Sperm Membrane Stability: In-Depth Analysis from Structural Basis to Functional Regulation
Simple Summary
Abstract
1. Introduction
2. Overview of Sperm Membrane Stability
3. Structural Features of the Sperm Membrane
3.1. Sperm Membrane Potential and Ion Channels
3.2. Sperm Membrane Fluidity
3.3. Sperm Membrane Defense Barrier
4. Factors Influencing Sperm Membrane Stability
4.1. Physiological Factors (Temperature, pH)
4.2. Diseases and Hormone Levels
5. Key Proteins Maintaining Sperm Membrane Stability and Their Molecular Mechanisms
5.1. Cholesterol Homeostasis and the Role of NPC2 Protein
5.2. Regulation of Lipid Rafts and Flotillin Proteins
5.3. The Role of Annexin V in Sperm Membrane Repair
5.4. Membrane Backbone Proteins and Sperm Structural Stability
5.5. Protective Effect of Heat Shock Proteins on Sperm Membranes
5.6. Phosphatases, Kinases, and the Regulation of Sperm Membrane Dynamics
6. The Critical Role of Sperm Membrane Stability in Livestock Reproduction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ROS | reactive oxygen species |
cAMP | cyclic adenosine monophosphate |
HPG | hypothalamic–pituitary–gonadal |
NPC2 | Niemann–Pick C2 |
HSPs | Heat shock proteins |
References
- Sutovsky, P.; Hamilton, L.E.; Zigo, M.; Ortiz D’Avila Assumpção, M.E.; Jones, A.; Tirpak, F.; Sutovsky, M. Biomarker-based human and animal sperm phenotyping: The good, the bad and the ugly. Biol. Reprod. 2024, 110, 1135–1156. [Google Scholar] [CrossRef] [PubMed]
- Batra, V.; Dagar, K.; Diwakar, M.P.; Kumaresan, A.; Kumar, R.; Datta, T.K. The proteomic landscape of sperm surface deciphers its maturational and functional aspects in buffalo. Front. Physiol. 2024, 15, 1413817. [Google Scholar] [CrossRef] [PubMed]
- Diao, L.; Turek, P.J.; John, C.M.; Fang, F.; Reijo Pera, R.A. Roles of spermatogonial stem cells in spermatogenesis and fertility restoration. Front. Endocrinol. 2022, 13, 895528. [Google Scholar] [CrossRef]
- Abdelaal, N.E.; Tanga, B.M.; Abdelgawad, M.; Allam, S.; Fathi, M.; Saadeldin, I.M.; Bang, S.; Cho, J. Cellular Therapy via Spermatogonial Stem Cells for Treating Impaired Spermatogenesis, Non-Obstructive Azoospermia. Cells 2021, 10, 1779. [Google Scholar] [CrossRef]
- Avidor-Reiss, T. Rapid Evolution of Sperm Produces Diverse Centriole Structures that Reveal the Most Rudimentary Structure Needed for Function. Cells 2018, 7, 67. [Google Scholar] [CrossRef]
- Miller, D.J. Sperm in the Mammalian Female Reproductive Tract: Surfing Through the Tract to Try to Beat the Odds. Annu. Rev. Anim. Biosci. 2024, 12, 301–319. [Google Scholar] [CrossRef]
- Bedford, J.M. Puzzles of mammalian fertilization--and beyond. Int. J. Dev. Biol. 2008, 52, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Rowe, M.; Rosengrave, P. There and back again: A sperm’s tale. Mol. Reprod. Dev. 2020, 87, 395–398. [Google Scholar] [CrossRef]
- Toshimori, K. Dynamics of the mammalian sperm membrane modification leading to fertilization: A cytological study. J. Electron Microsc. 2011, 60 (Suppl. 1), S31–S42. [Google Scholar] [CrossRef]
- Mohammadi-Bardbori, A.; Shadboorestan, A.; Salehi, E.; Rahimi, M.A.; Kargar-Abarghouei, E.; Amidi, F.; Shamseddin, J.; Omidi, M. Protective Effects of Astaxanthin on Post-Thaw Sperm Quality in Normozoospermic Men. Andrologia 2024, 2024, 2332443. [Google Scholar] [CrossRef]
- Qamar, A.Y.; Naveed, M.I.; Raza, S.; Fang, X.; Roy, P.K.; Bang, S.; Tanga, B.M.; Saadeldin, I.M.; Lee, S.; Cho, J. Role of antioxidants in fertility preservation of sperm—A narrative review. Anim. Biosci. 2023, 36, 385–403. [Google Scholar] [CrossRef]
- Curci, L.; Carvajal, G.; Sulzyk, V.; Gonzalez, S.N.; Cuasnicú, P.S. Pharmacological Inactivation of CatSper Blocks Sperm Fertilizing Ability Independently of the Capacitation Status of the Cells: Implications for Non-hormonal Contraception. Front. Cell Dev. Biol. 2021, 9, 686461. [Google Scholar] [CrossRef] [PubMed]
- Deneke, V.E.; Blaha, A.; Lu, Y.; Draper, J.M.; Phan, C.S.; Panser, K.; Schleiffer, A.; Jacob, L.; Humer, T.; Stejskal, K.; et al. conserved fertilization complex of Izumo1, Spaca6, and Tmem81 mediates sperm-egg interaction in vertebrates. bioRxiv 2023. [Google Scholar] [CrossRef]
- Chong, G. A key to sperm-egg union. Nat. Chem. Biol. 2024, 20, 1549. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, E.; Ziyyat, A.; Wolf, J.P.; Le Naour, F.; Boucheix, C. The molecular players of sperm-egg fusion in mammals. Semin. Cell Dev. Biol. 2006, 17, 254–263. [Google Scholar] [CrossRef]
- Pitnick, S.; Wolfner, M.F.; Dorus, S. Post-ejaculatory modifications to sperm (PEMS). Biol. Rev. Camb. Philos. Soc. 2020, 95, 365–392. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Ke, M.; Zhang, Y.; Yan, Z.; Wu, J. Structure of a mammalian sperm cation channel complex. Nature. 2021, 595, 746–750. [Google Scholar] [CrossRef]
- Puga Molina, L.C.; Luque, G.M.; Balestrini, P.A.; Marín-Briggiler, C.I.; Romarowski, A.; Buffone, M.G. Molecular Basis of Human Sperm Capacitation. Front. Cell Dev. Biol. 2018, 6, 72. [Google Scholar] [CrossRef]
- Lishko, P.V.; Kirichok, Y.; Ren, D.; Navarro, B.; Chung, J.J.; Clapham, D.E. The control of male fertility by spermatozoan ion channels. Annu. Rev. Physiol. 2012, 74, 453–475. [Google Scholar] [CrossRef]
- Sharma, U.; Conine, C.C.; Shea, J.M.; Boskovic, A.; Derr, A.G.; Bing, X.Y.; Belleannee, C.; Kucukural, A.; Serra, R.W.; Sun, F.; et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 2016, 351, 391–396. [Google Scholar] [CrossRef]
- Balbach, M.; Ghanem, L.; Rossetti, T.; Kaur, N.; Ritagliati, C.; Ferreira, J.; Krapf, D.; Puga Molina, L.C.; Santi, C.M.; Hansen, J.N.; et al. Soluble adenylyl cyclase inhibition prevents human sperm functions essential for fertilization. Mol. Hum. Reprod. 2021, 27, gaab054. [Google Scholar] [CrossRef] [PubMed]
- Pinto, F.M.; Odriozola, A.; Candenas, L.; Subirán, N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. Int. J. Mol. Sci. 2023, 24, 6995. [Google Scholar] [CrossRef]
- Wang, H.; McGoldrick, L.L.; Chung, J.J. Sperm ion channels and transporters in male fertility and infertility. Nat. Rev. Urol. 2021, 18, 46–66. [Google Scholar] [CrossRef]
- Breitbart, H.; Grinshtein, E. Mechanisms That Protect Mammalian Sperm from the Spontaneous Acrosome Reaction. Int. J. Mol. Sci. 2023, 24, 17005. [Google Scholar] [CrossRef] [PubMed]
- Flesch, F.M.; Gadella, B.M. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim. Biophys. Acta 2000, 1469, 197–235. [Google Scholar] [CrossRef]
- Jiménez-Rojo, N.; Feng, S.; Morstein, J.; Pritzl, S.D.; Harayama, T.; Asaro, A.; Vepřek, N.A.; Arp, C.J.; Reynders, M.; Novak, A.J.E.; et al. Optical Control of Membrane Fluidity Modulates Protein Secretion. bioRxiv 2022. [Google Scholar] [CrossRef]
- Ramal-Sanchez, M.; Bernabo, N.; Tsikis, G.; Blache, M.C.; Labas, V.; Druart, X.; Mermillod, P.; Saint-Dizier, M. Progesterone induces sperm release from oviductal epithelial cells by modifying sperm proteomics, lipidomics and membrane fluidity. Mol. Cell Endocrinol. 2020, 504, 110723. [Google Scholar] [CrossRef]
- Moein-Vaziri, N.; Phillips, I.; Smith, S.; Almiňana, C.; Maside, C.; Gil, M.A.; Roca, J.; Martinez, E.A.; Holt, W.V.; Pockley, A.G.; et al. Heat-shock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity. Reproduction 2014, 147, 719–732. [Google Scholar] [CrossRef]
- Kuang, W.; Zhang, J.; Lan, Z.; Deepak, R.N.V.K.; Liu, C.; Ma, Z.; Cheng, L.; Zhao, X.; Meng, X.; Wang, W.; et al. SLC22A14 is a mitochondrial riboflavin transporter required for sperm oxidative phosphorylation and male fertility. Cell Rep. 2021, 35, 109025. [Google Scholar] [CrossRef]
- Sieme, H.; Oldenhof, H.; Wolkers, W.F. Sperm Membrane Behaviour during Cooling and Cryopreservation. Reprod. Domest. Anim. 2015, 50 (Suppl. 3), 20–26. [Google Scholar] [CrossRef]
- Blair, D.A.; Lefrançois, L. Increased Competition for Antigen during Priming Negatively Impacts the Generation of Memory CD4 T Cells. Proc. Natl. Acad. Sci. USA 2007, 104, 15045–15050. [Google Scholar] [CrossRef]
- Lin, Y.; Mahan, K.; Lathrop, W.F.; Myles, D.G.; Primakoff, P. A hyaluronidase activity of the sperm plasma membrane protein PH-20 enables sperm to penetrate the cumulus cell layer surrounding the egg. J. Cell Biol. 1994, 125, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Kashiwazaki, N.; Yamaguchi, R.; Uesugi, R.; Hishiyama, N.; Kim, M.; Nakatsukasa, E.; Kojima, Y.; Okuda, Y.; Hisamatsu, S.; Inomata, T.; et al. Sperm motility, plasma membrane integrity, and binding capacity to homologous zona pellucida of cryopreserved epididymal spermatozoa in the domestic cat. J. Reprod. Dev. 2005, 51, 735–759. [Google Scholar] [CrossRef]
- Loveless, A.; Welch, L.; Sellers, M.; Farooqi, N.; Prien, S.D. Effects of high frequency electromagnetic fields on sperm membrane permeability. Fertil. Steril. 2008, 90, S185. [Google Scholar] [CrossRef]
- Zhu, W.; Zhou, Y.; Guo, L.; Feng, S. Biological function of sialic acid and sialylation in human health and disease. Cell Death Discov. 2024, 10, 415. [Google Scholar] [CrossRef]
- Holmes, C.H.; Simpson, K.L.; Okada, H.; Okada, N.; Wainwright, S.D.; Purcell, D.F.; Houlihan, J.M. Complement regulatory proteins at the feto-maternal interface during human placental development: Distribution of CD59 by comparison with membrane cofactor protein (CD46) and decay accelerating factor (CD55). Eur. J. Immunol. 1992, 22, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, E.; Jiménez-Movilla, M.; Cots-Rodríguez, P.; Viola, C.; Wright, G.J. No evidence for a direct extracellular interaction between human Fc receptor-like 3 (MAIA) and the sperm ligand IZUMO1. Sci. Adv. 2024, 10, eadk6352. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, H.; Zou, S.; Yu, X.; Li, J. Perspective in the Mechanisms for Repairing Sperm DNA Damage. Reprod. Sci. 2025, 32, 41–51. [Google Scholar] [CrossRef]
- Gunes, S.; Al-Sadaan, M.; Agarwal, A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod. Biomed. Online 2015, 31, 309–319. [Google Scholar] [CrossRef]
- Tonini, G.P. Molecular mechanisms involved in DNA repair, in gene rearrangement and in gene amplification may be considered as an integrated system in maintaining cellular homeostasis and cell survival. Anticancer Res. 1988, 8, 881–884. [Google Scholar]
- Xiao, L.; Wang, Q.; Ni, H.; Xu, T.; Zeng, Q.; Yu, X.; Wu, H.; Guo, P.; Zhang, Q.; Zhang, X. Effect of ambient temperature variability on sperm quality: A retrospective population-based cohort study. Sci. Total Environ. 2022, 851 Pt 2, 158245. [Google Scholar] [CrossRef]
- Zavos, P.M.; Goodpasture, J.C.; Zaneveld, L.J. The effect of temperature on sperm motility and viability. Fertil. Steril. 1981, 36, 254. [Google Scholar] [CrossRef]
- Hahn, K.; Failing, K.; Wehrend, A. Effect of temperature and time after collection on buck sperm quality. BMC Vet. Res. 2019, 15, 355. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, X.; Li, H. Mechanisms of oxidative stress-induced sperm dysfunction. Front. Endocrinol. 2025, 16, 1520835. [Google Scholar] [CrossRef] [PubMed]
- Chianese, R.; Pierantoni, R. Mitochondrial Reactive Oxygen Species (ROS) Production Alters Sperm Quality. Antioxidants 2021, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Tinjic, S.; Ibrisimovic, M. Pathophysiological Effect of Oxygen Free Radicals on Mobility and DNA Integrity of Human Seminal Spermatozoa. Int. J. Eng. Res. Technol. 2019, 8, 7. [Google Scholar]
- Harraway, C.; Berger, N.G.; Dubin, N.H. Semen pH in patients with normal versus abnormal sperm characteristics. Am. J. Obstet. Gynecol. 2000, 182, 1045–1047. [Google Scholar] [CrossRef] [PubMed]
- Lavanya, M.; Archana, S.S.; Swathi, D.; Ramya, L.; Arangasamy, A.; Binsila, B.; Dhali, A.; Krishnaswamy, N.; Singh, S.K.; Kumar, H.; et al. Sperm preparedness and adaptation to osmotic and pH stressors relate to functional competence of sperm in Bos taurus. Sci. Rep. 2021, 11, 22563. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, L.; Li, J.; Li, H.; Hong, Z.; Xie, M.; Chen, S.; Yao, B. The Semen pH Affects Sperm Motility and Capacitation. PLoS ONE 2015, 10, e01329. [Google Scholar] [CrossRef]
- Liu, C.H.; Dong, H.B.; Ma, D.L.; Li, Y.W.; Han, D.; Luo, M.J.; Chang, Z.L.; Tan, J.H. Effects of pH during liquid storage of goat semen on sperm viability and fertilizing potential. Anim. Reprod. Sci. 2016, 164, 47–56. [Google Scholar] [CrossRef]
- Lavanya, M.; Selvaraju, S.; Krishnappa, B.; Krishnaswamy, N.; Nagarajan, G.; Kumar, H. Microenvironment of the male and female reproductive tracts regulate sperm fertility: Impact of viscosity, pH, and osmolality. Andrology 2022, 10, 92–104. [Google Scholar] [CrossRef]
- Grahn, E.; Kaufmann, S.V.; Askarova, M.; Ninov, M.; Welp, L.M.; Berger, T.K.; Urlaub, H.; Kaupp, U.B. Control of intracellular pH and bicarbonate by CO2 diffusion into human sperm. Nat. Commun. 2023, 14, 5395. [Google Scholar] [CrossRef] [PubMed]
- Trojian, T.H.; Lishnak, T.S.; Heiman, D. Epididymitis and orchitis: An overview. Am. Fam. Physician 2009, 79, 583–587. [Google Scholar] [PubMed]
- Hua, L.; Gao, X.; Zhan, J.; Wu, X.; Liu, H. Prostatitis and male infertility. Aging Male 2025, 28, 2494550. [Google Scholar] [CrossRef]
- Motrich, R.D.; Salazar, F.C.; Breser, M.L.; Mackern-Oberti, J.P.; Godoy, G.J.; Olivera, C.; Paira, D.A.; Rivero, V.E. Implications of prostate inflammation on male fertility. Andrologia 2018, 50, e13093. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Wang, W.; Zhu, W.; Bai, Y.; Ning, N.; Huang, Q.; Pang, X.; Zhou, J.; Zhang, H.; Zhao, K. Zishen Yutai Pill improves sperm quality and reduces testicular inflammation in experimental varicocele rats. Heliyon 2023, 9, e17161. [Google Scholar] [CrossRef]
- Corona, G.; Rastrelli, G.; Bianchi, N.; Sparano, C.; Sforza, A.; Vignozzi, L.; Maggi, M. Hyperprolactinemia and male sexual function: Focus on erectile dysfunction and sexual desire. Int. J. Impot. Res. 2023, 36, 324–332. [Google Scholar] [CrossRef]
- Gautier, C.; Aurich, C. “Fine feathers make fine birds”—The mammalian sperm plasma membrane lipid composition and effects on assisted reproduction. Anim. Reprod. Sci. 2022, 246, 106884. [Google Scholar] [CrossRef]
- JStorch, J.; Xu, Z. Niemann-Pick C2 (NPC2) and intracellular cholesterol trafficking. Biochim. Biophys. Acta 2009, 1791, 671–678. [Google Scholar] [CrossRef]
- Wysocki, P.; Orzołek, A.; Strzeżek, J.; Koziorowska-Gilun, M.; Zasiadczyk, Ł.; Kordan, W. The activity of N-acetyl-β-hexosaminidase in boar seminal plasma is linked with semen quality and its suitability for cryopreservation. Theriogenology 2015, 83, 1194–1202. [Google Scholar] [CrossRef]
- Valencia, J.; Yeste, M.; Quintero-Moreno, A.; Niño-Cardenas, C.D.P.; Henao, F.J. Relative content of Niemann-Pick C2 protein (NPC2) in seminal plasma, but not that of spermadhesin AQN-1, is related to boar sperm cryotolerance. Theriogenology 2020, 145, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Busso, D.; Oñate-Alvarado, M.J.; Balboa, E.; Castro, J.; Lizama, C.; Morales, G.; Vargas, S.; Härtel, S.; Moreno, R.D.; Zanlungo, S. Spermatozoa from mice deficient in Niemann-Pick disease type C2 (NPC2) protein have defective cholesterol content and reduced in vitro fertilising ability. Reprod. Fertil. Dev. 2014, 26, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Stuermer, C.A.; Plattner, H. The ‘lipid raft’ microdomain proteins reggie-1 and reggie-2 (flotillins) are scaffolds for protein interaction and signalling. Biochem. Soc. Symp. 2005, 72, 109–118. [Google Scholar]
- Kawano, N.; Yoshida, K.; Miyado, K.; Yoshida, M. Lipid rafts: Keys to sperm maturation, fertilization, and early embryogenesis. J. Lipids 2011, 2011, 264706. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, X.; Wang, S.; Jiang, M.; Zheng, B.; Zhou, Q.; Bi, Y.; Zhou, Z.; Huang, X.; Sha, J. Flotillin-2 is an acrosome-related protein involved in mouse spermiogenesis. J. Biomed. Res. 2012, 26, 278–287. [Google Scholar]
- Kwiatkowska, K.; Matveichuk, O.V.; Fronk, J.; Ciesielska, A. Flotillins: At the Intersection of Protein S-Palmitoylation and Lipid-Mediated Signaling. Int. J. Mol. Sci. 2020, 21, 2283. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chipot, C.; Scheuring, S. Annexin-V stabilizes membrane defects by inducing lipid phase transition. Nat. Commun. 2020, 11, 230. [Google Scholar] [CrossRef]
- Lin, H.-L.; Chen, Y.-H.; Chen, L.-R. Application of Annexin V magnetic beads enriches boar sperm of high quality. Theriogenology 2019, 137, 132. [Google Scholar] [CrossRef]
- Teijeiro, J.M.; Munuce, M.J.; Caille, A.M.; Zumoffen, C.M.; Marini, P.E. Use of Annexin V based Sperm Selection in Assisted Reproduction. J. Antimicrob. Agents 2017, 6, 1–10. [Google Scholar]
- Dunleavy, J.E.M.; O’Bryan, M.K.; Stanton, P.G.; O’Donnell, L. The cytoskeleton in spermatogenesis. Reproduction 2019, 157, R53–R72. [Google Scholar] [CrossRef]
- Hao, H.; Shi, B.; Zhang, J.; Dai, A.; Li, W.; Chen, H.; Ji, W.; Gong, C.; Zhang, C.; Li, J.; et al. The vertebrate- and testis- specific transmembrane protein C11ORF94 plays a critical role in sperm-oocyte membrane binding. Mol. Biomed. 2022, 3, 27. [Google Scholar] [CrossRef]
- Gupta, K.; Donlan, J.A.C.; Hopper, J.T.S.; Uzdavinys, P.; Landreh, M.; Struwe, W.B.; Drew, D.; Baldwin, A.J.; Stansfeld, P.J.; Robinson, C.V. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 2017, 541, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Rosyada, Z.N.A.; Ulum, M.F.; Tumbelaka, L.I.T.A.; Solihin, D.D.; Purwantara, B.; Memili, E. Implications of sperm heat shock protein 70-2 in bull fertility. Vet. World 2022, 15, 1456–1466. [Google Scholar] [CrossRef]
- Sagare-Patil, V.; Bhilawadikar, R.; Galvankar, M.; Zaveri, K.; Hinduja, I.; Modi, D. Correction to: Progesterone requires heat shock protein 90 (HSP90) in human sperm to regulate motility and acrosome reaction. J. Assist. Reprod. Genet. 2019, 36, 1759–1760. [Google Scholar] [CrossRef]
- Fraser, L.R. The role of small molecules in sperm capacitation. Theriogenology 2008, 70, 1356–1359. [Google Scholar] [CrossRef] [PubMed]
- Yaginuma, S.; Omi, J.; Kano, K.; Aoki, J. Lysophospholipids and their producing enzymes: Their pathological roles and potential as pathological biomarkers. Pharmacol. Ther. 2023, 246, 108415. [Google Scholar] [CrossRef]
- Russo, C.L.; Spurr-Michaud, S.; Tisdale, A.; Pudney, J.; Anderson, D.; Gipson, I.K. Mucin gene expression in human male urogenital tract epithelia. Hum. Reprod. 2006, 21, 2783–2793. [Google Scholar] [CrossRef] [PubMed]
- Sharafi, M.; Borghei-Rad, S.M.; Hezavehei, M.; Shahverdi, A.; Benson, J.D. Cryopreservation of semen in domestic animals: A review of current challenges, applications, and prospective strategies. Animals 2022, 12, 3271. [Google Scholar] [CrossRef]
- Shan, S.; Xu, F.; Hirschfeld, M.; Brenig, B. Sperm Lipid Markers of Male Fertility in Mammals. Int. J. Mol. Sci. 2021, 22, 8767. [Google Scholar] [CrossRef]
- Carro, M.L.M.; Peñalva, D.A.; Antollini, S.S.; Hozbor, F.A.; Buschiazzo, J. Cholesterol and desmosterol incorporation into ram sperm membrane before cryopreservation: Effects on membrane biophysical properties and sperm quality. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183357. [Google Scholar] [CrossRef]
- Maziero, R.R.D.; Guaitolini, C.R.F.; Guasti, P.N.; Monteiro, G.A.; Martin, I.; Silva, J.P.M.D.; Crespilho, A.M.; Papa, F.O. Effect of Using Two Cryopreservation Methods on Viability and Fertility of Frozen Stallion Sperm. J. Equine Vet. Sci. 2019, 72, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Standerholen, F.B.; Waterhouse, K.E.; Larsgard, A.G.; Garmo, R.T.; Myromslien, F.D.; Sunde, J.; Ropstad, E.; Klinkenberg, G.; Kommisrud, E. Use of immobilized cryopreserved bovine semen in a blind artificial insemination trial. Theriogenology 2015, 84, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Fang, F.; Guo, Y.; Ma, J.; Wang, S.; Gu, Y.; Yan, X.; Lu, W.; Liu, Y. Combined Analysis of the Transcriptome, Proteome and Metabolome in Human Cryopreserved Sperm. World J. Mens. Health 2024, 42, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Larbi, A.; Li, C.; Quan, G. An updated review on the application of proteomics to explore sperm cryoinjury mechanisms in livestock animals. Anim. Reprod. Sci. 2024, 263, 107441. [Google Scholar] [CrossRef]
- Zang, S.; Yang, X.; Ye, J.; Mo, X.; Zhou, G.; Fang, Y. Quantitative phosphoproteomics explain cryopreservation-induced reductions in ram sperm motility. J. Proteomics 2024, 298, 105153. [Google Scholar] [CrossRef]
Protein/System | Primary Function | Molecular Mechanism | Key Role in Fertility |
---|---|---|---|
NPC2 | Cholesterol homeostasis | Cholesterol binding and transport; membrane domain redistribution | Essential for capacitation and membrane fluidity regulation |
Flotillin-1/2 | Lipid raft organization | Formation of membrane microdomains; protein scaffolding | Supports signaling pathways and sperm maturation |
Annexin V | Membrane repair | Ca2+-dependent membrane resealing; phosphatidylserine binding | Maintains structural integrity under stress |
HSP70/90 | Protein protection | Molecular chaperone activity; prevents protein misfolding | Preserves membrane protein function |
Membrane skeleton proteins | Structural stability | Protein oligomerization; membrane-cytoskeleton interactions | Maintains cell morphology and motility |
Phosphatases/Kinases | Dynamic regulation | Protein phosphorylation/dephosphorylation cycles | Controls capacitation and signaling cascades |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, S.-H.; Xu, B.-B.; Yan, X.-C.; Zhang, J.-X.; Su, R. Sperm Membrane Stability: In-Depth Analysis from Structural Basis to Functional Regulation. Vet. Sci. 2025, 12, 658. https://doi.org/10.3390/vetsci12070658
Xue S-H, Xu B-B, Yan X-C, Zhang J-X, Su R. Sperm Membrane Stability: In-Depth Analysis from Structural Basis to Functional Regulation. Veterinary Sciences. 2025; 12(7):658. https://doi.org/10.3390/vetsci12070658
Chicago/Turabian StyleXue, Shan-Hui, Bing-Bing Xu, Xiao-Chun Yan, Jia-Xin Zhang, and Rui Su. 2025. "Sperm Membrane Stability: In-Depth Analysis from Structural Basis to Functional Regulation" Veterinary Sciences 12, no. 7: 658. https://doi.org/10.3390/vetsci12070658
APA StyleXue, S.-H., Xu, B.-B., Yan, X.-C., Zhang, J.-X., & Su, R. (2025). Sperm Membrane Stability: In-Depth Analysis from Structural Basis to Functional Regulation. Veterinary Sciences, 12(7), 658. https://doi.org/10.3390/vetsci12070658