google Scholar] [CrossRef]
- Acar, M.C.; Türkekul, B.; Karahan, Ö.; Özkan, S.; Yalcin, S. Effects of partial replacement of soybean with local alternative sources on growth, blood parameters, welfare, and economic indicators of local and commercial broilers. Animals 2024, 14, 314. [Google Scholar] [CrossRef]
- Tavares-Samay, A.M.A.; Dutra, W.M., Jr.; Palhares, L.O.; Lopes, C.D.C.; Rabello, C.B.V.; Coelho, A.H.D.S.C. Determination of nutrient and energy values of cottonseed meal supplemented or not with phytase and protease for broiler chicks. Rev. Bras. Zootecn. 2019, 48, e20180142. [Google Scholar] [CrossRef]
- Wedegaertner, T.; Rathore, K. Elimination of gossypol in cottonseed will improve its utilization. Procedia Environ. Sci. 2015, 29, 124–125. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Punia, S.; Grasso, S.; Arrutia, F.; Choudhary, J.; Singh, S.; Verma, P.; Mahapatra, A.; Patil, S.; et al. Cottonseed: A sustainable contributor to global protein requirements. Trends Food Sci. Tech. 2021, 111, 100–113. [Google Scholar] [CrossRef]
- Nagalakshmi, D.; Rao, S.V.R.; Panda, A.K.; Sastry, V.R.B. Cottonseed meal in poultry diets: A review. J. Poult. Sci. 2007, 44, 119–134. [Google Scholar] [CrossRef]
- Henry, M.H.; Pesti, G.M.; Bakalli, R.; Lee, J.; Toledo, R.T.; Eitenmiller, R.R.; Phillips, R.D. The performance of broiler chicks fed diets containing extruded cotton-seed meal supplemented with lysine. Poult. Sci. 2001, 80, 762–768. [Google Scholar] [CrossRef]
- Zeng, Q.; Bai, P.; Wang, J.; Ding, X.; Luo, Y.; Bai, S.; Xuan, Y.; Su, Z.; Lin, S.; Zhao, L.; et al. The response of meat ducks from 15 to 35 d of age to gossypol from cottonseed meal. Poult. Sci. 2015, 94, 1277–1286. [Google Scholar] [CrossRef]
- Zhu, Y.; Pan, Z.; Qin, J.; Zhong, W.; Wang, W.; Yang, L. Relative toxicity of dietary free gossypol concentration in ducklings from 1 to 21 d of age. Anim. Feed Sci. Technol. 2017, 228, 32–38. [Google Scholar] [CrossRef]
- Dabbour, M.; Hamoda, A.; Mintah, B.K.; Wahia, H.; Betchem, G.; Yolandani; Xu, H.; He, R.H.; Ma, H. Ultrasonic-aided extraction and degossypolization of cottonseed meal protein: Optimization and characterization of functional traits and molecular structure. Ind. Crops Prod. 2023, 204, 117261. [Google Scholar] [CrossRef]
- El-Saidy, D.; Gaber, M.M. Use of cottonseed meal supplemented with iron for detoxification of gossypol as a total replacement of fish meal in nile tilapia, Oreochromis niloticus (L.) diets. Aquac Res. 2015, 35, 859–865. [Google Scholar] [CrossRef]
- Liu, H.; Chen, S.; Lin, Y.; Jiang, W.; Zhao, Y.; Lu, S.; Miao, L.; Ge, X. Ferrous ion alleviates lipid deposition and inflammatory responses caused by a high cottonseed meal diet by modulating hepatic iron transport homeostasis and controlling ferroptosis in juvenile Ctenopharyngodon idellus. Antioxidants 2023, 12, 1968. [Google Scholar] [CrossRef]
- Kadam, D.M.; Parab, S.S.; Kasara, A.; Dange, M.M.; Mahawar, M.M.; Kumar, M.; Arude, V.G. Effect of microwave pre-treatment on protein extraction from de-oiled cottonseed meal and its functional and antioxidant properties. Food Humanit. 2023, 1, 263–270. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Z.; Zhao, S.; Sun, J.; Yang, X. Development of a microbial fermentation process for detoxification of gossypol in cottonseed meal. Anim. Feed Sci. Technol. 2007, 135, 176–186. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Dai, L.; Liu, Y.; Cheng, M.; Chen, L. Isolation and characterization of a novel gossypol-degrading bacteria Bacillus subtilis strain Rumen Bacillus Subtilis. Asian-Australas. J. Anim. Sci. 2018, 31, 63–70. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.; Huang, R.; Nie, C.; Niu, J.; Chen, C.; Zhang, W. Biodegradation of Free Gossypol by Helicoverpa armigera Carboxylesterase Expressed in Pichia pastoris. Toxins 2022, 14, 816. [Google Scholar] [CrossRef] [PubMed]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Józefiak, D. The use of cottonseed meal as a protein source for poultry: An updated review. World Poult. Sci. J. 2016, 72, 473–484. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Z.; Yang, H.; Xu, L.; Wan, X. Effects of cottonseed meal on growth performance, small intestinal morphology, digestive enzyme activities, and serum biochemical parameters of geese. Poult. Sci. 2019, 98, 2066–2071. [Google Scholar] [CrossRef]
- Abdallh, M.E.; Musigwa, S.; Ahiwe, E.U.; Chang’a, E.P.; Al-Qahtani, M.; Bhuiyan, M.; Iji, P.A. Replacement value of cottonseed meal for soybean meal in broiler chicken diets with or without microbial enzymes. J. Anim. Sci. Technol. 2020, 62, 159–173. [Google Scholar] [CrossRef]
- Abdallh, M.E.; Chang’a, E.P.; Omede, A.; Ahiwe, E.U.; Al-Qahtani, M.; Cadogan, D.; Iji, P.A. Endogenous enzyme activities, digestibility of nutrients and digestive physiology as affected by high inclusion of cottonseed meal in broiler chicken diets. Eur. J. Agric. Food. Sci. 2024, 6, 1–10. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, G.; Zhao, J.; Zhou, X.; Dong, W.; Liu, L.; Zhu, Z.; Zhang, S. Energy and nutrient digestibility of degossypolized cottonseed protein and its utilization as a protein source in nursery pigs. Livest. Sci. 2019, 223, 53–59. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, M.; Zheng, A.; Purba, A.; Chen, Z.; Qiu, K.; Wang, Z.; Chang, W.; Cai, H.; Liu, G. Evaluation of the application value of cottonseed protein concentrate as a feed protein source in broiler chickens. Animals 2023, 13, 3706. [Google Scholar] [CrossRef] [PubMed]
- Tao, A.; Wang, J.; Luo, B.; Liu, B.; Wang, Z.; Chen, X.; Zou, T.; Chen, J.; You, J. Research progress on cottonseed meal as a protein source in pig nutrition: An updated review. Anim. Nutr. 2024, 18, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Adeola, O. Evaluation of amino acid and energy utilization in feedstuff for swine and poultry diets. Asian-Australas. J. Anim. Sci. 2014, 27, 917. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Matterson, L.D.; Potter, L.M.; Stutz, M.W.; Singsen, E.P. The metabolizable energy of feed ingredients for chickens. Res. Rep. 1965, 7, 3–15. [Google Scholar]
- de Moraes Pinto, L.A.; Frizzo, A.; Benito, C.E.; da Silva, R.C., Jr.; Alvares, L.K.; Pinto, A.N.; Tellini, C.; de Oliveira Monteschio, J.; Fernandes, J.I.M. Effect of an antimicrobial photoinactivation approach based on a blend of curcumin and Origanum essential oils on the quality attributes of chilled chicken breast. LWT 2023, 176, 114484. [Google Scholar] [CrossRef]
- Soares, S.; Brandão, E.; Guerreiro, C.; Soares, S.; Mateus, N.; de Freitas, V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules 2020, 25, 2590. [Google Scholar] [CrossRef]
- Adeyemo, G.O.; Longe, O.G. Effects of graded levels of cottonseed cake on performance, haematological and carcass characteristics of broilers fed from day old to 8 weeks of age. Afr. J. Biotechnol. 2007, 6, 1064–1071. [Google Scholar] [CrossRef]
- Jazi, V.; Boldaji, F.; Dastar, B.; Hashemi, S.R.; Ashayerizadeh, A. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. Br. Poult. Sci. 2017, 58, 402–408. [Google Scholar] [CrossRef]
- Henry, M.H.; Pesti, G.M.; Brown, T.P. Pathology and histopathology of gossypol toxicity in broiler chicks. Avian Dis. 2001, 45, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Blevins, S.; Siegel, P.B.; Blodgett, D.J.; Ehrich, M.; Saunders, G.K.; Lewis, R.M. Effects of silymarin on gossypol toxicosis in divergent lines of chickens. Poult. Sci. 2010, 89, 1878–1886. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.R.; Batal, A.B.; Dale, N.M. A comparison of methods to determine amino acid digestibility of feed ingredients for chickens. Poult. Sci. 2007, 86, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Haribhau, G.A.; Vijaya Lakshmi, K.; Alexander, G.; Gurram, S. Effect of supplementation of multiple enzymes to the diets containing variable protein sources on performance and nutrient utilization in commercial broilers. Trop. Anim. Health Prod. 2020, 52, 1739–1744. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhao, L.; Zhang, Y. Structure, properties of gossypol and its derivatives—From physiological activities to drug discovery and drug design. Nat. Prod. Rep. 2022, 39, 1282–1304. [Google Scholar] [CrossRef]
- Jha, R.; Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: A review. J. Anim. Sci. 2021, 12, 51. [Google Scholar] [CrossRef]
- Ojewola, G.S.; Ukachukwu, S.N.; Okulonye, E.I. Cottonseed meal as substitute for soyabean meal in broiler ration. Int. J. Poult. Sci. 2006, 5, 62–66. [Google Scholar] [CrossRef]
- Aneja, R.; Dass, S.K.; Chandra, R. Modulatory influence of tin-protoporphyrin on gossypol-induced alterations of heme oxygenase activity in male wistar rats. Eur. J. Drug Metab. Pharmacokinet. 2003, 28, 237–243. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food. Prod. Process Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Xu, X.; Yang, H.; Yang, Z.; Wang, Z. Effect of heating time of cottonseed meal on nutrient and mineral element digestibility in chicken (Based on cottonseed meal replaced with all soybean meal). Animals 2022, 12, 883. [Google Scholar] [CrossRef]
- Ashayerizadeh, A.; Jazi, V.; Sharifi, F.; Toghyani, M.; Mohebodini, H.; Kim, I.H.; Roura, E. Fermented but not irradiated cottonseed meal has the potential to partially substitute soybean meal in broiler chickens. Animals 2024, 14, 2797. [Google Scholar] [CrossRef] [PubMed]
- Safari, M.; Saki, A.A.; Goudarzi, S.M.; Ahmadi, A.; Ashoori, A. The effect of protease enzyme and replacement soybean meal by cotton seed meal on protein efficiency and performance in broiler chickens. Iran J. Anim. Sci. 2023, 13, 143–151. [Google Scholar]
- Rath, N.C.; Huff, G.R.; Huff, W.E.; Balog, J.M. Factors regulating bone maturity and strength in poultry. Poult. Sci. 2000, 79, 1024–1032. [Google Scholar] [CrossRef]
- Adeyemo, G.O. Effects of exposure duration to cottonseed cake-based diets on broiler performance. Int. J. Poult. Sci. 2010, 9, 162–166. [Google Scholar] [CrossRef]
- Zeng, Q.; Yang, G.; Liu, G.; Wang, J.; Bai, S.; Ding, X.; Luo, Y.; Zhang, K. Effects of dietary gossypol concentration on growth performance, blood profiles, and hepatic histopathology in meat ducks. Poult. Sci. 2014, 93, 2000–2009. [Google Scholar] [CrossRef]
- Yu, J.; Yang, Z.; Yang, H.; Wang, Z. Effects of cottonseed meal on growth performance, liver redox status, and serum biochemical parameters in goslings at 1 to 28 days of age. BMC Vet. Res. 2022, 18, 347. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, Q.; Song, D.; Wang, W.; Zhou, H.; Wang, L.; Li, A. Effects of fermented cottonseed meal on growth performance, serum biochemical parameters, immune functions, antioxidative abilities, and cecal microflora in broilers. Food Agric. Immunol. 2017, 28, 725–738. [Google Scholar] [CrossRef]
- Sun, X.; Deng, S.; Ye, X.; Wang, Y.; Zhang, H.; Zhao, F.; Sa, R. Effects of replacing soybean meal with cottonseed meal on growth performance and serum biochemical, antioxidant and immunological indices of broilers from 28 to 42 days of age. J. Anim. Nutr. 2022, 34, 5691–5701. (In Chinese) [Google Scholar]
- Madhavan, H.; Nobel, M.M.; Rajalakshmi, M.; Kulkarni, S.; Thomas, T.R.A.; Shalini, B.; Mohan, R. Sociodemographic features, serum urea, creatinine and blood urea nitrogen/creatinine ratio in chronic kidney disease patients—A record based retrospective study. Glob. J. Health Sci. Res. 2024, 2, 82–85. [Google Scholar] [CrossRef]
- Liu, S.; Qiu, C.; Li, W.; Li, X.; Liu, F.; Hu, G. Blood urea nitrogen to serum albumin ratio as a new prognostic indicator in type 2 diabetes mellitus patients with chronic kidney disease. Sci. Rep. 2024, 14, 8002. [Google Scholar] [CrossRef]
- Wang, L.; Li, A.; Shi, J.; Liu, K.; Cheng, J.; Song, D.; Xue, Y.; Wang, Y. Effects of different levels of cottonseed meal on laying performance, egg quality, intestinal immunity and hepatic histopathology in laying hens. Food Agric. Immunol. 2020, 31, 803–812. [Google Scholar] [CrossRef]
- Rao, S.V.R.; Kumar, K.P.; Raju, M.V.L.N.; Nagalakshmi, D.; Prakash, B. Effect of replacing soybean meal with hipro cottonseed meal at graded concentrations on performance and slaughter variables in broiler chicken. Anim. Nutr. Feed Techn. 2021, 21, 61–72. [Google Scholar] [CrossRef]
- Yu, J.; Yang, H.; Wan, X.; Chen, Y.; Yang, Z.; Liu, W.; Liang, Y.; Wang, Z. Effects of cottonseed meal on slaughter performance, meat quality, and meat chemical composition in jiangnan white goslings. Poult. Sci. 2020, 99, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Shi, S.; Dou, T.; Sun, H. Effect of a free-range raising system on growth performance, carcass yield, and meat quality of slow-growing chicken. Poult. Sci. 2009, 88, 2219–2223. [Google Scholar] [CrossRef]
- Alnahhas, N.; Le Bihan-Duval, E.; Baéza, E.; Chabault, M.; Chartrin, P.; Bordeau, T.; Cailleau-Audouin, E.; Meteau, K.; Berri, C. Impact of divergent selection for ultimate pH of pectoralis major muscle on biochemical, histological, and sensorial attributes of broiler meat. J. Anim. Sci. 2015, 93, 4524–4531. [Google Scholar] [CrossRef]
- Caine, W.R.; Aalhus, J.L.; Best, D.R.; Dugan, M.E.; Jeremiah, L.E. Relationship of texture profile analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat. Sci. 2003, 64, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Cooper, B.R.; Sobreira, T.J.R.; Kim, Y.H.B. Utilizing pork exudate metabolomics to reveal the impact of aging on meat quality. Foods 2021, 10, 668. [Google Scholar] [CrossRef]
- Abdallh, M.E.B.; Musigwa, S.; Cadogan, D.; Iji, P. Broilers meat colour and yield as affected by dietary cottonseed meal and microbial enzymes. In Proceedings of the 11th Asia Pacific Poultry Conference, Bangkok, Thailand, 25–27 March 2018; pp. 123–130. [Google Scholar]
- Islam, S.; Islam, M.N.; Kabir, A.K.M.A. Effect of cotton seed meal on the performance traits and meat composition in commercial broilers. Asian Res. J. Agric. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Yu, J.; Yang, H.; Sun, Q.; Xu, X.; Yang, Z.; Wang, Z. Effects of cottonseed meal on performance, gossypol residue, liver function, lipid metabolism, and cecal microbiota in geese. J. Anim. Sci. 2023, 101, skad020. [Google Scholar] [CrossRef]
(a) | |||||
Items 1 | Starter (1–21 days) | ||||
SBM | CSM50 | CSM100 | DPCSM50 | DPCSM100 | |
Ingredients (%) | |||||
Corn | 58.7 | 59.35 | 60.14 | 59.35 | 60.14 |
Cottonseed meal (60.32%) | 7 | 13.6 | |||
De-phenolized cottonseed meal (60.86%) | 7 | 13.6 | |||
Soybean meal (43%) | 25 | 12.2 | 12.2 | ||
Corn protein meal | 5 | 5 | 5 | 5 | 5 |
Wheat flour | 5 | 5 | 5 | 5 | 5 |
Chili meal | |||||
Hydrolyzed feather meal | |||||
Corn germ meal | 1.7 | 6.4 | 10.7 | 6.4 | 10.7 |
CaHPO4 | 1.24 | 1.24 | 1.25 | 1.24 | 1.25 |
Limestone | 1.33 | 1.39 | 1.44 | 1.39 | 1.44 |
Cottonseed oil | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
NaCl | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Lysine | 0.29 | 0.53 | 0.76 | 0.53 | 0.76 |
Methionine | 0.17 | 0.2 | 0.23 | 0.2 | 0.23 |
Threonine | 0.04 | 0.13 | 0.22 | 0.13 | 0.22 |
Premix 2 | 0.68 | 0.71 | 0.81 | 0.71 | 0.81 |
Nutrient levels 3 | |||||
ME (MJ/kg) | 12.95 | 12.95 | 12.95 | 12.95 | 12.95 |
CP (%) | 18.82 | 18.62 | 18.66 | 18.52 | 18.84 |
Ca (%) | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
P (%) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Lysine (%) | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
Methionine (%) | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
Free gossypol (mg/kg) | 47.30 | 91.90 | 30.63 | 59.51 | |
(b) | |||||
Items 1 | Grower (22–42 days) | ||||
SBM | CSM50 | CSM100 | DPCSM50 | DPCSM100 | |
Ingredients (%) | |||||
Corn | 55.6 | 56.17 | 56.7 | 56.17 | 56.7 |
Cottonseed meal (60.32%) | 5 | 9.3 | |||
De-phenolized cottonseed meal (60.86%) | 5 | 9.3 | |||
Soybean meal (43%) | 17 | 7.8 | 7.8 | ||
Corn protein meal | 5 | 5 | 5 | 5 | 5 |
Wheat flour | 10 | 10 | 10 | 10 | 10 |
Chili meal | 2 | 2 | 2 | 2 | 2 |
Hydrolyzed feather meal | 1 | 1 | 1 | 1 | 1 |
Corn germ meal | 4.4 | 7.7 | 10.3 | 7.7 | 10.3 |
CaHPO4 | 1.01 | 1.02 | 1.02 | 1.02 | 1.02 |
Limestone | 1.22 | 1.26 | 1.35 | 1.26 | 1.35 |
Cottonseed oil | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 |
NaCl | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Lysine | 0.36 | 0.53 | 0.67 | 0.53 | 0.67 |
Methionine | 0.14 | 0.16 | 0.18 | 0.16 | 0.18 |
Threonine | 0.04 | 0.1 | 0.16 | 0.1 | 0.16 |
Premix 2 | 0.66 | 0.66 | 0.72 | 0.66 | 0.72 |
Nutrient levels 3 | |||||
ME (MJ/kg) | 13 | 13 | 13 | 13 | 13 |
CP (%) | 17.42 | 17.26 | 17.71 | 17.46 | 17.87 |
Ca (%) | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
P (%) | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
Lysine (%) | 1 | 1 | 1 | 1 | 1 |
Methionine (%) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Free gossypol (mg/kg) | 33.79 | 62.84 | 21.88 | 40.70 | |
(c) | |||||
Items 1 | Finisher (43–63 days) | ||||
SBM | CSM50 | CSM100 | DPCSM50 | DPCSM100 | |
Ingredients (%) | |||||
Corn | 58 | 58.48 | 58.83 | 58.48 | 58.83 |
Cottonseed meal (60.32%) | 4.8 | 7.5 | |||
De-phenolized cottonseed meal (60.86%) | 4.8 | 7.5 | |||
Soybean meal (43%) | 13.8 | 5 | 5 | ||
Corn protein meal | 5 | 5 | 5 | 5 | 5 |
Wheat flour | 10 | 10 | 10 | 10 | 10 |
Chili meal | 2 | 2 | 2 | 2 | 2 |
Hydrolyzed feather meal | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Corn germ meal | 4.1 | 7.3 | 9.1 | 7.3 | 9.1 |
CaHPO4 | 0.75 | 0.76 | 0.76 | 0.76 | 0.76 |
Limestone | 1.13 | 1.17 | 1.19 | 1.17 | 1.19 |
Cottonseed oil | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 |
NaCl | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Lysine | 0.32 | 0.49 | 0.58 | 0.49 | 0.58 |
Methionine | 0.1 | 0.12 | 0.13 | 0.12 | 0.13 |
Threonine | 0.04 | 0.1 | 0.13 | 0.1 | 0.13 |
Premix 2 | 0.66 | 0.68 | 0.68 | 0.68 | 0.68 |
Nutrient levels 3 | |||||
ME (MJ/kg) | 13.05 | 13.05 | 13.05 | 13.05 | 13.05 |
CP (%) | 17.05 | 17.18 | 16.91 | 16.68 | 16.93 |
Ca (%) | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
P (%) | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Lysine (%) | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
Methionine (%) | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
Free gossypol (mg/kg) | 32.44 | 50.68 | 21.00 | 32.82 |
Items 1 | SBM | CSM50 | CSM100 | DPCSM50 | DPCSM100 | p-Value |
---|---|---|---|---|---|---|
1–21 d | ||||||
21 d WG, g | 551.92 ± 3.85 a | 527.71 ± 12.97 ab | 504.68 ± 32.56 b | 549.86 ± 17.69 a | 500.70 ± 19.92 b | 0.004 |
ADFI, g | 36.60 ± 1.15 | 35.94 ± 0.77 | 35.37 ± 0.80 | 36.11 ± 0.30 | 34.33 ± 1.66 | 0.065 |
ADG, g | 24.33 ± 0.18 a | 23.18 ± 0.62 ab | 22.08 ± 1.55 b | 24.23 ± 0.84 a | 21.89 ± 0.95 b | 0.004 |
F/G | 1.51 ± 0.04 | 1.55 ± 0.05 | 1.61 ± 0.14 | 1.49 ± 0.05 | 1.57 ± 0.13 | 0.370 |
22–42 d | ||||||
42 d WG, g | 1680.61 ± 7.86 a | 1655.21 ± 43.08 a | 1554.41 ± 99.21 b | 1661.33 ± 20.09 a | 1569.39 ± 37.51 b | 0.010 |
ADFI, g | 100.30 ± 0.55 a | 100.09 ± 1.02 a | 94.58 ± 1.38 b | 98.87 ± 0.80 a | 95.44 ± 2.04 b | <0.001 |
ADG, g | 53.75 ± 0.42 a | 53.69 ± 1.74 a | 49.99 ± 3.25 b | 52.93 ± 1.00 a | 50.89 ± 1.03 ab | 0.027 |
F/G | 1.87 ± 0.02 | 1.87 ± 0.05 | 1.90 ± 0.13 | 1.87 ± 0.04 | 1.88 ± 0.01 | 0.947 |
43–63 d | ||||||
63 d WG, g | 2890.63 ± 62.40 a | 2787.50 ± 31.37 ab | 2685.42 ± 132.05 b | 2793.75 ± 57.89 ab | 2696.88 ± 52.64 b | 0.010 |
ADFI, g | 144.30 ± 2.85 | 142.37 ± 2.52 | 141.89 ± 4.40 | 140.91 ± 2.89 | 140.77 ± 2.59 | 0.525 |
ADG, g | 57.62 ± 3.34 | 53.92 ± 1.10 | 53.86 ± 2.11 | 53.93 ± 3.62 | 53.69 ± 2.07 | 0.210 |
F/G | 2.51 ± 0.20 | 2.64 ± 0.05 | 2.64 ± 0.02 | 2.62 ± 0.15 | 2.63 ± 0.13 | 0.604 |
1–63 d | ||||||
ADFI, g | 94.25 ± 0.79 a | 93.50 ± 1.32 a | 91.16 ± 1.40 b | 92.92 ± 1.75 ab | 91.27 ± 2.00 b | 0.040 |
ADG, g | 45.23 ± 0.99 a | 43.60 ± 0.50 ab | 41.97 ± 2.10 b | 43.69 ± 0.92 ab | 42.16 ± 0.83 b | 0.010 |
F/G | 2.09 ± 0.06 | 2.15 ± 0.02 | 2.18 ± 0.09 | 2.13 ± 0.04 | 2.17 ± 0.05 | 0.235 |
Items 1 | SBM | CSM50 | CSM100 | DPCSM50 | DPCSM100 | p-Value |
---|---|---|---|---|---|---|
21 d | ||||||
DM, % | 75.32 ± 0.88 | 75.10 ± 0.96 | 75.10 ± 2.36 | 74.92 ± 2.71 | 75.19 ± 0.30 | 0.980 |
OM, % | 75.90 ± 0.87 | 77.19 ± 0.85 | 72.81 ± 2.72 | 76.30 ± 1.79 | 74.08 ± 1.54 | 0.051 |
GE, % | 77.81 ± 0.63 | 77.49 ± 1.03 | 77.76 ± 2.21 | 77.16 ± 2.37 | 77.30 ± 0.31 | 0.958 |
CP, % | 68.01 ± 2.16 | 67.86 ± 0.87 | 64.98 ± 4.44 | 67.03 ± 3.74 | 68.55 ± 0.77 | 0.408 |
EE, % | 77.22 ± 0.33 | 77.16 ± 0.33 | 76.95 ± 2.41 | 75.84 ± 3.02 | 74.37 ± 0.51 | 0.970 |
Ca, % | 59.75 ± 2.24 a | 48.36 ± 2.42 c | 54.82 ± 4.53 ab | 49.68 ± 3.83 bc | 54.68 ± 1.85 ab | 0.014 |
P, % | 48.05 ± 6.74 | 44.51 ± 0.63 | 39.89 ± 5.04 | 37.92 ± 5.68 | 43.99 ± 2.06 | 0.202 |
42 d | ||||||
DM, % | 67.03 ± 0.44 | 68.54 ± 1.51 | 68.01 ± 0.34 | 68.69 ± 1.88 | 65.96 ± 1.15 | 0.099 |
OM, % | 68.85 ± 1.02 | 64.94 ± 3.67 | 67.73 ± 2.20 | 69.40 ± 1.49 | 69.11 ± 2.04 | 0.179 |
GE, % | 70.99 ± 0.44 a | 71.48 ± 1.12 a | 71.36 ± 0.37 a | 71.84 ± 1.11 a | 69.26 ± 1.13 b | 0.041 |
CP, % | 43.95 ± 1.42 | 45.58 ± 1.09 | 45.41 ± 1.66 | 43.86 ± 4.17 | 42.59 ± 2.59 | 0.572 |
EE, % | 70.88 ± 1.46 a | 69.58 ± 2.17 ab | 67.20 ± 1.44 bc | 67.44 ± 1.70 bc | 65.66 ± 1.85 c | 0.029 |
Ca, % | 50.38 ± 1.51 | 52.60 ± 0.48 | 49.19 ± 1.00 | 45.99 ± 6.34 | 49.48 ± 3.31 | 0.258 |
P, % | 41.55 ± 2.52 a | 37.63 ± 2.43 ab | 32.42 ± 3.25 b | 37.13 ± 3.90 ab | 41.73 ± 1.95 a | 0.015 |
63 d | ||||||
DM, % | 70.23 ± 0.55 | 68.81 ± 0.91 | 68.01 ± 2.24 | 68.81 ± 1.44 | 69.53 ± 0.51 | 0.353 |
OM, % | 70.25 ± 0.58 | 69.21 ± 0.62 | 69.03 ± 4.09 | 70.28 ± 1.24 | 69.52 ± 1.98 | 0.922 |
GE, % | 73.35 ± 0.40 | 72.56 ± 0.66 | 71.54 ± 2.01 | 73.06 ± 1.20 | 72.94 ± 0.67 | 0.391 |
CP, % | 41.50 ± 0.93 | 38.64 ± 3.17 | 38.33 ± 6.54 | 40.11 ± 1.85 | 39.63 ± 3.17 | 0.834 |
EE, % | 69.62 ± 0.44 | 69.41 ± 0.59 | 69.43 ± 2.21 | 70.70 ± 0.79 | 70.89 ± 0.41 | 0.344 |
Ca, % | 42.83 ± 1.03 | 41.48 ± 2.26 | 39.99 ± 4.62 | 41.06 ± 3.61 | 36.65 ± 2.73 | 0.225 |
P, % | 44.76 ± 4.97 | 40.64 ± 4.24 | 40.59 ± 1.86 | 41.18 ± 0.64 | 41.02 ± 2.84 | 0.523 |
Items 1 | SBM | CSM50 | CSM100 | DPCSM50 | DPCSM100 | p-Value |
---|---|---|---|---|---|---|
21 d | ||||||
TP, g/L | 31.03 ± 2.46 | 30.18 ± 3.78 | 31.05 ± 4.33 | 28.83 ± 1.37 | 29.40 ± 2.52 | 0.799 |
ALB, g/L | 12.13 ± 0.88 | 11.48 ± 1.12 | 11.35 ± 1.10 | 11.05 ± 0.83 | 11.35 ± 0.31 | 0.553 |
GLB, g/L | 18.90 ± 1.64 | 18.70 ± 2.70 | 19.70 ± 3.25 | 17.78 ± 1.16 | 18.05 ± 2.25 | 0.788 |
ALT, U/L | 8.25 ± 9.18 | 5.75 ± 0.96 | 3.25 ± 1.50 | 5.00 ± 3.83 | 4.50 ± 1.29 | 0.625 |
AST, U/L | 199.50 ± 6.19 | 186.00 ± 11.02 | 192.50 ± 13.50 | 201.50 ± 26.41 | 189.00 ± 18.06 | 0.636 |
TG, mmol/L | 1.55 ± 0.66 | 1.24 ± 0.60 | 0.93 ± 0.25 | 1.07 ± 0.20 | 1.00 ± 0.21 | 0.314 |
T-CHO, mmol/L | 3.88 ± 0.47 | 3.10 ± 0.27 | 3.68 ± 0.63 | 3.56 ± 0.41 | 3.30 ± 0.53 | 0.218 |
BUN, mmol/L | 0.39 ± 0.09 | 0.33 ± 0.08 | 0.40 ± 0.05 | 0.33 ± 0.14 | 0.41 ± 0.13 | 0.687 |
GLU, mmol/L | 13.29 ± 0.38 | 13.81 ± 0.54 | 13.62 ± 1.51 | 13.34 ± 1.24 | 14.33 ± 0.28 | 0.534 |
42 d | ||||||
TP, g/L | 33.40 ± 3.27 | 34.85 ± 0.70 | 32.83 ± 2.88 | 34.65 ± 3.54 | 36.15 ± 4.00 | 0.589 |
ALB, g/L | 12.48 ± 1.09 | 12.35 ± 0.55 | 12.10 ± 0.43 | 12.68 ± 1.40 | 13.15 ± 0.93 | 0.607 |
GLB, g/L | 20.93 ± 2.18 | 22.50 ± 0.76 | 20.73 ± 2.81 | 21.98 ± 2.51 | 23.00 ± 3.95 | 0.700 |
ALT, U/L | 4.00 ± 1.63 | 4.25 ± 0.50 | 4.75 ± 0.96 | 5.00 ± 0.82 | 5.50 ± 1.00 | 0.316 |
AST, U/L | 200.75 ± 24.46 | 205.75 ± 8.77 | 207.75 ± 26.45 | 200.25 ± 12.95 | 216.75 ± 2.22 | 0.683 |
TG, mmol/L | 0.79 ± 0.24 b | 1.04 ± 0.33 ab | 0.96 ± 0.31 b | 1.40 ± 0.10 a | 0.97 ± 0.22 b | 0.041 |
T-CHO, mmol/L | 3.37 ± 0.81 | 3.31 ± 0.44 | 3.51 ± 0.50 | 3.78 ± 0.13 | 4.00 ± 0.25 | 0.265 |
BUN, mmol/L | 0.27 ± 0.07 b | 0.20 ± 0.11 b | 0.39 ± 0.05 a | 0.26 ± 0.06 b | 0.40 ± 0.05 a | 0.005 |
GLU, mmol/L | 14.99 ± 0.78 | 13.62 ± 0.49 | 14.60 ± 0.78 | 14.31 ± 0.82 | 14.12 ± 1.17 | 0.244 |
63 d | ||||||
TP, g/L | 34.80 ± 1.67 | 36.17 ± 2.41 | 33.87 ± 3.86 | 33.43 ± 4.08 | 33.13 ± 2.73 | 0.414 |
ALB, g/L | 12.75 ± 0.69 | 12.87 ± 0.74 | 12.20 ± 1.02 | 11.88 ± 0.91 | 12.30 ± 0.96 | 0.298 |
GLB, g/L | 22.05 ± 1.69 | 23.30 ± 2.37 | 21.67 ± 2.52 | 21.55 ± 3.31 | 20.83 ± 1.83 | 0.508 |
ALT, U/L | 3.83 ± 4.02 | 3.33 ± 0.52 | 2.83 ± 1.47 | 2.83 ± 0.98 | 3.00 ± 1.67 | 0.912 |
AST, U/L | 274.00 ± 51.69 | 241.33 ± 11.29 | 252.17 ± 20.60 | 235.33 ± 31.70 | 239.67 ± 25.87 | 0.238 |
TG, mmol/L | 0.66 ± 0.23 b | 0.86 ± 0.43 ab | 0.68 ± 0.18 b | 0.92 ± 0.34 ab | 1.18 ± 0.27 a | 0.038 |
T-CHO, mmol/L | 3.35 ± 0.29 | 3.53 ± 0.41 | 3.23 ± 0.28 | 2.91 ± 0.61 | 3.30 ± 0.41 | 0.178 |
BUN, mmol/L | 0.36 ± 0.08 | 0.36 ± 0.10 | 0.43 ± 0.14 | 0.29 ± 0.13 | 0.36 ± 0.08 | 0.337 |
GLU, mmol/L | 10.21 ± 0.96 b | 13.87 ± 1.92 a | 13.54 ± 1.41 a | 14.74 ± 2.03 a | 13.60 ± 1.41 a | 0.001 |
Items 1 | SBM | CSM50 | CSM100 | DPCSM50 | DPCSM100 | p-Value |
---|---|---|---|---|---|---|
Dressing percentage, % | 92.31 ± 0.94 | 91.89 ± 0.88 | 92.10 ± 0.88 | 92.01 ± 0.76 | 91.71 ± 0.80 | 0.548 |
Semi-eviscerated carcass yield, % | 84.06 ± 1.32 a | 81.09 ± 4.58 b | 82.79 ± 1.26 ab | 82.58 ± 0.89 ab | 81.80 ± 1.06 b | 0.047 |
Eviscerated carcass yield, % | 70.61 ± 2.70 | 70.18 ± 4.24 | 67.98 ± 3.07 | 69.06 ± 1.13 | 69.06 ± 1.50 | 0.203 |
Breast muscle yield, % | 20.72 ± 2.75 | 20.62 ± 1.96 | 18.71 ± 1.14 | 19.44 ± 1.64 | 20.02 ± 1.92 | 0.101 |
Thigh muscle yield, % | 24.45 ± 1.64 | 24.23 ± 1.20 | 25.05 ± 1.80 | 24.49 ± 2.09 | 25.37 ± 2.08 | 0.552 |
Abdominal fat percentage, % | 2.81 ± 0.72 | 3.24 ± 0.75 | 3.26 ± 0.61 | 2.79 ± 0.76 | 2.92 ± 0.95 | 0.417 |
Items 1 | SBM | CSM50 | CSM100 | DPCSM50 | DPCSM100 | p-Value |
---|---|---|---|---|---|---|
Drip loss, % | 7.47 ± 1.86 b | 8.52 ± 2.81 ab | 10.25 ± 1.42 a | 8.84 ± 2.12 ab | 7.68 ± 1.51 b | 0.017 |
Cooking loss, % | 9.51 ± 2.53 | 10.35 ± 2.45 | 12.40 ± 4.20 | 11.32 ± 3.22 | 11.99 ± 3.50 | 0.225 |
Shear force, N | 37.30 ± 13.68 | 39.20 ± 9.66 | 40.83 ± 13.94 | 37.88 ± 10.63 | 52.59 ± 29.98 | 0.224 |
pH45min | 5.52 ± 0.22 b | 5.44 ± 0.19 b | 5.63 ± 0.20 b | 6.09 ± 0.33 a | 5.94 ± 0.07 a | <0.001 |
pH24h | 5.39 ± 0.20 c | 5.35 ± 0.10 c | 5.36 ± 0.15 c | 5.65 ± 0.39 b | 5.86 ± 0.26 a | <0.001 |
L*45min | 43.56 ± 2.39 | 44.28 ± 1.48 | 43.17 ± 1.93 | 44.28 ± 1.74 | 43.62 ± 1.74 | 0.575 |
a*45min | 2.35 ± 1.19 ab | 1.66 ± 0.84 b | 1.53 ± 0.72 b | 4.90 ± 6.14 a | 4.23 ± 3.24 ab | 0.049 |
b*45min | 9.67 ± 1.06 | 8.78 ± 1.35 | 9.68 ± 2.21 | 10.25 ± 1.31 | 10.61 ± 1.70 | 0.090 |
L*24h | 49.40 ± 2.98 | 50.00 ± 3.56 | 49.36 ± 1.60 | 50.36 ± 2.77 | 51.07 ± 2.77 | 0.589 |
a*24h | 2.69 ± 1.03 b | 2.62 ± 1.21 b | 4.15 ± 1.35 a | 2.59 ± 1.12 b | 3.34 ± 1.60 ab | 0.024 |
b*24h | 11.31 ± 2.58 | 11.67 ± 3.53 | 15.35 ± 9.62 | 12.09 ± 1.95 | 13.28 ± 2.22 | 0.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, X.; Wei, X.; Niu, W.; Li, F.; Yuan, J.; Lv, G.; Chen, Y.; Liu, J. Use of Cottonseed Meal in Feeding Yellow-Feathered Broilers: Effects on Performance Parameters, Digestibility and Meat Quality. Vet. Sci. 2025, 12, 416. https://doi.org/10.3390/vetsci12050416
Nie X, Wei X, Niu W, Li F, Yuan J, Lv G, Chen Y, Liu J. Use of Cottonseed Meal in Feeding Yellow-Feathered Broilers: Effects on Performance Parameters, Digestibility and Meat Quality. Veterinary Sciences. 2025; 12(5):416. https://doi.org/10.3390/vetsci12050416
Chicago/Turabian StyleNie, Xiaohang, Xiahan Wei, Weidong Niu, Fengming Li, Jiang Yuan, Gang Lv, Yong Chen, and Jiancheng Liu. 2025. "Use of Cottonseed Meal in Feeding Yellow-Feathered Broilers: Effects on Performance Parameters, Digestibility and Meat Quality" Veterinary Sciences 12, no. 5: 416. https://doi.org/10.3390/vetsci12050416
APA StyleNie, X., Wei, X., Niu, W., Li, F., Yuan, J., Lv, G., Chen, Y., & Liu, J. (2025). Use of Cottonseed Meal in Feeding Yellow-Feathered Broilers: Effects on Performance Parameters, Digestibility and Meat Quality. Veterinary Sciences, 12(5), 416. https://doi.org/10.3390/vetsci12050416