Sentinel Animals in a One Health Approach to Harmful Cyanobacterial and Algal Blooms
Abstract
:1. Introduction
2. Example Animal Sentinel Systems and Events
2.1. Aquatic Species
2.1.1. Invertebrates
2.1.2. Fish
2.1.3. Marine Mammals
2.2. Birds
2.3. Domestic Animals
2.4. A One Health Approach to HABs
3. Summary and Conclusions
Author Contributions
Conflicts of Interest
References
- National Research Council. Animals as Sentinels of Environmental Health Hazards; National Research Council: Washington, DC, USA, 1991; p. 160. [Google Scholar]
- Burrell, G.A.; Siebert, F.M. Gases Found in Coal Mines; Miner’s Circular 14; Bureau of Mines, Department of the Interior: Washington, DC, USA, 1916. [Google Scholar]
- Francis, G. Poisonous Australian Lake. Nature 1878, 18, 11–12. [Google Scholar] [CrossRef]
- Schwimmer, M.; Schwimmer, D. Medical aspects of phycology. In Algae, Man, and the Environment; Jackson, A.F., Ed.; Syracuse University Press: Syracuse, NY, USA, 1968; pp. 279–358. [Google Scholar]
- Stewart, I.; Seawright, A.A.; Shaw, G.R. Cyanobacterial poisoning in livestock, wild mammals, and birds—An overview. In Cyanobacterial Harmful Algal Blooms, State of the Science and Research Needs; Hudnell, H.K., Ed.; Springer: New York, NY, USA, 2008; pp. 613–636. [Google Scholar]
- One Health Initiative. Available online: http://onehealthinitiative.com/ (accessed on 1 February 2016).
- Kimbrough, K.L.; Johnson, W.E.; Lauenstein, G.G.; Christensen, J.D.; Apeti, D.A. An Assessment of Two Decades of Contaminant Monitoring in the Nation’s Coastal Zone; NOAA Technical Memorandum NOS NCCOS 74; Silver Spring, MD, USA, 2008; p. 105. Available online: http://ccma.nos.noaa.gov/publications/MWTwoDecades.pdf (accessed on 9 September 2015).
- National Status and Trends Mussel Watch Program. Available online: http://www.coris.noaa.gov/metadata/records/html/mw_project.html (accessed on 7 October 2015).
- Lewitus, A.J.; Horner, R.A.; Caron, D.A.; Garcia-Mendoza, E.; Hickey, B.M.; Hunter, M.; Huppert, D.D.; Kudela, R.M.; Langlois, G.W.; Largier, J.L.; et al. Harmful algal blooms along the North American west coast region: History, trends, causes, and impacts. Harmful Algae 2012, 19, 133–159. [Google Scholar] [CrossRef] [Green Version]
- Rapid Toxin Testing for Shellfish in FLORIDA. Available online: http://m.myfwc.com/research/redtide/research/current/toxin-testing/ (accessed on 8 September 2015).
- New Sensor Array to Monitor Impacts of Changing Gulf of Maine Conditions on New England Red Tide. Available online: http://www.whoi.edu/news-release/redtide (accessed on 8 September 2015).
- Trainer, V.L.; Suddleson, M. Monitoring approaches for early warning of domoic acid events in Washington State. Oceanography 2005, 18, 228–237. [Google Scholar] [CrossRef]
- Trainer, V.L.; Cochlan, W.P.; Erickson, A.; Bill, B.D.; Cox, F.H.; Borchert, J.A.; Lefebvre, K.A. Recent domoic acid closures of shellfish harvest areas in Washington State inland waterways. Harmful Algae 2007, 6, 449–459. [Google Scholar] [CrossRef]
- Large Bloom of Toxic Algae Underway in Monterey Bay and Beyond. Available online: http://news.ucsc.edu/2015/05/algal-bloom.html (accessed on 8 September 2015).
- Massive Domoic Acid Event in Monterey Bay. Available online: http://sanctuarysimon.org/news/2015/05/massive-domoic-acid-event-in-monterey-bay/ (accessed on 5 October 2015).
- West Coast Harmful Algal Bloom NOAA Responds to Unprecedented Bloom that Stretches from Central California to the Alaska Peninsula. Available online: http://oceanservice.noaa.gov/news/sep15/westcoast-habs.html (accessed on 4 December 2015).
- Flewelling, L.J.; Naar, J.P.; Abbot, J.P.; Baden, D.G.; Barros, N.B.; Bossart, G.D.; Bottein, M.-Y.D.; Hammond, D.G.; Haubold, E.M.; Heil, C.A.; et al. Red tides and marine mammal mortalities: Unexpected brevetoxin vectors may account for deaths long after or remote from an algal bloom. Nature 2005, 435, 755–756. [Google Scholar] [CrossRef] [PubMed]
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute. Available online: http://myfwc.com/research/redtide/ (accessed on 2 October 2015).
- Open/Closed Status of Shellfish Areas for Harvesting. Available online: http://shellfish.floridaaquaculture.com/seas/seas_centralgulf.htm (accessed on 5 October 2015).
- Florida Fish and Wildlife Conservation Commission, Red Tide Current Status. Available online: http://myfwc.com/research/redtide/statewide/ (accessed on 2 October 2015).
- Miller, M.A.; Kudela, R.M.; Mekebri, A.; Crane, D.; Oates, S.C.; Tinker, T.M.; Staedlers, M.; Millere, W.A.; Toy-Choutka, S.; Dominik, C.; et al. Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters. PLoS ONE 2010, 5. [Google Scholar] [CrossRef] [PubMed]
- Lehman, P.W.; Boyer, G.; Hall, C.; Waller, S.; Gehrts, K. Distribution and toxicity of a new colonial Microcystis aeruginosa bloom in San Francisco Bay Estuary, California. Hydrogiologia 2005, 541, 87–90. [Google Scholar] [CrossRef]
- Tanner, R.; Kangur, K.; Spoof, L.; Meriluoto, J. Hepatotoxic cyanobacterial peptides in Estonian freshwater bodies and inshore marine water. Proc. Estonian Acad. Sci. Biol. Ecol. 2005, 54, 40–52. [Google Scholar]
- Gibble, C.M.; Kudela, R.M. Detection of persistent microcystin toxins at the land-sea interface in Monterey Bay, California. Harmful Algae 2014, 39, 146–153. [Google Scholar] [CrossRef]
- Takahashi, T.; Umehara, A.; Tsutsumi, H. Diffusion of microcystins (cyanobacteria hepatotoxins) from the reservoir of Isahaya Bay, Japan, into the marine and surrounding ecosystems as a result of large-scale drainage. Mar. Pollut. Bull. 2014, 89, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Whangchai, N.; Wannom, S.; Gutierrez, R.; Kannikia, K.; Promna, R.; Iwami, N.; Itayama, T. Accumulation of microcystins in water and economic fish in Phayap Lake, and fish ponds along the Ing River tributary in Chiang Rai, Thailand. J. Agric. Sci. 2013, 4, 52–56. [Google Scholar]
- De Pace, R.; Valeria, V.; Bucci, M.S.; Gallo, P.; Milena, B. Microcystin contamination in sea mussel farms from the Italian southern Adriatic coast following cyanobacterial blooms in an artificial reservoir. J. Ecosyst. 2014. Available online: http://www.hindawi.com/journals/jeco/2014/374027/ (accessed on 6 October 2015). [Google Scholar]
- Preece, E.P.; Moorea, B.C.; Hardy, F.J.; Deobald, L.A. First Detection of Microcystin in Puget Sound, Washington, Mussels (Mytilus trossulus). Lake Reserv. Manag. 2015, 31, 50–54. [Google Scholar] [CrossRef]
- Wall, J.M. Identification and Detection of Cyanobacteria and Their Toxins in Pacific Oysters. Master’s Thesis, Master of Science, University of Otago, New Zealand, 2012. Available online: http://hdl.handle.net/10523/2621 (accessed on 28 October 2015). [Google Scholar]
- Schmidt, J.R.; Wilhelm, S.W.; Boyer, G.L. The Fate of Microcystins in the Environment and Challenges for Monitoring. Toxins 2014, 3354–3387. [Google Scholar] [CrossRef] [PubMed]
- Shellfish Poisonings. Available online: http://www.floridahealth.gov/environmental-health/aquatic-toxins/shellfish-poisoning.html (accessed on 5 October 2015).
- Gulf Coast Oyster Reefs may be Home to Emerging Infection Threat. Available online: http://blog.al.com/live/2010/04/gulf-coast-oyster-reefs-may-be.html (accessed on 5 October 2015).
- Great Lakes Environmental Research Laboratory. Available online: http://www.glerl.noaa.gov/res/waterQuality/?targetTab=habs (accessed on 5 October 2015).
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef]
- Steidinger, K.A.; Burkholder, J.M.; Glasgow, H.B.; Hobbs, C.W.; Garrett, J.K.; Truby, E.W.; Noga, E.J.; Smith, S.A. Pfiesteria piscicida gen. et sp. nov. (Pfiesteriaceae fam. nov.), a new toxic dinoflagellate with a complex life cycle and behavior. J. Phycol. 1996, 32, 157–164. [Google Scholar] [CrossRef]
- Glasgow, H.B., Jr.; Burkholder, J.M.; Schmechel, D.E.; Tester, P.A.; Rublee, P.A. Insidious effects of a toxic estuarine dinoflagellate on fish survival and human health. J. Toxicol. Environ. Health 1995, 46, 501–522. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, J.M.; Noga, E.J.; Hobbs, C.W.; Glasgow, H.B., Jr. New “phantom” dinoflagellate is the causative agent of major estuarine fish kills. Nature 1992, 358, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Parsons, G.R.; Morgan, A.; Whitehead, J.C.; Haab, T.C. The welfare effects of Pfiesteria-Related fish kills: A contingent behavior analysis of seafood consumers. Agric. Res. Econ. Rev. 2006, 35, 348–356. [Google Scholar]
- Vogelbein, W.K.; Lovko, V.J.; Reece, K.S. Pfiesteria. In Oceans and Human Health; Walsh, P.J., Smith, S.L., Fleming, L.E., Solo-Gabriel, H.M., Gerwick, W.H., Eds.; Academic Press: Burlington, MA, USA, 2006; pp. 297–325. [Google Scholar]
- Brownie, C.; Glasgow, H.B.; Burkholder, J.M.; Reed, R.; Tang, Y. Re-evaluation of the relationship between Pfiesteria and estuarine fish kills. Ecosystems 2003, 6, 1–10. [Google Scholar] [CrossRef]
- Burkholder, J.M.; Marshall, H.G. Toxigenic Pfiseteria species—Updates on biology, ecology, toxins, and impacts. Harmful Algae 2012, 14, 196–230. [Google Scholar] [CrossRef]
- Moestrup, O.; Hansen, G.; Daugbjerg, N.; Lundholm, N.; Overton, J.; Vestergard, M.; Steenfeldt, S.J.; Calado, A J.; Hansen, P.J. The dinoflgaellates Pfiesteria shumwayae and Luciella masanensis cause fish kills in recirculation fish farms in Denmark. Harmful Algae 2014, 32, 33–39. [Google Scholar] [CrossRef]
- Swinker, M.; Koltai, D.; Wilkins, J.; Stopford, W. Is there an estuary associated syndrome in North Carolina? NCMJ 2001, 62, 126–132. [Google Scholar] [PubMed]
- Morris, J.G.; Grattan, L.M.; Wilson, L.A.; Meyer, W.A.; McCarter, R.; Bowers, H.A.; Hebel, J.R.; Matuszak, D.L.; Oldach, D.W. Occupational exposure to Pfiesteria species in estuarine waters is not a risk factor for illness. Environ. Health Perspect. 2006, 114, 1038–1043. [Google Scholar] [CrossRef] [PubMed]
- Burdick, S.M.; Hewitt, D.A. Distribution and Condition of Young-of-Year Lost River and Shortnose Suckers in the Williamson River Delta Restoration Project and Upper Klamath Lake, Oregon, 2008–10—Final Report; Open-File Report 2012-1098; U.S. Geological Survey: Seattle, WA, USA, 2012; p. 52.
- Martin, B.; Echols, K.; Feltz, K.; Elliot, D.; Conway, C.M. Effects of microcystin on juvenile Lost River Suckers. In Proceeding of the 145th Annual Meeting, Portland, Oregon, 16–20 August 2015; American Fisheries Society: Bethesda, MD, USA, 2015. [Google Scholar]
- Suckerfish and the Klamath Tribe. Available online: http://indiancountrytodaymedianetwork.com/print/2011/02/14/suckerfish-and-klamath-tribe-16763 (accessed on 4 September 2015).
- The Strange Case of Yellowknife’s Neon Green Pike. Available online: http://www.fieldandstream.com/blogs/the-lateral-line/the-strange-case-of-yellowknifes-neon-green-pike (accessed on 17 September 2015).
- Toxic Golden Alga in Texas. Available online: https://tpwd.texas.gov/landwater/water/environconcerns/hab/media/report.pdf (accessed on 6 October 2015).
- Golden Alga, What is It? Available online: http://tpwd.texas.gov/landwater/water/environconcerns/hab/ga/ (accessed on 6 October 2015).
- Golden Alga Frequently Asked Questions. Available online: http://www.azgfd.gov/temp/golden_alga_faqs.shtml (accessed on 6 October 2015).
- Kent, M.L.; Dawe, S.C.; St. Hilaire, S.; Andersen, R.J. Effects of feeding rate, seawater entry, and exposure to natural biota on the severity of net-Pen liver disease among pen-Reared Atlantic salmon. Prog. Fish Cult. 1996, 58, 43–46. [Google Scholar] [CrossRef]
- Andersen, R.J.; Lu, H.A.; Chen, D.Z.; Holmes, C.F.; Kent, M.L.; Le Blanc, M.; Taylor, F.J.; Williams, D.E. Chemical and biological evidence links microcystins to salmon “netpen liver disease”. Toxicon 1993, 10, 1315–1323. [Google Scholar] [CrossRef]
- Friedman, M.A.; Fleming, L.E.; Fernandez, M.; Bienfang, P.; Schrank, K.; Dickey, R.; Bottein, M.-Y.; Backer, L.; Ayyar, R.; Weisman, R.; et al. Giguatera fish poisoning: Treatment, prevention, and management. Mar. Drugs 2008, 6, 456–479. [Google Scholar] [CrossRef] [PubMed]
- Bossart, G.D. Marine mammals as sentinel species of oceans and human health. Vet. Pathol. 2010. [Google Scholar] [CrossRef] [PubMed]
- Fravel, V.; Van Bonn, W.; Rios, C.; Gulland, F. Meticillin-resistant Staphylococcus aureus in a harbor seal (Phoca vitulina). Vet. Rec. 2011. [Google Scholar] [CrossRef] [PubMed]
- Mazzillo, F.F.M.; Shapiro, K.; Silver, M.W. A new pathogen transmission mechanism in the ocean: The case of sea otter exposure to the land—parasite Toxoplasma gondii. PLoS ONE 2013, 8, e82477. [Google Scholar] [CrossRef] [PubMed]
- Peynson, N.D.; Gutstein, C.S.; Parham, J.F.; Le Roux, J.P.; Chavarria, C.C.; Little, H.; Metallo, A.; Rossi, V; Valenzuela-Toro, A.M.; Velez-Juarbe, J.; et al. Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea. Proc. R. Soc. B 2014, 281, 1–9. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24573855 (accessed on 17 September 2015). [Google Scholar]
- Perl, T.M.; Bedard, L.; Kosatsky, T.; Hockin, J.C.; Todd, E.C.D.; Remis, R.S. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N. Engl. J. Med. 1990, 322, 1775–1780. [Google Scholar] [CrossRef] [PubMed]
- Scholin, C.A.; Gulland, F.; Doucette, G.J.; Benson, S.; Busman, M.; Chavez, F.P.; Cordaro, J.; DeLong, R.; De Voeglaera, A.; Harvey, J.; et al. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 2000, 403, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Gulland, F.M.D.; Haulena, M.; Fauquier, D.; Langlois, G.; Lander, M.E.; Zabka, T.; Duerr, R. Domoic acid toxicity in California sea lions (Zalophus californianius): Clinical signs, treatment and survival. Vet. Rec. 2002, 150, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Bargu, S.; Silver, M.; Goldstein, T.; Roberts, K.; Gulland, F. Complexity of domoic acid-related sea lion strandings in Monterey Bay, California: Foraging patterns, climate events, and toxic blooms. Mar. Ecol. Prog. Ser. 2010, 418, 213–222. [Google Scholar] [CrossRef]
- Zabka, T.S.; Goldstein, T.; Cross, C.; Mueller, R.W.; Kreuder-Johnson, C.; Gill, S.; Gulland, F.M.D. Characterization of a degenerative cardiomyopathy associated with domoic acid toxicity in California sea lions (Zalophus californianus). Vet. Pathol. 2009, 46, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Brodie, E.C.; Gulland, F.M.D.; Greig, D.J.; Hunter, M.; Jaakola, J.; St. Leger, J.; Leighfield, T.A.; Van Dolah, F.M. Domoic acid causes reproductive failure in California sea lions (Zalophus califonianus). Mar. Mammal Sci. 2006, 22, 700–707. [Google Scholar] [CrossRef]
- Goldstein, T.; Mazet, J.A.K.; Zabka, T.S.; Langlois, G.; Colegrove, K.M.; Silver, M.; Bargu, S.; Van Dolah, F.; Leighfield, T.; Conrad, P.A.; et al. Novel symptomatology and changing epidemiology of domoic acid toxicosis in California sea lions (Zalophus californianus): An increasing risk to marine mammal health. Proc. R. Soc. B 2008, 275, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Bossart, G.D.; Baden, D.G.; Ewing, R.Y.; Roberts, B.; Wright, S.C. Brevetoxicosis in manatees (Trichechus manatus latirostris) from the 1996 epizootic: Gross, histologic, and immunohistochemical features. J. Environ. Toxicol. Pathol. 1998, 26, 276–282. [Google Scholar] [CrossRef]
- The Prevalence of Cyanotoxins in Southern California Waterbodies. Available online: http://www.mywaterquality.ca.gov/monitoring_council/bioaccumulation_oversight_group/docs/2012/nov/150pm_howard_fetscher.pdf (accessed on 6 October 2015).
- Work, T.M.; Barr, B.; Beale, A.M.; Fritz, L.; Quilliam, M.A.; Wright, J.L.C. Epidemiology of domoic acid poisoning in brown pelicans (Pelecanus occidentalis) and Brandt’s cormorants (Phalacrocorax penicillatus) in California. J. Zoo Wildl. Med. 1993, 24, 54–62. [Google Scholar]
- Bargu, S.; Silver, M.W.; Ohman, M.D.; Benitez-Nelson, C.R.; Garrison, D.L. Mystery behind Hitchcock’s birds. Nat. Geosci. 2012, 5, 2–3. [Google Scholar] [CrossRef]
- Fritz, L.; Quilliam, M.A.; Wright, J.L.C.; Beale, A.M.; Work, T.M. An outbreak of domoic acid poisoning attributed to the pennate diatom Pseudo-nitzschia australis. J. Phycol. 1992, 28, 439–442. [Google Scholar] [CrossRef]
- Algae Bloom Kills Sea Birds, Other Sea Life in Southern California in Record Numbers. Available online: http://www.sciencedaily.com/releases/2007/04/070427084149.htm (accessed on 6 October 2015).
- Kreuder, C.; Mazet, J.A.; Bossart, G.D.; Carpenter, T.E.; Holyoak, M.; Elie, M.S.; Wright, S.D. Clinicopathologic features of suspected brevetoxicosis in double-crested cormorants (Phalacrocorax auritus) along the Florida Gulf Coast. J. Zoo Wildl. Med. 2002, 33, 8–15. [Google Scholar] [PubMed]
- Thomas, N.J.; Meteyer, C.U.; Sileo, L. Epizootic vacuolar myelinopathy of the central nervous system of bald eagles (Haliaeetus leucocephalus) and American coots (Fulica americana). Vet. Pathol. 1998, 35, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Rocke, T.E.; Miller, K.; Augspurger, T.; Thomas, N.J. Epizootiologic studies of avaian vacularo melinopathy in water birds. J. Wildl. Dis. 2002, 38, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Wilde, S.B.; Murphy, T.M.; Hope, C.P.; Habrun, S.K.; Kempton, J.; Birrenkott, A.; Wiley, F.; Bowerman, W.W.; Lewitus, A.J. Avian vacuolar myelinopathy linked to exotic aquatic plants and a novel cyanobacteria species. Environ. Toxicol. 2005, 20, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Wilde, S.B.; Johansen, J.R.; Wilde, H.D.; Jiang, P.; Bartelme, B.A.; Haynie, R.S. Aetokthonos hydrillicola gen. et sp. nov: Epiphytic cyanobacteria on invasive aquatic plants implicated in avian vacuolar myelinopathy. Phytotaxa 2014, 181, 243–260. [Google Scholar] [CrossRef]
- Fischer, J.R.; Lewis-Weis, L.A.; Tate, C.M.; Gaydos, J.K.; Gerhold, R.W.; Poppenga, R.H. Avian vacuolar myelinopathy outbreaks at a southeaster reservoir. J. Wildl. Dis. 2006, 42, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Jessup, D.A.; Miller, M.A.; Ryan, J.P.; Nevins, H.M.; Kerkering, H.A.; Mekebri, A.; Crane, D.B.; Johnson, T.A.; Kudela, R.M. Mass stranding of marine birds caused by a surfactant-producing red tide. PLoS ONE 2009, 4. [Google Scholar] [CrossRef] [PubMed]
- Backer, L.C.; Landsberg, J.H.; Miller, M.; Keel, K.; Taylor, T.K. Canine Cyanotoxin Poisonings in the United States (1920s–2012): Review of Suspected and Confirmed Cases from Three Data Sources. Toxins 2013, 5, 1597–1628. [Google Scholar] [CrossRef] [PubMed]
- Backer, L.C.; Manasaram-Baptiste, D.; LePrell, R.; Bolton, B. Cyanobacteria and algae blooms: Review of health and environmental data from the harmful algal bloom-related illness surveillance system (HABIS) 2007–2011. Toxins 2015, 7, 1048–1064. [Google Scholar] [CrossRef] [PubMed]
- CDC. One Health. Available online: http://www.cdc.gov/onehealth/ (accessed on 1 February 2016).
- Fleming, L.E.; Kirpatrick, B.; Backer, L.C.; Walsh, C.J.; Nierenberg, K.; Clark, J.; Reich, A.; Hollenbeck, J.; Benson, J.; Cheng, Y.S.; et al. Review of Florida red tide and human health effects. Harmful Algae 2011, 10, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Bates, S.S.; Bird, C.J.; de Freitas, A.S.W.; Foxall, R.; Gilgan, M.; Hanic, L.A.; Johnson, G.R.; McCulloch, A.W.; Odense, P.; Pocklington, R.; et al. Pennate Diatom Nitzschia pungens as the Primary Source of Domoic Acid, a Toxin in Shellfish from Eastern Prince Edward Island, Canada. Can. J. Fish Aquat. Sci. 1989, 46, 1203–1215. [Google Scholar] [CrossRef]
- Mos, L. Domoic acid: A fascinating marine toxin. Environ. Toxicol. Pharmcol. 2001, 9, 79–85. [Google Scholar] [CrossRef]
- Goldberg, J.D. Domoic Acid in the Benthic Food Web of Monterey Bay, California. Master’s Thesis, University Monterey Bay, Moss Landing Marine Laboratories, Moss Landing, CA, USA, 2003. [Google Scholar]
- Cook, P.F.; Reichmuth, C.; Rouse, A.A.; Libby, L.A.; Dennison, S.E.; Carmichael, O.T.; Kruse-Elliot, K.T.; Bloom, J.; Singh, B.; Fravel, V.A.; et al. Algal toxin impairs sea lion memory and hippocampal connectivity, with implications for strandings. Sciencexpress 2015. [Google Scholar] [CrossRef] [PubMed]
- Backer, L.C.; Kirkpatrick, B.; Fleming, L.E.; Cheng, Y.S.; Pierce, R.; Bean, J.A.; Clark, R.; Johnson, D.; Wanner, A.; Tamer, R.; et al. Occupational Exposure to Aerosolized Brevetoxins during Florida Red Tide Events: Impacts on a Healthy Worker Population. Environ. Health Perspect. 2005, 113, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Fleming, L.E.; Kirkpatrick, B.; Backer, L.C.; Bean, J.A.; Wanner, A.; Dalpra, D.; Tamer, R.; Zaias, J.; Cheng, Y.S.; Pierce, R.; et al. Initial Evaluation of the Effects of Aerosolized Florida Red Tide Toxins (Brevetoxins) in Persons with Asthma. Environ. Health Perspect. 2005, 113, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Fleming, L.E.; Kirkpatrick, B.; Backer, L.C.; Bean, J.A.; Wanner, A.; Reich, A.; Zaias, J; Cheng, Y.S.; Pierce, R.; Naar, J.; et al. Aerosolized Red Tide Toxins (Brevetoxins) and Asthma. Chest 2006, 13, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Rankin, K.A.; Alroy, K.A.; Kudela, R.M.; Oates, S.C.; Murray, M.J.; Miller, M.A. Treatment of cyanobacteria (microcystin) toxicosis using oral cholestyramine: Case report of a dog from Montana. Toxins 2013, 5, 1051–1063. [Google Scholar] [CrossRef] [PubMed]
- Dahlem, A.M.; Hassan, A.S.; Swanson, S.P.; Carmichael, W.W.; Beasley, V.R. A model system for studying the bioavailablity of intestinally administered microcystin-LR, a hepatotoxic peptide from the cyanobacterium Microcystis Aeruginosa. Pharm. Toxicol. 1989, 64, 177–181. [Google Scholar] [CrossRef]
- Mereish, K.A.; Bunner, D.L.; Ragland, D.R.; Creasia, D.A. Protection against microcytsin-LR-induced hepatotoxicity by silymarin: Biochemistry, histopathology, and lethality. Pharm. Res. 1991, 8, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Saller, R.; Meier, R.; Brignoli, R. The use of silymarin in the treatment of liver diseases. Drugs 2001, 61, 2035–2063. [Google Scholar] [CrossRef] [PubMed]
- Mengs, U.; Pohl, R.-T.; Mitchell, T. Legalon® SIL: The antidote of choice in patients with acute hepatotoxicity from amatoxin poisoning. Curr. Pharm. Biotechnol. 2012, 13, 1964–1970. [Google Scholar] [CrossRef] [PubMed]
- Florida Department of Environmental Protection. Information on Freshwater Algal Blooms. Available online: http://dep.state.fl.us/labs/biology/hab/index.htm (accessed on 1 February 2016).
- Virginia Department of Health. Harmful Algal Blooms (HABS). Available online: https://www.vdh.virginia.gov/epidemiology/DEE/HABS/index.htm (accessed on 1 February 2016).
- Anderson-Abbs, B.A.; Howard, M.; Taberski, K.M.; Worcester, K.R. California Freshwater Harmful Algal Blooms Assessment and Support Strategy. Available online: http://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/SWAMP/HABstrategy_phase%201.pdf (accessed on 1 February 2016).
- Centers for Disease Control and Prevention. National Outbreak Reporting System. Available online: http://www.cdc.gov/nors/ (accessed on 2 September 2015).
Animal Sentinel | Event | References |
---|---|---|
Aquatic invertebrates and fish | ||
Marine food web organisms | Brevetoxin bioaccumulation associated with Karenia brevis blooms in the Gulf of Mexico and subsequent human poisonings. | Flewelling et al. (2005) [17] |
Invertebrates | Okadaic acid bioaccumulation in Gulf coast oysters associated with algal blooms. | Gulf Coast oyster reefs may be home to emerging infection threat [32] |
Mussels, bivalves, other invertebrates | Environmental contaminant bioaccumulation. | Kimbrough et al. (2008) [7] |
Marine bivalves, crabs | Domoic acid bioaccumulation in marine bivalves and crabs associated with Pseudonitzschia spp. blooms in along western coast of US, from southern California to Alaska, subsequent human and animal (e.g., marine mammals, seabirds) poisonings. | Large bloom of toxic algae underway in Monterey Bay and beyond (2015) Massive domoic acid event in Monterey Bay (2015) [14] |
Mussels and clams | Saxitoxin bioaccumulation in mussels and clams, subsequent human paralytic shellfish poisonings. | Lewitis et al. (2012) [9] |
Mussels | Domoic acid bioaccumulation in mussels, subsequent human amnesic shellfish poisonings. | Perl et al. (1960); Bates et al. (1998) [59,83] |
Invertebrates | Saxitoxin bioaccumulation during dinoflagellate blooms, subsequent poisonings. | Shellfish poisonings [31] |
Diverse species, including razor clams (Siliqua patula), mole crabs (Emerita analoga), fat innkeeper worms (Urechis caupo) | Domoic acid bioconcentration and slow depuration during Pseudonitzschia spp. blooms. | Trainer and Suddleson (2005) Goldberg (2003) [12,85] |
Pike (Esox Lucius) | Algal chemical bioaccumulation make the edges of the pike’s fins, tails, and mouths turn bright neon green | The strange case of Yellowknife’s neon green pike [48] |
Fish, freshwater mollusks, juvenile frogs | Gill-damaging toxin exposure associated with blooms of Prymnesium parvum, subsequent asphyxiation. | Toxic golden alga in Texas [49] |
Lost River sucker (Deltistes luxztus) and shortnose sucker (Chasmistes brevirostris) | Cyanobacteria toxins accumulate in rivers and produce hypoxic conditions, subsequent interference with population recovery. | Burdick and Hewitt (2012); Martin et al. (2015); Suckerfish and the Klamath Tribe [45,46,47] |
Fish | Cyanobacteria blooms (respiration and bloom decay) produce hypoxic conditions and/or mechanical or hemolytic gill damage and respiratory failure, subsequent fish kills. | Hallegraef (1993) [34] |
Commercially-raised marine and estuarine mussels, fish, and other aquatic foods intended for human consumption | Microcystins bioaccumulation associated with cyanobacteria blooms in aquaculture ponds, subsequent poisonings, including net-pen liver disease. | Whangchai et al. (2013); Kent et al. (1996); Anderson et al. (1993) [26,52,53] |
Commercially-raised marine and estuarine mussels, fish, and other aquatic foods intended for human consumption | Microcystins bioaccumulation associated with coastal river cyanobacteria blooms contaminating freshwater-to-marine outflows, subsequent animal poisonings. | De Pace et al. (2014); Preece et al. (2015) [27,28] |
Coastal mariculture, including caged yellowtail fish | Toxin bioaccumulation associated with algae blooms. | Hallegraef (1993) [43] |
Menhaden and other estuarine fish | Unknown toxin exposure thought to be associated with the presence of Pfiesteria piscicida, subsequent fish morbidity and mortality. | Steidinger et al. (1996); Glasgow et al. (1995); Burkholder et al. (1992) [35,36,37] |
Marine mammals | ||
Miocene-era marine mammals | Hypothesized marine HAB-associated toxins bioaccumulation, subsequent mass strandings. | Peyson et al. (2013) [58] |
Southern sea otters | Microcystins bioaccumulation in oysters, mussels, clams, and snails associated with coastal river cyanobacteria blooms contaminating freshwater-to-marine outflows, subsequent Southern sea otter poisoning. | Miller et al. (2010); Lehman et al. (2005); Tanner (2005); Gibble et al. (2014); Takahashi et al. (2014); Wall (2012) [21,22,23,24,25,29] |
California sea lions (Zalophus californianus) | Domoic acid bioaccumulation associated with a Pseudo-nitzschia spp. bloom, subsequent morbidity and mortality of hundreds of sea lions. | Scholin et al. (2000); Gulland et al. (2002); Bargu et al. (2010); Zabka et al. (2009); Brodie et al. (2006); Goldstein et al. (2007) [60,61,62,63,64,65] |
West Indian (Florida) manatees (Trichechus manatus latirostris) | Brevetoxin bioaccumulation associated with Karenia brevis bloom, subsequent morbidity and mortality. | Flewelling et al. (2005); Bossart et al. (1998) [17,66] |
Bottlenose dolphins (Tursiops truncatus) | Brevetoxin bioaccumulation associated with Karenia brevis bloom, subsequent morbidity and mortality. | Flewelling et al. (2005) [17] |
Birds | ||
Brown Pelicans (Pelecanus occidentalis) and Brandt’s Cormorants (Phalacrocorax penicillatus) in California | Domoic acid bioaccumulation in anchovies during a large Pseudonitzchia australis bloom off the California coast, subsequent seabird poisonings. | Work et al. (1993); Algae bloom kills sea birds, other sea life in Southern California in record numbers [68,71] |
Sooty shearwaters (Puffinus griseus) | Domoic acid accumulation in food web, particularly anchovies. | Bargu et al. (2012) [69] |
Double crested cormorants (Phalacrocorax auritus) | Brevetoxin bioaccumulation associated with Karenia brevis bloom, subsequent morbidity and mortality. | Kreuder et al. (2002) [72] |
Bald eagles (Haliaeetus leucocephalus), American coots (Fulica americana), and other water birds | Cyanobacteria toxin bioaccumulation in association with eating cyanobacterium-contaminated vegetation. | Fischer et al. (2006) [77] |
Seabirds | Domoic acid bioaccumulation in association with Pseudonitzchia spp. blooms, subsequent mortalities. | Fritz et al. (1992) [70] |
Seabirds | Accumulation of surfactant in coastal waters in association with Akashiwo sanguinea bloom, subsequent morbidities and mortalities. | Jessup et al. (2009) [78] |
Terrestrial animals | ||
Domestic animals | Cyanobacteria toxins accumulation during cyanobacteria bloom in the Murray River water and subsequent animal poisonings. | Francis (1878) [3] |
Domestic and wild animals | Cyanobacteria toxins accumulation in drinking water associated with cyanobacteria blooms, subsequent animal poisonings. | Schwimmer and Schwimmer (1968) [4] |
Domestic and wild animals | Cyanobacteria toxins accumulation in river water, subsequent poisonings in animals drinking the water. | Stewart et al. (2008) [5] |
Dogs | Cyanobacteria toxins accumulation in waterbodies, subsequent poisonings from drinking water, swimming, or licking algae from fur. | Backer et al. (2013) [79] |
Dog | Microcysin exposure associated with swimming in a blooming lake, subsequent poisoning. | Rankin et al. (2013) [90] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Backer, L.C.; Miller, M. Sentinel Animals in a One Health Approach to Harmful Cyanobacterial and Algal Blooms. Vet. Sci. 2016, 3, 8. https://doi.org/10.3390/vetsci3020008
Backer LC, Miller M. Sentinel Animals in a One Health Approach to Harmful Cyanobacterial and Algal Blooms. Veterinary Sciences. 2016; 3(2):8. https://doi.org/10.3390/vetsci3020008
Chicago/Turabian StyleBacker, Lorraine C., and Melissa Miller. 2016. "Sentinel Animals in a One Health Approach to Harmful Cyanobacterial and Algal Blooms" Veterinary Sciences 3, no. 2: 8. https://doi.org/10.3390/vetsci3020008
APA StyleBacker, L. C., & Miller, M. (2016). Sentinel Animals in a One Health Approach to Harmful Cyanobacterial and Algal Blooms. Veterinary Sciences, 3(2), 8. https://doi.org/10.3390/vetsci3020008