Genomic Analysis of Antibiotic Resistance and Virulence Profiles in Escherichia coli Linked to Sternal Bursitis in Chickens: A One Health Perspective
Simple Summary
Abstract
1. Introduction
2. Methodology
2.1. Sample Collection
2.2. E. coli Isolation
2.3. Antimicrobial Resistance Phenotype Characterization
2.4. Whole Genome Sequencing Analysis
2.5. Genotypic Analysis of Antimicrobial Resistance and Virulence Determinants
3. Results and Discussion
3.1. Prevalence of E. coli Isolated from Sternal Bursitis in Chickens
3.2. Phenotypic Profile of the E. coli Isolates
3.3. Whole Genome Sequences and Molecular Characterization of the E. coli Isolates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Handal, N.; Whitworth, J.; Nakrem Lyngbakken, M.; Berdal, J.E.; Dalgard, O.; Bakken Jørgensen, S. Mortality and Length of Hospital Stay after Bloodstream Infections Caused by ESBL-Producing Compared to Non-ESBL-Producing E. coli. Infect. Dis. 2024, 56, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Abad-Fau, A.; Sevilla, E.; Oro, A.; Martín-Burriel, I.; Moreno, B.; Morales, M.; Bolea, R. Multidrug Resistance in Pathogenic Escherichia coli Isolates from Urinary Tract Infections in Dogs, Spain. Front. Vet. Sci. 2024, 11, 1325072. [Google Scholar] [CrossRef] [PubMed]
- da Costa Custódio, D.A.; Pereira, C.R.; Gonçalves, M.S.; Costa, A.C.T.R.B.; de Oliveira, P.F.R.; da Silva, B.H.P.; Carneiro, G.B.; Coura, F.M.; Lage, A.P.; Heinemann, M.B.; et al. Antimicrobial Resistance and Public and Animal Health Risks Associated with Pathogenic Escherichia coli Isolated from Calves. Comp. Immunol. Microbiol. Infect. Dis. 2024, 107, 102149. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.; Silva, V.; Monteiro, A.; Vieira-Pinto, M.; Igrejas, G.; Reis, F.S.; Barros, L.; Poeta, P. Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Animals 2023, 13, 1362. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.; Wigley, P. Avian Pathogenic Escherichia coli: An Overview of Infection Biology, Antimicrobial Resistance and Vaccination. Antibiotics 2024, 13, 809. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, A.O.; Odeyemi, A.T.; Akinjogunla, O.J.; Adeyeye, A.B.; Ayo-ajayi, I. Review of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes within the One Health Framework. Infect. Ecol. Epidemiol. 2024, 14, 2312953. [Google Scholar] [CrossRef] [PubMed]
- Koratkar, S.; Bhutada, P.; Giram, P.; Verma, C.; Saroj, S.D. Bacteriophages Mediating Effective Elimination of Multidrug-Resistant Avian Pathogenic Escherichia coli. Phage Ther. Appl. Res. 2024, 5, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Tivendale, K.A.; Logue, C.M.; Kariyawasam, S.; Jordan, D.; Hussein, A.; Li, G.; Wannemuehler, Y.; Nolan, L.K. Avian-Pathogenic Escherichia coli Strains Are Similar to Neonatal Meningitis E. coli Strains and Are Able to Cause Meningitis in the Rat Model of Human Disease. Infect. Immun. 2010, 78, 3412–3419. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, J.; Chen, Y.; Zhong, H.; Wang, H.; Li, J.; Zhu, G.; Xia, P.; Cui, L.; Li, J.; et al. Colibactin in Avian Pathogenic Escherichia coli Contributes to the Development of Meningitis in a Mouse Model. Virulence 2021, 12, 2382–2399. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Ribeiro, J.; Teixeira, P.; Pinto, P.; Vieira-Pinto, M.; Poeta, P.; Caniça, M.; Igrejas, G. Genetic Complexity of CC5 Staphylococcus aureus Isolates Associated with Sternal Bursitis in Chickens: Antimicrobial Resistance, Virulence, Plasmids, and Biofilm Formation. Pathogens 2024, 13, 519. [Google Scholar] [CrossRef] [PubMed]
- Miner, M.L.; Smart, R.A. Causes of Enlarged Sternal Bursas (Breast Blisters). Avian Dis. 1975, 19, 246. [Google Scholar] [CrossRef] [PubMed]
- Mitterer-Istyagin, H.; Ludewig, M.; Bartels, T.; Krautwald-Junghanns, M.E.; Ellerich, R.; Schuster, E.; Berk, J.; Petermann, S.; Fehlhaber, K. Examinations on the Prevalence of Footpad Lesions and Breast Skin Lesions in B.U.T. Big 6 Fattening Turkeys in Germany. Part II: Prevalence of Breast Skin Lesions (Breast Buttons and Breast Blisters). Poult. Sci. 2011, 90, 775–780. [Google Scholar] [CrossRef] [PubMed]
- AVEC. Annual Report 2024; AVEC: Brussels, Belgium, 2024. [Google Scholar]
- Muneeb, M.; Khan, E.U.; Ahmad, S.; Naveed, S.; Ali, M.; Qazi, M.A.; Ahmad, T.; Abdollahi, M.R. An Updated Review on Alternative Strategies to Antibiotics against Necrotic Enteritis in Commercial Broiler Chickens. Worlds Poult. Sci. J. 2024, 80, 821–870. [Google Scholar] [CrossRef]
- Baker, M.; Zhang, X.; Maciel-Guerra, A.; Babaarslan, K.; Dong, Y.; Wang, W.; Hu, Y.; Renney, D.; Liu, L.; Li, H.; et al. Convergence of Resistance and Evolutionary Responses in Escherichia coli and Salmonella enterica Co-Inhabiting Chicken Farms in China. Nat. Commun. 2024, 15, 206. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, R.K.; Basnet, H.B.; Dhakal, I.P.; Devkota, B. Antimicrobial Resistance of Avian Pathogenic Escherichia coli Isolated from Broiler, Layer, and Breeder Chickens. Vet. World 2024, 17, 480–499. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.S.; Patel, A.C.; Mohapatra, S.K.; Chauhan, H.C.; Sharma, K.K.; Shrimali, M.D.; Raval, S.H.; Prajapati, B.I. Antibiotic Resistance and Virulence Gene Patterns Associated with Multi Drug Resistant Avian Pathogenic Escherichia coli (APEC) Isolated from Broiler Chickens in India. Indian J. Microbiol. 2024, 64, 917–926. [Google Scholar] [CrossRef] [PubMed]
- CLSI Supplement M100; CLSI Performance Standards for Antimicrobial Susceptibility Testing, 34th ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024.
- Clermont, O.; Bonacorsi, P.; Bingen, E. Rapid and Simple Determination of the Escherichia coli Phylogenetic Group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef] [PubMed]
- Caroff, N.; Espaze, E.; Bérard, I.; Richet, H.; Reynaud, A. Mutations in the AmpC Promoter of Escherichia coli Isolates Resistant to Oxyiminocephalosporins without Extended Spectrum β-Lactamase Production. FEMS Microbiol. Lett. 1999, 173, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Belaaouaj, A.; Lapoumeroulie, C.; Caniça, M.M.; Vedel, G.; Névot, P.; Krishnamoorthy, R.; Paul, G. Nucleotide Sequences of the Genes Coding for the TEM-like β-Lactamases IRT-1 and IRT-2 (Formerly Called TRI-1 and TRI-2). FEMS Microbiol. Lett. 1994, 120, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.D.; Thomson, K.S.; Hanson, N.D.; Ehrhardt, A.F.; Moland, E.S.; Sanders, C.C. Beta-Lactamases Responsible for Resistance to Expanded-Spectrum Cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis Isolates Recovered in South Africa. Antimicrob. Agents Chemother. 1998, 42, 1350–1354. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, M.; Clifton-Hadley, F.A.; Stallwood, A.D.; Paiba, G.A.; Davies, R.H.; Liebana, E. Detection of Multiple Cephalosporin-Resistant Escherichia coli from a Cattle Fecal Sample in Great Britain. Microb. Drug Resist. 2005, 11, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Coque, T.M.; Oliver, A.; Pérez-Díaz, J.C.; Baquero, F.; Cantón, R. Genes Encoding TEM-4, SHV-2, and CTX-M-10 Extended-Spectrum β-Lactamases Are Carried by Multiple Klebsiella pneumoniae Clones in a Single Hospital (Madrid, 1989 to 2000). Antimicrob. Agents Chemother. 2002, 46, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Amudhan, M.S.; Sekar, U.; Kamalanathan, A.; Balaraman, S. blaIMP and blaVIM Mediated Carbapenem Resistance in Pseudomonas and Acinetobacter Species in India. J. Infect. Dev. Ctries. 2012, 6, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Steward, C.D.; Rasheed, J.K.; Hubert, S.K.; Biddle, J.W.; Raney, P.M.; Anderson, G.J.; Williams, P.P.; Brittain, K.L.; Oliver, A.; McGowan, J.; et al. Characterization of Clinical Isolates of Klebsiella pneumoniae from 19 Laboratories Using the National Committee for Clinical Laboratory Standards Extended-Spectrum β-Lactamase Detection Methods. J. Clin. Microbiol. 2001, 39, 2864–2872. [Google Scholar] [CrossRef] [PubMed]
- Vliegenthart, J.S.; Gaalen, P.A.G.K.; van de Klundert, J.A.M. Identification of Three Genes Coding for Aminoglycoside-Modifying Enzymes by Means of the Polymerase Chain Reaction. J. Antimicrob. Chemother. 1990, 25, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Sáenz, Y.; Briñas, L.; Domínguez, E.; Ruiz, J.; Zarazaga, M.; Vila, J.; Torres, C. Mechanisms of Resistance in Multiple-Antibiotic-Resistant Escherichia coli Strains of Human, Animal, and Food Origins. Antimicrob. Agents Chemother. 2004, 48, 3996–4001. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Jiang, X.; Yang, Z.; Chen, N.; Chen, X.; Li, G.; Lu, Y. DfrA27, a New Integron-Associated Trimethoprim Resistance Gene from Escherichia coli. J. Antimicrob. Chemother. 2008, 63, 405–406. [Google Scholar] [CrossRef] [PubMed]
- Guardabassi, L.; Dijkshoorn, L.; Collard, J.-M.; Olsen, J.E.; Dalsgaard, A. Distribution and In-Vitro Transfer of Tetracycline Resistance Determinants in Clinical and Aquatic Acinetobacter Strains. J. Med. Microbiol. 2000, 49, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Robicsek, A.; Jacoby, G.A.; Sahm, D.; Hooper, D.C. Prevalence in the United States of aac(6′)-Ib-Cr Encoding a Ciprofloxacin-Modifying Enzyme. Antimicrob. Agents Chemother. 2006, 50, 3953–3955. [Google Scholar] [CrossRef] [PubMed]
- Schnellmann, C.; Gerber, V.; Rossano, A.; Jaquier, V.; Panchaud, Y.; Doherr, M.G.; Thomann, A.; Straub, R.; Perreten, V. Presence of New mecA and mph(C) Variants Conferring Antibiotic Resistance in Staphylococcus spp. Isolated from the Skin of Horses before and after Clinic Admission. J. Clin. Microbiol. 2006, 44, 4444–4454. [Google Scholar] [CrossRef] [PubMed]
- Mazel, D.; Dychinco, B.; Webb, V.A.; Davies, J. Antibiotic Resistance in the ECOR Collection: Integrons and Identification of a Novel Aad Gene. Antimicrob. Agents Chemother. 2000, 44, 1568–1574. [Google Scholar] [CrossRef] [PubMed]
- Maynard, C.; Fairbrother, J.M.; Bekal, S.; Sanschagrin, F.; Levesque, R.C.; Brousseau, R.; Masson, L.; Larivière, S.; Harel, J. Antimicrobial Resistance Genes in Enterotoxigenic Escherichia coli O149: K91 Isolates Obtained over a 23-Year Period from Pigs. Antimicrob. Agents Chemother. 2003, 47, 3214–3221. [Google Scholar] [CrossRef] [PubMed]
- Perreten, V.; Boerlin, P. A New Sulfonamide Resistance Gene (Sul3) in Escherichia coli Is Widespread in the Pig Population of Switzerland. Antimicrob. Agents Chemother. 2003, 47, 1169–1172. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Simon, K.; Horcajada, J.P.; Velasco, M.; Barranco, M.; Roig, G.; Moreno-Martínez, A.; Martínez, J.A.; Jiménez de Anta, T.; Mensa, J.; et al. Differences in Virulence Factors among Clinical Isolates of Escherichia coli Causing Cystitis and Pyelonephritis in Women and Prostatitis in Men. J. Clin. Microbiol. 2002, 40, 4445–4449. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Terai, A.; Yuri, K.; Kurazono, H.; Takeda, Y.; Yoshida, O. Detection of Urovirulence Factors in Escherichia coli by Multiplex Polymerase Chain Reaction. FEMS Immunol. Med. Microbiol. 1995, 12, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Tilley, B.J.; Barnes, H.J.; Scott, R.; Rives, D.R.; Brewer, C.E.; Jennings, R.S.; Coleman, J.; Schmidt, G. Litter and Commercial Turkey Strain Influence on Focal Ulcerative Dermatitis (“Breast Buttons”). J. Appl. Poult. Res. 1996, 5, 39–50. [Google Scholar] [CrossRef]
- Dziva, F.; Stevens, M.P. Colibacillosis in Poultry: Unravelling the Molecular Basis of Virulence of Avian Pathogenic Escherichia coli in Their Natural Hosts. Avian Pathol. 2008, 37, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Laopiem, S.; Witoonsatian, K.; Kulprasetsri, S.; Panomwan, P.; Pathomchai-umporn, C.; Kamtae, R.; Jirawattanapong, P.; Songserm, T.; Sinwat, N. Antimicrobial Resistance, Virulence Gene Profiles, and Phylogenetic Groups of Escherichia coli Isolated from Healthy Broilers and Broilers with Colibacillosis in Thailand. BMC Vet. Res. 2025, 21, 160. [Google Scholar] [CrossRef] [PubMed]
- Alkarawani, N.; Kurdi, A. Investigation of Five E. coli Serogroups (APEC) Isolated from Cases of Arthritis of Commercial Meat Chicken in Middle and Coastal Regions of Syria. Assiut Vet. Med. J. 2013, 59, 79–84. [Google Scholar] [CrossRef]
- Braga, J.F.V.; Chanteloup, N.K.; Trotereau, A.; Baucheron, S.; Guabiraba, R.; Ecco, R.; Schouler, C. Diversity of Escherichia coli Strains Involved in Vertebral Osteomyelitis and Arthritis in Broilers in Brazil. BMC Vet. Res. 2016, 12, 140. [Google Scholar] [CrossRef] [PubMed]
- Radwan, I.A.A.; Abed, A.H.; Allah, A.; El-Latif, A. Bacterial Pathogens Associated with Cellulitis in Chickens. J. Vet. Med. Res. 2018, 25, 68–79. [Google Scholar]
- Shaheen, R.; El-Abasy, M.; El-Sharkawy, H.; Ismail, M.M. Prevalence, Molecular Characterization, and Antimicrobial Resistance among Escherichia coli, Salmonella spp., and Staphylococcus aureus Strains Isolated from Egyptian Broiler Chicken Flocks with Omphalitis. Open Vet. J. 2024, 14, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Kerek, Á.; Szabó, Á.; Jerzsele, Á. Antimicrobial Susceptibility Profiles of Commensal Escherichia coli Isolates from Chickens in Hungarian Poultry Farms Between 2022 and 2023. Antibiotics 2024, 13, 1175. [Google Scholar] [CrossRef] [PubMed]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The Application of Antibiotics in Broiler Production and the Resulting Antibiotic Resistance in Escherichia coli: A Global Overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef] [PubMed]
- European Comission. Regulation (EU) 2022/1255; European Comission: Brussels, Belgium, 2022. [Google Scholar]
- Manageiro, V.; Clemente, L.; Graça, R.; Correia, I.; Albuquerque, T.; Ferreira, E.; Caniça, M. New Insights into Resistance to Colistin and Third-Generation Cephalosporins of Escherichia coli in Poultry, Portugal: Novel blaCTX-M-166 and blaESAC Genes. Int. J. Food Microbiol. 2017, 263, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Meena, P.R.; Priyanka, P.; Singh, A.P. Extraintestinal Pathogenic Escherichia coli (ExPEC) Reservoirs, and Antibiotics Resistance Trends: A One-Health Surveillance for Risk Analysis from “Farm-to-Fork”. Lett. Appl. Microbiol. 2022, 76, ovac016. [Google Scholar] [CrossRef] [PubMed]
- Lima-Filho, J.V.; Martins, L.V.; de Oliveira Nascimento, D.C.; Ventura, R.F.; Batista, J.E.C.; Silva, A.F.B.; Ralph, M.T.; Vaz, R.V.; Rabello, C.B.V.; de Matos Mendes da Silva, I.; et al. Zoonotic Potential of Multidrug-Resistant Extraintestinal Pathogenic Escherichia coli Obtained from Healthy Poultry Carcasses in Salvador, Brazil. Braz. J. Infect. Dis. 2013, 17, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.; Arafat, N.; Elhadidy, M. Genetic Elements Associated with Antimicrobial Resistance among Avian Pathogenic Escherichia coli. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 59. [Google Scholar] [CrossRef] [PubMed]
- Guenther, S.; Grobbel, M.; Lübke-Becker, A.; Goedecke, A.; Friedrich, N.D.; Wieler, L.H.; Ewers, C. Antimicrobial Resistance Profiles of Escherichia coli from Common European Wild Bird Species. Vet. Microbiol. 2010, 144, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Levy, K.; Trueba, G.; Cevallos, W.; Trostle, J.; Foxman, B.; Marrs, C.F.; Eisenberg, J.N.S. Effects of Selection Pressure and Genetic Association on the Relationship between Antibiotic Resistance and Virulence in Escherichia coli. Antimicrob. Agents Chemother. 2015, 59, 6733–6740. [Google Scholar] [CrossRef] [PubMed]
- Pilati, G.V.T.; Cadamuro, R.D.; Filho, V.B.; Dahmer, M.; Elois, M.A.; Savi, B.P.; Salles, G.B.C.; Muniz, E.C.; Fongaro, G. Bacteriophage-Associated Antimicrobial Resistance Genes in Avian Pathogenic Escherichia coli Isolated from Brazilian Poultry. Viruses 2023, 15, 1485. [Google Scholar] [CrossRef] [PubMed]
- Olesen, I.; Hasman, H.; Aarestrup, F.M. Prevalence of Beta-Lactamases among Ampicillin-Resistant Coli and Salmonella Isolated from Food Animals in Denmark. Microb. Drug Resist. 2004, 10, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Widodo, A.; Helmi Effendi, M.; Khairullah, A.R.; Helmi, M. Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli from Livestock. Syst. Rev. Pharm. 2020, 11, 382–392. [Google Scholar]
- Mo, S.S.; Telke, A.A.; Osei, K.O.; Sekse, C.; Slettemeås, J.S.; Urdahl, A.M.; Ilag, H.K.; Leangapichart, T.; Sunde, M. BlaCTX–M–1/IncI1-Iγ Plasmids Circulating in Escherichia coli From Norwegian Broiler Production Are Related, but Distinguishable. Front. Microbiol. 2020, 11, 333. [Google Scholar] [CrossRef] [PubMed]
- Zurfluh, K.; Wang, J.; Klumpp, J.; Nüesch-Inderbinen, M.; Fanning, S.; Stephan, R. Vertical Transmission of Highly Similar blaCTX-M-1-Harbouring IncI1 Plasmids in Escherichia coli with Different MLST Types in the Poultry Production Pyramid. Front. Microbiol. 2014, 5, 519. [Google Scholar] [CrossRef] [PubMed]
- Saad, D.; Sultan, S.; Abdelhalem, M.; Abdul Azeem, M. Molecular Detection of blaTEM, blaSHV and blaOXA from Escherichia coli Isolated from Chickens. J. Vet. Anim. Res. 2019, 2, 102. [Google Scholar]
- EFSA. Scientific Opinion on Chloramphenicol in Food and Feed. Eur. Food Saf. Auth. J. 2014, 12, 3907. [Google Scholar] [CrossRef]
- Yoon, M.Y.; Bin Kim, Y.; Ha, J.S.; Seo, K.W.; Noh, E.B.; Son, S.H.; Lee, Y.J. Molecular Characteristics of Fluoroquinolone-Resistant Avian Pathogenic Escherichia coli Isolated from Broiler Chickens. Poult. Sci. 2020, 99, 3628–3636. [Google Scholar] [CrossRef] [PubMed]
- Abo-Amer, A.E.; Shobrak, M.Y.; Altalhi, A.D. Isolation and Antimicrobial Resistance of Escherichia coli Isolated from Farm Chickens in Taif, Saudi Arabia. J. Glob. Antimicrob. Resist. 2018, 15, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Cudkowicz, N.A.; Schuldiner, S. Deletion of the Major Escherichia coli Multidrug Transporter acrB Reveals Transporter Plasticity and Redundancy in Bacterial Cells. PLoS ONE 2019, 14, e0218828. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, G.; Pasqua, M.; Colonna, B.; Prosseda, G.; Grossi, M. Expression Profile of Multidrug Resistance Efflux Pumps During Intracellular Life of Adherent-Invasive Escherichia coli Strain LF82. Front. Microbiol. 2020, 11, 1935. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Felipe Beltrán, J.; Brito, I.L. Functions Predict Horizontal Gene Transfer and the Emergence of Antibiotic Resistance. Sci. Adv. 2021, 7, eabj5056. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y. Mechanisms of Bacterial Resistance to Macrolide Antibiotics. J. Infect. Chemother. 1999, 5, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Deng, W.; Liu, S.; Yu, X.; Mustafa, G.R.; Chen, S.; He, L.; Ao, X.; Yang, Y.; Zhou, K.; et al. Presence of Heavy Metal Resistance Genes in Escherichia Coli and Salmonella Isolates and Analysis of Resistance Gene Structure in E. coli E308. J. Glob. Antimicrob. Resist. 2020, 21, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.; Zhang, T.L.; Cai, T.G.; Xiang, Q.; Zhu, D. Effects of Heavy Metal and Disinfectant on Antibiotic Resistance Genes and Virulence Factor Genes in the Plastisphere from Diverse Soil Ecosystems. J. Hazard. Mater. 2024, 465, 133335. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.A.; Marouf, S.A.; Erfan, A.M.; Nasef, S.A.; El Jakee, J.K. The Occurrence of Disinfectant and Antibiotic-Resistant Genes in Escherichia coli Isolated from Chickens in Egypt. Vet. World 2019, 12, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Marazzato, M.; Aleandri, M.; Massaro, M.R.; Vitanza, L.; Conte, A.L.; Conte, M.P.; Nicoletti, M.; Comanducci, A.; Goldoni, P.; Maurizi, L.; et al. Escherichia coli Strains of Chicken and Human Origin: Characterization of Antibiotic and Heavy-Metal Resistance Profiles, Phylogenetic Grouping, and Presence of Virulence Genetic Markers. Res. Vet. Sci. 2020, 132, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, L.L.; Huamán, D.C.; Cueva, C.R.; Gonzales, C.D.; León, Y.I.; Espejo, T.S.; Monge, G.M.; Alcántara, R.R.; Hernández, L.M. Genomic Analysis of Multidrug-Resistant Escherichia coli Strains Carrying the mcr-1 Gene Recovered from Pigs in Lima-Peru. Comp. Immunol. Microbiol. Infect. Dis. 2023, 99, 102019. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Gupta, S.K.; Adenipekun, E.O.; Barrett, J.B.; Hiott, L.M.; Woodley, T.A.; Iwalokun, B.A.; Oluwadun, A.; Ramadan, H.H.; Frye, J.G.; et al. Genome Analysis of Multidrug-Resistant Escherichia coli Isolated from Poultry in Nigeria. Foodborne Pathog. Dis. 2020, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.T.; Liao, X.P.; Yang, S.S.; Wang, X.M.; Li, L.L.; Sun, J.; Yang, Y.R.; Fang, L.X.; Li, L.; Zhao, D.H.; et al. Detection of Mutations in the gyrA and parC Genes in Escherichia coli Isolates Carrying Plasmid-Mediated Quinolone Resistance Genes from Diseased Food-Producing Animals. J. Med. Microbiol. 2012, 61, 1591–1599. [Google Scholar] [CrossRef] [PubMed]
- Haley, B.J.; Kim, S.W.; Salaheen, S.; Hovingh, E.; Van Kessel, J.A.S. Genome-Wide Analysis of Escherichia coli Isolated from Dairy Animals Identifies Virulence Factors and Genes Enriched in Multidrug-Resistant Strains. Antibiotics 2023, 12, 1559. [Google Scholar] [CrossRef] [PubMed]
- Ramatoulaye, B.; Lidia, A.K.; Maria, A.M.; Zoya, N.M.; Dmitry, E.P.; Alina, T.S.; Lancei, K.; Mountaga, S.; Mamadou, Y.B.; Mohamed, S.T. Characteristics of Antibiotic Resistance of Escherichia coli Strains in People Suffering from Gastroenteritis in the Republic of Guinea. Afr. J. Microbiol. Res. 2025, 19, 11–19. [Google Scholar] [CrossRef]
- Beutin, L.; Krause, G.; Zimmermann, S.; Kaulfuss, S.; Gleier, K. Characterization of Shiga Toxin-Producing Escherichia coli Strains Isolated from Human Patients in Germany over a 3-Year Period. J. Clin. Microbiol. 2004, 42, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Jennings, M.; Barbieri, N.; Zhang, L.; Adhikari, P.; Ramachandran, R. Characterization of Avian Pathogenic Escherichia coli Isolated from Broiler Breeders with Colibacillosis in Mississippi. Poultry 2023, 2, 24–39. [Google Scholar] [CrossRef]
- Logue, C.M.; Wannemuehler, Y.; Nicholson, B.A.; Doetkott, C.; Barbieri, N.L.; Nolan, L.K. Comparative Analysis of Phylogenetic Assignment of Human and Avian ExPEC and Fecal Commensal Escherichia coli Using the (Previous and Revised) Clermont Phylogenetic Typing Methods and Its Impact on Avian Pathogenic Escherichia coli (APEC) Classification. Front. Microbiol. 2017, 8, 283. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Dong, Y.; Chen, Q.; Zhang, C.; He, K.; Hu, G.; He, D.; Yuan, L. Horizontal Transfer Characterization of ColV Plasmids in blaCTX-M-Bearing Avian Escherichia coli. Poult. Sci. 2024, 103, 103631. [Google Scholar] [CrossRef] [PubMed]
- Truşcă, B.S.; Gheorghe-Barbu, I.; Manea, M.; Ianculescu, E.; Barbu, I.C.; Măruțescu, L.G.; Dițu, L.M.; Chifiriuc, M.C.; Lazăr, V. Snapshot of Phenotypic and Molecular Virulence and Resistance Profiles in Multidrug-Resistant Strains Isolated in a Tertiary Hospital in Romania. Pathogens 2023, 12, 609. [Google Scholar] [CrossRef] [PubMed]
- Coulthurst, S. The Type VI Secretion System: A Versatile Bacterial Weapon. Microbiology 2019, 165, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Mey, A.R.; Gómez-Garzón, C.; Payne, S.M. Iron Transport and Metabolism in Escherichia, Shigella, and Salmonella. EcoSal Plus 2021, 9, eESP-0034. [Google Scholar] [CrossRef] [PubMed]
- Tobia, P.-E.S.; Ohimain, E.I. Molecular Determination of Virulent Genes from Avian Pathogenic Escherichia coli Isolated from Poultry Farm Droppings in Bayelsa State, Nigeria. Microbes Infect. Dis. 2025, 6, 259–266. [Google Scholar] [CrossRef]
- Martínez, J.L. Ecology and Evolution of Chromosomal Gene Transfer between Environmental Microorganisms and Pathogens. Microbiol. Spectr. 2018, 6, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, P.; Rajabnia, M.; Maali, A.; Ferdosi-Shahandashti, E. Integron and Its Role in Antimicrobial Resistance: A Literature Review on Some Bacterial Pathogens. Iran. J. Basic Med. Sci. 2020, 24, 136–142. [Google Scholar] [CrossRef]
- Touchon, M.; Perrin, A.; De Sousa, J.A.M.; Vangchhia, B.; Burn, S.; O’Brien, C.L.; Denamur, E.; Gordon, D.; Rocha, E.P.C. Phylogenetic Background and Habitat Drive the Genetic Diversification of Escherichia coli. PLoS Genet. 2020, 16, e1008866. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Primer (5′ → 3′) | Annealing Temperature | Amplicon Size (bp) | Reference | |
---|---|---|---|---|---|
Antibiotic Resistance Genes | ampC | AATGGGTTTTCTACGGTCTG | 57 °C | 191 | [20] |
GGGCAGCAAATGTGGAGCAA | |||||
blaTEM | ATTCTTGAAGACGAAAGGGC | 60 °C | 1150 | [21] | |
ACGCTCAGTGGAACGAAAAC | |||||
blaSHV | CACTCAAGGATGTATTGTG | 50 °C | 885 | [22] | |
TTAGCGTTGCCAGTGCTCG | |||||
blaCTX-M | CGATGTGCAGTACCAGTAA | 52 °C | 585 | [23] | |
TTAGTGACCAGAATCAGCGG | |||||
blaCTX-M9 | GTGACAAAGAGAGTGCAACGG | 62 °C | 857 | [24] | |
ATGATTCTCGCCGCTGAAGCC | |||||
blaVIM | TTTGGTCGCATATCGCAACG | 66 °C | 500 | [25] | |
CCATTCAGCCAGATCGGCAT | |||||
blaIMP | GTTTATGTTCATACTCG | 45 °C | 432 | ||
GGTTTAAAAAACAACCAC | |||||
blaOXA | CCAAAGACGTGGATG | 61 °C | 817 | [26] | |
GTTAAATTCGACCCCAAGTT | |||||
aac(3′)-II | ACTGTGATGGGATACGCGTC | 60 °C | 237 | [27] | |
CTCCGTCAGCGTTTCAGCTA | |||||
aac(3′)-IV | CTTCAGGATGGCAAGTTGGT | 286 | |||
TACTCTCGTTCTCCGCTCAT | |||||
aac(6′)-aph(2) | CCAAGAGCAATAAGGGCATA | 60 °C | 220 | ||
CACTATCATAACCACTACCG | |||||
aadA1 | GCAGCGCAATGACATTCTTG | 60 °C | 282 | [28] | |
ATCCTTCGGCGCGATTTTG | |||||
aadA5 | CTTCAGTTCGGTGAGTGGC | 55 °C | 453 | [29] | |
CAATCGTTGCTTTGGCATAT | |||||
tetA | GTAATTCTGAGCACTGTCGC | 62 °C | 937 | [30] | |
CTGCCTGGACAACATTGCTT | |||||
tetB | CTCAGTATTCCAAGCCTTTG | 57 °C | 416 | ||
CTAAGCACTTGTCTCCTGTT | |||||
aac(6′)-Ib | TTGCGATGCTCTATGAGTGGCTA | 55 °C | 482 | [31] | |
CTCGAATGCCTGGCGTGTTT | |||||
dfrA | CCTTGGCACTTACCAAATG | 50 °C | 374 | [32] | |
CTGAAGATTCGACTTCCC | |||||
sul1 | TGGTGACGGTGTTCGGCATTC | 62 °C | 789 | [33] | |
GCGAGGGTTTCCGAGAAGGTG | |||||
sul2 | CGGCATCGTCAACATAACC | 50 °C | 722 | [34] | |
GTGTGCGGATGAAGTCAG | |||||
sul3 | GAGCAAGATTTTTGGAATCG | 51 °C | 792 | [35] | |
CATCTGCAGCTAACCTAGGGCTTTGGA | |||||
cmlA | TGTCATTTACGGCATACTCG | 55 °C | 455 | [28] | |
ATCAGGCATCCCATTCCCAT | |||||
floR | CACGTTGAGCCTCTATAT | 868 | |||
ATGCAGAAGTAGAACGCG | |||||
Integrases | int1 | GGGTCAAGGATCTGGATTTCG | 62 °C | 483 | [33] |
GGGTCAAGGATCTGGATTTCG | |||||
int2 | CACGGATATGCGACAAAAAGGT | 788 | |||
GTAGCAAACGAGTGACGAAATG | |||||
Virulence Factors | fimA | GTTGTTCTGTCGGCTCTGTC | 55 °C | 447 | [36] |
ATGGTGTTGGTTCCGTTATTC | |||||
hylA | AACAAGGATAAGCACTGTTCTGGCT | 63 °C | 1177 | [37] | |
ACCATATAAGCGGTCATTCCCGTCA | |||||
papC | GACGGCTGTACTGCAGGGTGTGGGG | 328 | |||
ATATCCTTTCTGCAGGGATGCAATA | |||||
aer | TACCGGATTGTCATATGCAGACCGT | 602 | |||
AATATCTTCCTCCAGTCCGGAGAAG | |||||
cnf1 | AAGATGGAGTTTCCTATGCAGGAG | 498 | |||
CATTCAGAGTCCTGCCCTCATTATT | |||||
Phylogroups | chuA | GACGAACCAACGGTCAGGAT | 55 °C | 279 | [19] |
TGCCGCCAGTACCAAAGACA | |||||
yjaA | TGAAGTGTCAGGAGACGCTG | 211 | |||
ATGGAGAATGCGTTCCTCAAC | |||||
tspE4.C2 | GAGTAATGTCGGGGCATTCA | 152 | |||
CGCGCCAACAAAGTATTACG |
Isolate | Phenotype | β-Lactamase Genes | Non-β-Lactamase Genes | Chromosomal Mutations | MLST Type | O-Serotype | Plasmid Replicons (Reference Plasmid) |
---|---|---|---|---|---|---|---|
JR25 | AMP-TET | blaTEM-1B | tetA, acrF, mdtM, terD, terW, terZ | glpT_E448K | ST155 | O5:H11 | IncFIA, IncFIB, IncFII(pHN7A8), IncY |
JR26 | Susceptible | - | acrF, mdtM, ermD, ermE | cyaA_S352T, glpT_E448K | ST5273-1LV | O51:H45 | IncFIB, IncY, IncFII (29), IncFII(pSFO) |
JR29 | AMP-C-CIP-NAL-SME-TET-TRI | blaTEM-1B | catA1, cmlA1, aph(6)-Id, aph(3″)-Ib, aadA1, aadA2b, tetA, dfrA1, sul1, sul2, sul3, acrF, mdtM, ermE, qacE, qacL, terD, terW, terZ | gyrA p.S83L, glpT_E448K | ST4980 | O88:H7 | IncFIB, IncHI2, IncHI2A, IncQ1 |
JR30 | AMP-AML- CAZ-CEP-CTX-PIT-C-CIP-TET-TRI | blaTEM-30, blaTEM-1B, blaTEM-207, blaOXA-10 | floR, cmlA5, qnrS1, tetA, dfrA14, aadA1, ARR-2, acrF, mdtM | glpT_E448K | ST994 | O174:H7 | IncFIA, IncFIB, IncY, IncFIC(FII), IncX1 |
JR32 | AMP-CAZ-CEP-CTX-TET | blaTEM-126, blaTEM-106, blaTEM-1B, blaTEM-135 | tetA, acrF, mdtM, merR | glpT_E448K | ST345 | O8:H21 | IncFIB, IncFII |
JR34 | AMP | blaTEM-1B | acrF, mdtM, ermE | cyaA_S352T, glpT_E448K | ST3107 | O69:H38 | IncFIB, IncFIC(FII), IncFII |
JR35 | AMP | blaTEM-1A | acrF, mdtM, ermE | glpT_E448K | ST201 | O8:H19 | IncFIB, IncFII |
JR37 | AMP | blaTEM-1A | acrF, mdtM, ermE | glpT_E448K | ST201 | O8:H19 | IncFIB, IncFII |
JR39 | Susceptible | - | acrF, mdtM | glpT_E448K, uhpT_E350Q | ST1056 | O174:H28 | |
JR42 | AMP-CAZ-CEP-CTX-CIP-NAL | blaCTX-M-1 | acrF, mdtM, ermE | gyrA p.S83L, cyaA_S352T, glpT_E448K | ST93 | O5:H10 | IncFIB, IncFIC(FII), IncI1-I(Alpha) |
JR43 | AMP-C-CIP-NAL-CN-SME-TOB-TET | blaTEM-1A | catA1, sat2, aadA9, aadA13, aadA1, mph(B), aac(3)-IIa, tetB, sul1, acrF, mdtM, ermE, qacE | gyrA p.S83L, glpT_E448K | ST665 | NT:H4 | IncFIB, IncFIC(FII) |
JR46 | Susceptible. | acrF, mdtM, ermE | glpT_E448K | ST602 | NT:H21 | IncFIB, IncFIC(FII), IncX1, Col(pHAD28) | |
JR48 | AMP-CIP-NAL-SME-TRI | blaTEM-1C | aadA5, dfrA17, sul2, acrF, mdtM, ermE | gyrA p.S83L, gyrA p.D87N, parC p.E84G, parC p.S80I, glpT_E448K | ST2973 | O93:H16 | IncFIB, IncY, IncFII, IncFIB(pLF82-PhagePlasmid) |
JR50 | CIP-NAL | - | acrF, mdtM, ermE | gyrA p.S83L | ST2973 | O176:H12 | IncFIB, IncFII, p0111 |
JR52 | AMP-TET | blaTEM-1A | tetA, acrF, mdtM, ermD, ermE, merC, merP, merR, merT | cyaA_S352T, glpT_E448K, nfsA_Q44STOP | ST117 | O114:H4 | IncFIB, IncFIC(FII), Col(MG828), Col156 |
JR53 | AMP-TET | blaTEM-1C | tetA, acrF, mdtM, ermE, pcoA, pcoB, pcoC, pcoD, pcoE, pcoR, pcoS, silA, silB, silC, silE, silF, silP, silS | glpT_E448K | ST58 | O29:H34 | IncFIB, IncFII(pRSB107) |
JR54 | AMP-TET | blaTEM-1C | tetA, acrF, mdtM, ermE, pcoA, pcoB, pcoC, pcoD, pcoE, pcoR, pcoS, silA, silB, silC, silE, silF, silP, silS | glpT_E448K | ST58 | O29:H34 | IncFIB, IncFII(pRSB107) |
JR56 | AMP-CIP-TET | blaTEM-1B | qnrS1, tetA, acrF, mdtM, ermE, terD, terW, terZ | glpT_E448K | ST155 | O8:H51 | IncFII(29), IncX1 |
JR58 | AMP-TET | blaTEM-1B | aph(6)-Id, aph(3″)-Ib, tetA, acrF, mdtM, ermE, terB, terC, terD, terE | cyaA_S352T, glpT_E448K | ST3107 | O69:H38 | IncFIB, IncFIC(FII), p0111 |
JR60 | Susceptible | - | acrF, mdtM, ermE | glpT_E448K | ST1611 | O125ab:H19 | IncFIA, IncFIB, IncFIC(FII) |
Isolate | Antibiotic Resistance | Virulence Factors | Integrons | Phylogroup | |
---|---|---|---|---|---|
Phenotype | Genotype | ||||
JR27 | Susceptible | - | fimA | - | B1 |
JR28 | Susceptible | - | fimA, aer | - | B1 |
JR31 | Susceptible | - | fimA | - | A |
JR33 | Susceptible | - | fimA, aer | - | B1 |
JR36 | Susceptible | - | fimA | - | B1 |
JR38 | Susceptible | - | fimA | - | A |
JR40 | Susceptible | - | fimA, aer | - | B1 |
JR41 | Susceptible | - | fimA, aer | - | B1 |
JR44 | Susceptible | - | fimA | - | B1 |
JR45 | Susceptible | - | fimA, aer | - | D |
JR47 | Susceptible | - | fimA, aer | - | B1 |
JR49 | Susceptible | - | fimA | - | B1 |
JR51 | CIP | - | fimA, aer | - | D |
JR55 | Susceptible | - | fimA, aer | - | B1 |
JR57 | TET | tetB | fimA, aer | - | B1 |
JR59 | Susceptible | - | fimA, aer | - | B1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, J.; Silva, V.; Freitas, C.; Pinto, P.; Vieira-Pinto, M.; Batista, R.; Nunes, A.; Gomes, J.P.; Pereira, J.E.; Igrejas, G.; et al. Genomic Analysis of Antibiotic Resistance and Virulence Profiles in Escherichia coli Linked to Sternal Bursitis in Chickens: A One Health Perspective. Vet. Sci. 2025, 12, 675. https://doi.org/10.3390/vetsci12070675
Ribeiro J, Silva V, Freitas C, Pinto P, Vieira-Pinto M, Batista R, Nunes A, Gomes JP, Pereira JE, Igrejas G, et al. Genomic Analysis of Antibiotic Resistance and Virulence Profiles in Escherichia coli Linked to Sternal Bursitis in Chickens: A One Health Perspective. Veterinary Sciences. 2025; 12(7):675. https://doi.org/10.3390/vetsci12070675
Chicago/Turabian StyleRibeiro, Jessica, Vanessa Silva, Catarina Freitas, Pedro Pinto, Madalena Vieira-Pinto, Rita Batista, Alexandra Nunes, João Paulo Gomes, José Eduardo Pereira, Gilberto Igrejas, and et al. 2025. "Genomic Analysis of Antibiotic Resistance and Virulence Profiles in Escherichia coli Linked to Sternal Bursitis in Chickens: A One Health Perspective" Veterinary Sciences 12, no. 7: 675. https://doi.org/10.3390/vetsci12070675
APA StyleRibeiro, J., Silva, V., Freitas, C., Pinto, P., Vieira-Pinto, M., Batista, R., Nunes, A., Gomes, J. P., Pereira, J. E., Igrejas, G., Barros, L., Heleno, S. A., Reis, F. S., & Poeta, P. (2025). Genomic Analysis of Antibiotic Resistance and Virulence Profiles in Escherichia coli Linked to Sternal Bursitis in Chickens: A One Health Perspective. Veterinary Sciences, 12(7), 675. https://doi.org/10.3390/vetsci12070675