Cat Mammary Tumors: Genetic Models for the Human Counterpart
Abstract
:1. Introduction
2. “Cytogenomics” of Cat Mammary Tumors
3. Cat Critical Cancer Genes: A Sequence Perspective
4. Cat Critical Cancer Genes: From Gene Expression Patterns to Pathways
5. Cat Mammary Tumor Cell Lines—Suitable Cell Tools, but Still with Limited Availability
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cannon, C.M. Cats, cancer and comparative oncology. Vet. Sci. 2015, 2, 111–126. [Google Scholar] [CrossRef]
- De Maria, R.; Olivero, M.; Iussich, S.; Nakaichi, M.; Murata, T.; Biolatti, B.; Di Renzo, M.F. Spontaneous feline mammary carcinoma is a model of HER2 overexpressing poor prognosis human breast cancer. Cancer Res. 2005, 65, 907–912. [Google Scholar] [PubMed]
- Bergkvist, G.T.; Argyle, D.J.; Pang, L.Y.; Muirhead, R.; Yool, D.A. Studies on the inhibition of feline EGFR in squamous cell carcinoma: Enhancement of radiosensitivity and rescue of resistance to small molecule inhibitors. Cancer Biol. Ther. 2011, 11, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Bastos, E.; Baptista, C.S.; Sá, D.; Caloustian, C.; Guedes-Pinto, H.; Gärtner, F.; Gut, I.G.; Chaves, R. Sequence variants and haplotype analysis of cat ERBB2 gene: A survey on spontaneous cat mammary neoplastic and non-neoplastic lesions. Int. J. Mol. Sci. 2012, 13, 2783–2800. [Google Scholar] [CrossRef] [PubMed]
- Paoloni, M.; Khanna, C. Translation of new cancer treatments from pet dogs to humans. Nat. Rev. Cancer 2008, 8, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Cekanova, M.; Rathore, K. Animal models and therapeutic molecular targets of cancer: Utility and limitations. Drug Des. Devel. Ther. 2014, 8, 1911–1921. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Seixas, F.; Borst, L.; Breen, M. Landscapes of Genomic Copy Number Aberrations in Feline Mammary Cancer. In Proceedings of the 8th International Conference on Advances in Canine and Feline Genomics and Inherited Diseases, Cambridge, UK, 22–26 May 2015; Available online: http://www.caninefelinegenomicsconference.org/ (accessed on 15 April 2016).
- MacEwen, E.G. Spontaneous tumors in dogs and cats: Models for the study of cancer biology and treatment. Cancer Metast. Rev. 1990, 9, 125–136. [Google Scholar] [CrossRef]
- Thomas, R. Cytogenomics of feline cancers: Advances and opportunities. Vet. Sci. 2015, 2, 246–258. [Google Scholar] [CrossRef]
- Zappulli, V.; Rasotto, R.; Caliari, D.; Mainenti, M.; Peña, L.; Goldschmidt, M.H.; Kiupel, M. Prognostic evaluation of feline mammary carcinomas: A review of the literature. Vet. Pathol. 2015, 52, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.; Dobson, J.M. Prognostic histopathological and molecular markers in feline mammary neoplasia. Vet. J. 2012, 194, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics. CA: Cancer J. Clin. 2013, 63, 11–30. [Google Scholar]
- MacEwen, E.G.; Withrow, S.J. Tumors of the mammary gland. In Small Animal Clinical Oncology; Withrow, S.J., MacEwen, B.R., Eds.; WB Saunders Company: Philadelphia, PA, USA, 1996; pp. 356–372. [Google Scholar]
- Sharkey, F.E.; Allred, D.C.; Valente, P.T. Breast. In Anderson’s Pathology, 10th ed.; Damjanov, I., Linder, J., Eds.; Mosby: St. Louis, MO, USA, 1996. [Google Scholar]
- De Las Mulas, J.M.; Reymundo, C. Animal models of human breast carcinoma: Canine and feline neoplasms. Rev. Oncol. 2000, 2, 274–281. [Google Scholar]
- Zappulli, V.; De Zan, G.; Cardazzo, B.; Bargelloni, L.; Castagnaro, M. Feline mammary tumours in comparative oncology. J. Dairy Res. 2005, 72, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Burrai, G.P.; Mohammed, S.I.; Miller, M.A.; Marras, V.; Pirino, S.; Addis, M.F.; Uzzau, S.; Antuofermo, E. Spontaneous feline mammary intraepithelial lesions as a model for human estrogen receptor- and progesterone receptor-negative breast lesions. BMC Cancer 2010, 10, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimenez, F.; Hecht, S.; Craig, L.E.; Legendre, A.M. Early detection, aggressive therapy: Optimizing the management of feline mammary masses. J. Feline Med. Surg. 2010, 12, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Mitelman, F. Cancer: Chromosomal Abnormalities in: eLS; John Wiley & Sons Ltd.: Chichester, UK, 2010. [Google Scholar] [CrossRef]
- Minke, J.M.; Schuuring, E.; van den Berghe, R.; Stolwijk, J.A.; Boonstra, J.; Cornelisse, C.; Hilkens, J.; Misdorp, W. Isolation of two distinct epithelial cell lines from a single feline mammary carcinoma with different tumorigenic potential in nude mice and expressing different levels of epidermal growth factor receptors. Cancer Res. 1991, 51, 4028–4037. [Google Scholar] [PubMed]
- Mayr, B.; Ortner, W.; Reifinger, M.; Loupal, G. Loss of chromosome B2-material in three cases of feline mammary tumours. Res. Vet. Sci. 1995, 59, 61–63. [Google Scholar] [CrossRef]
- Mayr, B.; Jugl, M.; Brem, G.; Reifinger, M.; Loupal, G. Cytogenetic variation in six cases of feline mammary tumours. Zentralbl. Veterinarmed. A 1999, 46, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Chaves, R.; Adega, F.; Bastos, E.; Guedes-Pinto, H. Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability. J. Hered. 2006, 97, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Adega, F.; Chaves, R. Establishment and characterization of a New Feline Mammary Cancer cell line, FkMTp. Cytotechnology 2016, 68, 1529–1543. [Google Scholar] [CrossRef] [PubMed]
- Bièche, I.; Khodja, A.; Driouch, K.; Lidereau, R. Genetic alteration mapping on chromosome 7 in primary breast cancer. Clin. Cancer Res. 1997, 3, 1009–1016. [Google Scholar] [PubMed]
- Popescu, N.C.; Drazen, B.Z. Chromosome and gene alterations in breast cancer as markers for diagnosis and prognosis as well as pathogenetic targets for therapy. Am. J. Med. Genet. (Semin. Med. Genet.) 2002, 115, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Wessels, L.F.; van Welsem, T.; Hart, A.A.; van’t Veer, L.J.; Reinders, M.J.; Nederlof, P.M. Molecular classification of breast carcinomas by comparative genomic hybridization: A specific somatic genetic profile for BRCA1 tumors. Cancer Res. 2002, 62, 7110–7117. [Google Scholar] [PubMed]
- Bergamaschi, A.; Kim, Y.H.; Wang, P.; Sørlie, T.; Hernandez-Boussard, T.; Lonning, P.E.; Tibshirani, R.; Børresen-Dale, A.L.; Pollack, J.R. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 2006, 45, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Korkola, J.; Gray, J.W. Breast cancer genomes—Form and function. Curr. Opin. Genet. Dev. 2010, 20, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Valli, V.E.; Ellis, P.; Bell, J.; Karlsson, E.K.; Cullen, J.; Lindblad-Toh, K.; Langford, C.F.; Breen, M. Microarray-based cytogenetic profiling reveals recurrent and subtype-associated genomic copy number aberrations in feline sarcomas. Chromosome Res. 2009, 17, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Nash, W.G.; O’Brien, S.J. Conserved regions of homologous G-banded chromosomes between orders in mammalian evolution: Carnivores and primates. Proc. Natl. Acad. Sci. USA 1982, 79, 6631–6635. [Google Scholar] [CrossRef] [PubMed]
- Rettenberger, G.; Klett, C.; Zechner, U.; Bruch, J.; Just, W.; Vogel, W.; Hameister, H. Zoo-FISH analysis: Cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chromosome Res. 1995, 3, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Stanyon, R.; Yang, F.; Cavagna, P.; O’Brien, P.C.; Bagga, M.; Ferguson-Smith, M.A.; Wienberg, J. Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats. Cytogenet. Cell Genet. 1999, 84, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Graphodatsky, A.S.; O’Brien, P.C.; Colabella, A.; Solanky, N.; Squire, M.; Sargan, D.R.; Ferguson-Smith, M.A. Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res. 2000, 8, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Pontius, J.U.; Mullikin, J.C.; Smith, D.R.; Agencourt Sequencing Team; Lindblad-Toh, K.; Gnerre, S.; Clamp, M.; Chang, J.; Stephens, R.; Neelam, B.; et al. Initial sequence and comparative analysis of the cat genome. Genome Res. 2007, 17, 1675–1689. [Google Scholar] [CrossRef] [PubMed]
- Graphodatsky, A.S.; Trifonov, V.A.; Stanyon, R. The genome diversity and karyotype evolution of mammals. Mol. Cytogenet. 2011, 4. [Google Scholar] [CrossRef] [PubMed]
- Montague, M.J.; Li, G.; Gandolfi, B.; Khan, R.; Aken, B.L.; Searle, S.M.; Minx, P.; Hillier, L.W.; Koboldt, D.C.; Davis, B.W.; et al. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proc. Natl. Acad. Sci. USA 2014, 111, 17230–17235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamazian, G.; Simonov, S.; Dobrynin, P.; Makunin, A.; Logachev, A.; Komissarov, A.; Shevchenko, A.; Brukhin, V.; Cherkasov, N.; Svitin, A.; et al. Annotated features of domestic cat-Felis catus genome. Gigascience 2014, 3, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ignar-Trowbridge, D.M.; Nelson, K.G.; Bidwell, M.C.; Curtis, S.W.; Washburn, T.F.; McLachlan, J.A.; Korach, K.S. Coupling of dual signaling pathways: Epidermal growth factor action involves the estrogen receptor. Proc. Natl. Acad. Sci. USA 1992, 89, 4658–4662. [Google Scholar] [CrossRef] [PubMed]
- Buerger, H.; Gebhardt, F.; Schmidt, H.; Beckmann, A.; Hutmacher, K.; Simon, R.; Lelle, R.; Boecker, W.; Brandt, B. Length and loss of heterozygosity of an intron 1 polymorphic sequence of egfr is related to cytogenetic alterations and epithelial growth factor receptor expression. Cancer Res. 2000, 60, 854–857. [Google Scholar] [PubMed]
- Santos, S.; Baptista, C.; Abreu, R.M.V.; Bastos, E.; Amorim, I.; Gut, I.G.; Gärtner, F.; Chaves, R. ERBB2 in cat mammary neoplasias disclosed a positive correlation between RNA and protein low expression levels: A model for erbB-2 negative human breast cancer. PLoS ONE 2013. [Google Scholar] [CrossRef] [PubMed]
- Klapper, L.N.; Kirschbaum, M.H.; Sela, M.; Yarden, Y. Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv. Cancer Res. 2000, 77, 25–79. [Google Scholar] [PubMed]
- Hu, X.; Su, F.; Qin, L.; Jia, W.; Gong, C.; Yu, F.; Guo, J.; Song, E. Stable RNA interference of ErbB-2 gene synergistic with epirubicin suppresses breast cancer growth in vitro and in vivo. Biochem. Biophys. Res. Commun. 2006, 346, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Haverty, P.M.; Fridlyand, J.; Li, L.; Getz, G.; Beroukhim, R.; Toedt, G.; Mendrzyk, F.; Lehmann, U.; Eils, R.; Kreipe, H.; Lichter, P. High resolution genomic and expression analyses of copy number alterations in breast tumors. Genes Chromosomes Cancer 2008, 47, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Getz, G.; Wheeler, D.A.; Mardis, E.R.; McLellan, M.D.; Cibulskis, K.; Sougnez, C.; Greulich, H.; Muzny, D.M.; Morgan, M.B.; et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008, 455, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Leary, R.J.; Lin, J.C.; Cummins, J.; Boca, S.; Wood, L.D.; Parsons, D.W.; Jones, S.; Sjöblom, T.; Park, B.H.; Parsons, R.; et al. Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc. Natl. Acad. Sci. USA 2008, 105, 16224–16229. [Google Scholar] [CrossRef] [PubMed]
- Teschendorff, A.E.; Caldas, C. The breast cancer somatic “muta-ome”: Tackling the complexity. Breast Cancer Res. 2009. [Google Scholar] [CrossRef] [PubMed]
- De Maria, R.; Maggiore, P.; Biolatti, B.; Prat, M.; Ciomoglio, P.M.; Castagnaro, M.; Di Renzo, M.F. Feline STK gene expression in mammary carcinomas. Oncogene 2002, 21, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Baptista, C.S.; Santos, S.; Laso, A.; Bastos, E.; Avila, S.; Guedes-Pinto, H.; Gärtner, F.; Gut, I.G.; Castrillo, J.L.; Chaves, R. Sequence variation and mRNA expression of the TWIST1 gene in cats with mammary hyperplasia and neoplasia. Vet. J. 2012, 191, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Cardazzo, B.; Zappulli, V.; Frassineti, F.; Patarnello, T.; Castagnaro, M.; Bargelloni, L. Full-length sequence and expression analysis of estrogen receptor alpha mRNA in feline mammary tumors. J. Steroid Biochem. Mol. Biol. 2005, 96, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Tateyama, S.; Rungsipipat, A.; Uchida, K.; Yamaguchi, R. Amplification of the cyclin A gene in canine and feline mammary tumors. J. Vet. Med. Sci. 2000, 62, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Mayr, B.; Wilhelm, B.; Reifinger, M.; Brem, G. Absence of p21 WAF1 and p27 kip1 gene mutations in various feline tumours. Vet. Res. Commun. 2000, 24, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Watzinger, F.; Mayr, B.; Gamerith, R.; Vetter, C.; Lion, T. Comparative analysis of ras proto-oncogene mutations in selected mammalian tumors. Mol. Carcinog. 2001, 30, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Greenblatt, M.S.; Bennet, W.P.; Hollstein, M.; Harris, C.C. Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994, 54, 4855–4878. [Google Scholar] [PubMed]
- Cooper, G.M. Tumor suppressor genes in human neoplasms. In Oncogenes, 2nd ed.; Jones & Bartlett Publishers International: Sudbury, MA, USA, 1995. [Google Scholar]
- Soussi, T.; May, P. Structural aspects of the p53 protein in relation to gene evolution: A second look. J. Mol. Biol. 1996, 260, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Hainaut, P.; Hernandez, T.; Robinson, A.; Rodriguez-Tome, P.; Flores, T.; Hollstein, M.; Harris, C.C.; Montesano, R. IARC database of p53 gene mutations in human tumors and cell lines: Updated compilation, revised formats and new visualisation tools. Nucleic Acids Res. 1998, 25, 205–213. [Google Scholar] [CrossRef]
- Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature 2000, 408, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Walerych, D.; Napoli, M.; Collavin, L.; Del Sal, G. The rebel angel: Mutant p53 as the driving oncogene in breast cancer. Carcinogenesis 2012, 33, 2007–2017. [Google Scholar] [CrossRef] [PubMed]
- Mayr, B.; Blauensteiner, J.; Edlinger, A.; Reifinger, M.; Alton, K.; Schaffner, G.; Brem, G. Presence of p53 mutations in feline neoplasms. Res. Vet. Sci. 2000, 68, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Mayr, B.; Schaffner, G.; Kurzbauer, R.; Reifinger, M.; Schellander, K. Sequence of an exon of tumour suppressor p53 gene—A comparative study in domestic animals: Mutation in a feline solid mammary carcinoma. Br. Vet. J. 1995, 151, 325–329. [Google Scholar] [CrossRef]
- Mayr, B.; Reifinger, M.; Loupal, G. Polymorphisms in felinetumour suppressor gene p53. Mutations in an osteosarcoma and a mammary carcinoma. Vet. J. 1998, 155, 103–106. [Google Scholar] [CrossRef]
- Soares, M.; Correia, J.; Rodrigues, P.; Simões, M.; de Matos, A.; Ferreira, F. Feline HER2 protein expression levels and gene status in feline mammary carcinoma: Optimization of immunohistochemistry (IHC) and in situ hybridization (ISH) techniques. Microsc. Microanal. 2013, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, R.; Lal, P.; Chen, B. HER-2/neu and topoisomerase II a gene amplification and protein expression in invasive breast carcinomas: Chromogenic in situ hybridization and immunohistochemical analyses. Am. J. Clin. Pathol. 2005, 123, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Oakman, C.; Moretti, E.; Galardi, F.; Santarpia, L.; Di Leo, A. The role of topoisomerase II alpha and Her-2 in predicting sensitivity to anthracyclines in breast cancer patients. Cancer Treat. Rev. 2009, 35, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Kolibaba, K.S.; Druker, B.J. Protein tyrosine kinases and cancer. Biochim. Biophys. Acta 1997, 1333, F217–F248. [Google Scholar] [CrossRef]
- Santoro, M.M.; Penegro, L.; Minetto, M.; Orecchia, S.; Cilli, M.; Gaudino, G. Point mutations in the tyrosine kinase domain release the oncogenic and metastatic potential of the Ron receptor. Oncogene 1998, 17, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Fasco, M.J.; Keyomarsi, K.; Arcaro, K.F.; Gierthy, J.F. Expression of an estrogen receptor alpha variant protein in cell lines and tumors. Mol. Cell. Endocrinol. 2000, 166, 156–169. [Google Scholar] [CrossRef]
- Poola, I. Molecular assay to generate expression profile of eight estrogen receptor alpha isoform mRNA copy numbers in pictogram amounts of total RNA from breast cancer tissues. Anal. Biochem. 2003, 314, 217–226. [Google Scholar] [CrossRef]
- Poola, I.; Speirs, V. Expression of alternatively spliced estrogen receptor alpha mRNAs is increased in breast cancer tissues. J. Steroid Biochem. Mol. Biol. 2001, 78, 459–469. [Google Scholar] [CrossRef]
- Sahlin, P.; Windh, P.; Lauritzen, C.; Emanuelsson, M.; Grönberg, H.; Stenman, G. Women with Saethre-Chotzen syndrome are at increased risk of breast cancer. Genes Chromosomes Cancer 2007, 46, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Mani, S.A.; Donaher, J.L.; Ramaswamy, S.; Itzykson, R.A.; Come, C.; Savagner, P.; Gitelman, I.; Richardson, A.; Weinberg, R.A. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004, 117, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Ner-Gaon, H.; Halachmi, R.M.; Savaldi-Goldstein, S.; Rubin, E.; Ophir, R.; Fluhr, R. Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J. 2004, 39, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Marquez, Y.; Brown, J.W.; Simpson, C.; Barta, A.; Kalyna, M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res. 2012, 22, 1184–1195. [Google Scholar] [CrossRef] [PubMed]
- Marquez, Y.; Höpfler, M.; Ayatollahi, Z.; Barta, A.; Kalyna, M. Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity. Genome Res. 2015, 25, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Madewell, B.R.; Gandour-Edwards, R.; Edwards, B.F.; Walls, J.E.; Griffey, S.M. Topographic distribution of BCL-2 protein in feline tissues in health and neoplasia. Vet. Pathol. 1999, 36, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Nasir, L.; Krasner, H.; Argyle, D.J.; Williams, A. Immunocytochemical analysis of the tumour suppressor protein (p53) in feline neoplasia. Cancer Lett. 2000, 3, 1–7. [Google Scholar] [CrossRef]
- Soares, M.; Correia, J.; Peleteiro, M.C.; Ferreira, F. St Gallen molecular subtypes in feline mammary carcinoma and paired metastases-disease progression and clinical implications from a 3-year follow-up study. Tumour Biol. 2016, 37, 4053–4064. [Google Scholar] [CrossRef] [PubMed]
- Órdas, J.; Millán, Y.; Dios, R.; Reymundo, C.; de Las Mulas, J.M. Proto-oncogene HER-2 in normal, dysplastic and tumorous feline mammary glands: An immunohistochemical and chromogenic in situ hybridization study. BMC Cancer 2007. [Google Scholar] [CrossRef]
- Sayasith, K.; Sirois, J.; Doré, M. Molecular characterization of feline COX-2 and expression in feline mammary carcinomas. Vet. Pathol. 2009, 46, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Ressel, L.; Millanta, F.; Caleri, E.; Innocenti, V.M.; Poli, A. Reduced pten protein expression and its prognostic implications in canine and feline mammary tumors. Vet. Pathol. 2009, 46, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, L.; Iussich, S.; de Las Mulas, J.M.; Millán, Y.; Biolatti, B.; Sasaki, N.; Nakagawa, T.; De Maria, R. Activation of AKT in feline mammary carcinoma: A new prognostic factor for feline mammary tumours. Vet. J. 2012, 191, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, L.; Millán, Y.; Iussich, S.; Denina, M.; Sánchez-Céspedes, R.; Gattino, F.; Biolatti, B.; Sasaki, N.; Nakagawa, T.; Di Renzo, M.F.; et al. Activation of mammalian target of rapamycin (mTOR) in triple negative feline mammary carcinomas. BMC Vet. Res. 2013. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.; Petterino, C.; Ratto, A.; Campanella, C.; Wurth, R.; Thellung, S.; Vito, G.; Barbieri, F.; Florio, T. CXCR4 expression in feline mammary carcinoma cells: Evidence of a proliferative role for the SDF-1/CXCR4 axis. BMC Vet. Res. 2012. [Google Scholar] [CrossRef] [PubMed]
- Zappulli, V.; De Cecco, S.; Trez, D.; Caliari, D.; Aresu, L.; Castagnaro, M. Immunohistochemical expression of E-cadherin and b-catenin in feline mammary tumours. J. Comp. Pathol. 2012, 147, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Buendia, A.J.; Peñafiel-Verdu, C.; Navarro, J.A.; Vilafranca, M.; Sanchez, J. N-cadherin expression in feline mammary tumors is associated with a reduced E-cadherin expression and the presence of regional metastasis. Vet. Pathol. 2014, 51, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Flores, A.R.; Rêma, A.; Carvalho, F.; Faustino, A.; Dias Pereira, P.J. Reduced expression of claudin-2 is associated with high histological grade and metastasis of feline mammary carcinomas. Comp. Pathol. 2014, 150, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Flores, A.R.; Rêma, A.; Carvalho, F.; Lopes, G.; Faustino, A.; Dias Pereira, P. Clinicopathological significance of immunoexpression of claudin-1 and claudin-7 in feline mammary carcinomas. J. Comp. Pathol. 2014, 151, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Ressel, L.; Else, R.W.; Poli, A.; Argyle, D.J. Aberrant subcellular immunolocalization of NOTCH-1 activated intracellular domain in feline mammary tumours. J. Comp. Pathol. 2014, 150, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.; Ribeiro, R.; Carvalho, S.; Peleteiro, M.; Correia, J.; Ferreira, F. Ki-67 as a prognostic factor in feline mammary carcinoma: What is the optimal cutoff value? Vet. Pathol. 2016, 53, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Merino, D.; Lok, S.W.; Visvader, J.E.; Lindeman, G.J. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene 2016, 35, 1877–1887. [Google Scholar] [CrossRef] [PubMed]
- Dawson, S.J.; Makretsov, N.; Blows, F.M.; Driver, K.E.; Provenzano, E.; Le Quesne, J.; Baglietto, L.; Severi, G.; Giles, G.G.; McLean, C.A.; et al. BCL-2 in breast cancer: A favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br. J. Cancer 2010, 103, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Lessene, P.E.; Czabotar, P.M. Colman BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov. 2008, 7, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Bodey, B.; Groger, A.M.; Siegel, S.E.; Kaiser, H.E. Immunohistochemical detection of p53 protein overexpression in primary human osteosarcomas. Anticancer Res. 1997, 17, 493–498. [Google Scholar] [PubMed]
- Okuda, M.; Umeda, A.; Matsumoto, Y.; Momoi, Y.; Watari, T.; Goitsuka, R.; Obrien, S.J.; Tsujimoto, H.; Hasegawa, A. Molecular cloning and chromosomal mapping of feline p53 tumour suppressor gene. J. Vet. Med. Sci. 1993, 55, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Okuda, M.; Umeda, A.; Sakai, T.; Ohashi, T.; Momoi, Y.; Youn, H.Y.; Watari, T.; Goitsuka, R.; Tsujimoto, H.; Hasegawa, A. Cloning of feline p53 tumor-suppressor gene and its aberration in hematopoietic tumor. Int. J. Cancer 1994, 58, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Simmons, C.; Miller, N.; Geddie, W.; Gianfelice, D.; Oldfield, M.; Dranitsaris, G.; Clemons, M.J. Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? Ann. Oncol. 2009, 20, 1499–504. [Google Scholar] [CrossRef] [PubMed]
- Aurilio, G.; Disalvatore, D.; Pruneri, G.; Bagnardi, V.; Viale, G.; Curigliano, G.; Adamoli, L.; Munzone, E.; Sciandivasci, A.; De Vita, F.; et al. A meta-analysis of oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 discordance between primary breast cancer and metastases. Eur. J. Cancer 2014, 50, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Cummings, M.C.; Simpson, P.T.; Reid, L.E.; Jayanthan, J.; Skerman, J.; Song, S.; McCart Reed, A.E.; Kutasovic, J.R.; Morey, A.L.; Marquart, L.; et al. Metastatic progression of breast cancer: Insights from 50 years of autopsies. J. Pathol. 2014, 232, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Kwast, A.B.G.; Voogd, A.C.; Menke-Pluijmers, M.B.E.; Linn, S.C.; Sonke, G.S.; Kiemeney, L.A.; Siesling, S. Prognostic factors for survival in metastatic breast cancer by hormone receptor status. Breast Cancer Res. Treat. 2014, 145, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Bieche, I.; Onody, P.; Tozlu, S.; Driouch, K.; Vidaud, M.; Lidereau, R. Prognostic value of ERBB family mRNA expression in breast carcinomas. Int. J. Cancer 2003, 106, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Koletsa, T.; Kostopoulos, I.; Charalambous, E.; Christoforidou, B.; Nenopoulou, E.; Kotoula, V. A splice variant of HER2 corresponding to Herstatin is expressed in the noncancerous breast and in breast carcinomas. Neoplasia 2008, 10, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.; Ribeiro, R.; Najmudin, S.; Gameiro, A.; Rodrigues, R.; Cardoso, F.; Ferreira, F. Serum HER2 levels are increased in cats with mammary carcinomas and predict tissue HER2 status. Oncotarget 2016, 7, 17314–17326. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.S.; Mann, M.; DuBois, R.N. The role of cyclooxygenases in inflammation, cancer and development. Oncogene 1999, 18, 7908–7916. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Cook, K.R.; Vincent, L.; Hall, C.S.; Martin, C.M.; Lucci, A. Role of COX-2 in tumorospheres derived from a breast cancer cell line. J. Surg. Res. 2011, 168, e39–e49. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Jiang, J.H.; Zhang, J.; Yang, H.J.; Yang, F.Q.; Qi, Y.P.; Zhong, Y.P.; Su, J.; Yang, R.R.; Li, L.Q.; Xiang, B.D. COX-2 promotes migration and invasion by the side population of cancer stem cell-like hepatocellular carcinoma cells. Medicine (Baltim.) 2015. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wang, G.; Paciga, J.E.; Feldman, R.I.; Yuan, Z.Q.; Ma, X.L.; Shelley, S.A.; Jove, R.; Tsichlis, P.N.; Nicosia, S.V.; et al. AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am. J. Pathol. 2001, 159, 431–437. [Google Scholar] [CrossRef]
- Salvucci, O.; Bouchard, A.; Baccarelli, A.; Deschênes, J.; Sauter, G.; Simon, R.; Bianchi, R.; Basik, M. The role of CXCR4 receptor expression in breast cancer: A large tissue microarray study. Breast Cancer Res. Treat. 2006, 97, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Willems, L.; Tamburini, J.; Chapuis, N.; Lacombe, C.; Mayeux, P.; Bouscary, D. PI3K and mTOR signaling pathways in cancer: New data on targeted therapies. Curr. Oncol. Rep. 2012, 14, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Siitonen, S.M.; Kononen, J.T.; Helin, H.J.; Rantala, I.S.; Holli, K.A.; Isola, J.J. Reduced E-caderin expression is associated with invasiveness and unfavorable prognosis in breast cancer. Am. J. Clin. Pathol. 1996, 105, 349–402. [Google Scholar] [CrossRef]
- Burkholm, I.K.; Nesland, J.M.; Karesen, R.; Jacobsen, U.; Borresen-Dale, A.L. E-cadherin and a-, b-, and g-catenin protein expression in relation to metastasis in human breast carcinoma. J. Pathol. 1998, 185, 262–266. [Google Scholar] [CrossRef]
- Dias Pereira, P.; Gartner, F. Expression of e-cadherin in normal, hyperplastic and neoplastic feline mammary tissue. Vet. Rec. 2003, 153, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Peñafiel-Verdu, C.; Buendia, A.J.; Navarro, J.A.; Ramirez, G.A.; Vilafranca, M.; Altimira, J.; Sanchez, J. Reduced expression of E-cadherin and β- -catenin and high expression of basal cytokeratins in feline mammary carcinomas with regional metastasis. Vet. Pathol. 2012, 49, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Takauji, S.; Watanabe, M.; Uyama, R.; Nakagawa, T.; Miyajima, N.; Mochizuki, M.; Nishimura, R.; Sugano, S.; Sasaki, N. Expression and subcellular localization of e-cadherin, a-catenin, and b-catenin in 8 feline mammary tumour cell lines. J. Vet. Med. Sci. 2007, 69, 831–834. [Google Scholar] [CrossRef] [PubMed]
- Van Aken, E.; De Wever, O.; Correia da Rocha, A.S.; Mareel, M. Defective E-cadherin/catenin complexes in human cancer. Virchows Arch. 2001, 439, 725–751. [Google Scholar] [CrossRef] [PubMed]
- Agiostratidou, G.; Hulit, J.; Philips, G.R.; Hazan, R.B. Differential cadherin expression: Potential markers for epithelial to mesenchymal transformation during tumor progression. J. Mammary Gland Biol. Neoplasia 2007, 12, 127–133. [Google Scholar] [CrossRef]
- Rezaei, M.; Friedrich, K.; Wielockx, B.; Kuzmanov, A.; Kettelhake, A.; Labelle, M.; Schnittler, H.; Baretton, G.; Breier, G. Interplay between neural-cadherin and vascular endothelial-cadherin in breast cancer progression. Breast Cancer Res. 2012. [Google Scholar] [CrossRef] [PubMed]
- Seixas, F.; Palmeira, C.; Pires, M.A.; Bento, M.J.; Lopes, C. Grade is an independent prognostic factor for feline mammary carcinomas: A clinicopathological and survival analysis. Vet. J. 2011, 187, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Figueira, A.C.; Gomes, C.; de Oliveira, J.T.; Vilhena, H.; Carvalheira, J.; de Matos, A.J.; Pereira, P.D.; Gärtner, F. Aberrant P-cadherin expression is associated to aggressive feline mammary carcinomas. BMC Vet. Res. 2014. [Google Scholar] [CrossRef] [PubMed]
- Montserrat, N.; Gallardo, A.; Escuin, D.; Catasus, L.; Prat, J.; Gutiérrez-Avignó, F.J.; Peiró, G.; Barnadas, A.; Lerma, E. Repression of E-cadherin by SNAIL, ZEB1, and TWIST in invasive ductal carcinomas of the breast: A cooperative effort? Hum. Pathol. 2011, 42, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Gort, E.H.; Suijkerbuijk, K.P.; Roothaan, S.M.; Raman, V.; Vooijs, M.; van der Wall, E.; van Diest, P.J. Methylation of the TWIST1 promoter, TWIST1 mRNA levels, and immunohistochemical expression of TWIST1 in breast cancer. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3325–3330. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, O.; Imamura, H.; Shimizu, T.; Kinoshita, J.; Okabe, T.; Hirano, A.; Yoshimatsu, K.; Konno, S.; Aiba, M.; Ogawa, K. Expression of twist and wnt in human breast cancer. Anticancer Res. 2004, 24, 3851–3856. [Google Scholar] [PubMed]
- Martin, T.A.; Goyal, A.; Watkins, G.; Jiang, W.G. Expression of the transcription factors Snail, Slug, and Twist and their clinical significance in human breast cancer. Ann. Surg. Oncol. 2005, 12, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.A.; Ylagan, L.R.; Trinkaus, K.M.; Gillanders, W.E.; Naughton, M.J.; Weilbaecher, K.N.; Fleming, T.P.; Aft, R.L. Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clin. Cancer Res. 2007, 13, 5001–5009. [Google Scholar] [CrossRef] [PubMed]
- Tjensvoll, K.; Oltedal, S.; Farmen, R.K.; Shammas, F.V.; Heikkila, R.; Kvaloy, J.T.; Gilje, B.; Smaaland, R.; Nordgard, O. Disseminated tumor cells in bone marrow assessed by TWIST1, cytokeratin 19, and mammaglobin A mRNA predict clinical outcome in operable breast cancer patients. Clin. Breast Cancer 2010, 10, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Kominsky, S.; Argani, P.; Korz, D.; Evron, E.; Raman, V.; Garrett, E.; Rein, A.; Sauter, G.; Kallioniemi, O.P.; Sukumar, S. Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 2003, 22, 2021–2033. [Google Scholar] [CrossRef] [PubMed]
- Sauer, T.; Pedersen, M.; Ebeltoft, K.; Næss, O. Reduced expression of claudin-7 in fine needle aspirates from breast carcinomas correlates with grading and metastatic disease. Cytopathology 2005, 16, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.; Logullo, A.; Pasini, F.; Nonogaki, S.; Blumke, C.; Soares, F.A.; Brentani, M.M. Prognostic significance of CD24 and claudin-7 immunoexpression in ductal invasive breast cancer. Oncol. Rep. 2012, 27, 28–38. [Google Scholar] [PubMed]
- Jakab, C.; Halász, J.; Szász, A.; Kiss, A.; Schaff, Z.; Rusvai, M.; Gálfi, P.; Kulka, J. Expression of claudin-1, -2, -3, -4, -5 and -7 proteins in benign and malignant canine mammary gland epithelial tumours. J. Comp. Pathol. 2008, 139, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Tabaries, S.; Dong, Z.; Annis, M.; Omeroglu, A.; Pepin, F.; Ouellet, V.; Russo, C.; Hassanain, M.; Metrakos, P.; Diaz, Z.; et al. Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene 2011, 30, 1318–1328. [Google Scholar] [CrossRef] [PubMed]
- Prat, A.; Parker, J.; Karginova, O.; Fan, C.; Livasy, C.; Herschkowitz, J.I.; He, X.; Perou, C.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Singh, K.; Mangray, S.; Tavares, R.; Noble, L.; Resnick, M.B.; Yakirevich, E. Claudin expression in high-grade invasive ductal carcinoma of the breast: Correlation with the molecular subtype. Mod. Pathol. 2012, 187, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Stutzman, A.; Mo, Y.Y. Notch signaling and its role in breast cancer. Front. Biosci. 2007, 12, 4370–4383. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Qiu, M.; Zhang, Z.; Kang, C.; Jiang, R.; Jia, Z.; Wang, G.; Jiang, H.; Pu, P. The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo. J. Neuro-Oncol. 2010, 97, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Shou, J.; Ross, S.; Koeppen, H.; de Sauvage, F.J.; Gao, W.Q. Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res. 2001, 61, 7291–7297. [Google Scholar] [PubMed]
- Whelan, J.T.; Kellogg, A.; Shewchuk, B.M.; Hewan-Lowe, K.; Bertrand, F.E. Notch-1 signaling is lost in prostate adenocarcinoma and promotes PTEN gene expression. J. Cell. Biochem. 2009, 107, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Reedijk, M.; Odorcic, S.; Chang, L.; Zhang, H.; Miller, N.; McCready, D.R.; Lockwood, G.; Egan, S.E. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005, 65, 8530–8537. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wakeman, T.P.; Lathia, J.D.; Hjelmeland, A.B.; Wang, X.F.; White, R.R.; Rich, J.N.; Sullenger, B.A. Notch promotes radioresistance of glioma stem cells. Stem Cells 2010, 28, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, P.; Weaver, K.L.; Capobianco, A.J. Notch signalling in solid tumours: A little bit of everything but not all the time. Nat. Rev. Cancer 2011, 11, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Osipo, C.; Patel, P.; Rizzo, P.; Clementz, A.G.; Hao, L.; Golde, T.E.; Miele, L. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene 2008, 27, 5019–5032. [Google Scholar] [CrossRef] [PubMed]
- Dincer, Z.; Jasani, B.; Haywood, S.; Mullins, J.E.; Fuentealba, J.C. Metallothionein expression in canine and feline mammary and melanotic tumours. J. Comp. Pathol. 2001, 125, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Millanta, F.; Lazzeri, G.; Vannozzi, I.; Viacava, P.; Poli, A. Correlation of vascular endothelial growth factor expression to overall survival in feline invasive mammary carcinomas. Vet. Pathol. 2002, 39, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Yerushalmi, R.; Woods, R.; Ravdin, P.M.; Hayes, M.M.; Gelmon, K.A. Ki67 in breast cancer: Prognostic and predictive potential. Lancet Oncol. 2010, 11, 174–183. [Google Scholar] [CrossRef]
- Dowsett, M.; Nielsen, T.O.; A’Hern, R.; Bartlett, J.; Coombes, R.C.; Cuzick, J.; Ellis, M.; Henry, N.L.; Hugh, J.C.; Lively, T.; et al. Assessment of Ki67 in breast cancer: Recommendations from the international Ki67 in Breast Cancer Working Group. J. Natl. Cancer Inst. 2011, 103, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Withrow, S.J.; Vail, D.M.; Page, R.L. Why worry about cancer in companion animals? In Withrow & MacEwen’s Small Animal Clinical Oncology, 5th ed.; Saunders Elsevier: St. Louis, MO, USA, 2013. [Google Scholar]
- Louzada, S.; Adega, F.; Chaves, R. Defining the sister rat mammary tumor cell lines HH-16 cl.2/1 and HH-16.cl.4 as an in vitro cell model for Erbb2. PLoS ONE 2012. [Google Scholar] [CrossRef] [PubMed]
- Vargo-Gogola, T.; Rosen, J.M. Modelling breast cancer: One size does not fit all. Nat. Rev. Cancer 2007, 7, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Van Staveren, W.C.; Solis, D.Y.; Hebrant, A.; Detours, V.; Dumont, J.E.; Maenhaut, C. Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells? Biochim. Biophys. Acta 2009, 1795, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Gazdar, A.F.; Girard, L.; Lockwood, W.W.; Lam, W.L.; Minna, J.D. Lung cancer cell lines as tools for biomedical discovery and research. J. Natl. Cancer Inst. 2010, 102, 1310–1321. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.; Adega, F.; Chaves, R. The importance of cancer cell lines as in vitro models in cancer methylome analysis and anticancer drugs testing. In Oncogenomics and Cancer Proteomics—Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer; César, L.C., Elena, A.O., Eds.; InTech.: Rijeka, Croatia, 2012; pp. 139–166. [Google Scholar] [CrossRef]
- Lacroix, M.; Leclercq, G. Relevance of breast cancer cell lines as models for breast tumours: An update. Breast Cancer Res. Treat. 2004, 83, 249–289. [Google Scholar] [CrossRef] [PubMed]
- Wistuba, I.I.; Behrens, C.; Milchgrub, S.; Syed, S.; Ahmadian, M.; Virmani, A.K.; Kurvari, V.; Cunningham, T.H.; Ashfaq, R.; Minna, J.D.; et al. Comparison of features of human breast cancer cell lines and their corresponding tumors. Clin. Cancer Res. 1998, 4, 2931–2938. [Google Scholar] [PubMed]
- Kao, J.; Salari, K.; Bocanegra, M.; Choi, Y.L.; Girard, L.; Gandhi, J.; Kwei, K.A.; Hernandez-Boussard, T.; Wang, P.; Gazdar, A.F.; Minna, J.D.; et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS ONE 2009. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Elahi, A.; Denley, R.C.; Rao, P.H.; Brennan, M.F.; Jhanwar, S.C. Molecular characterization of permanent cell lines from primary, metastatic and recurrent malignant peripheral nerve sheath tumors (MPNST) with underlying neurofibromatosis-1. Anticancer Res. 2009, 29, 1255–1262. [Google Scholar] [PubMed]
- Michishita, M.; Ohtsuka, A.; Nakahira, R.; Tajima, T.; Nakagawa, T.; Sasaki, N.; Arai, T.; Takahashi, K. Anti-tumor effect of bevacizumab on a xenograft model of feline mammary carcinoma. J. Vet. Med. Sci. 2016, 78, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Norval, M.; Maingay, J.; Else, R.W. Characteristics of a feline mammary carcinoma cell line. Res. Vet. Sci. 1985, 39, 157–164. [Google Scholar] [PubMed]
- Muleya, J.S.; Nakaichi, M.; Sugahara, J.; Taura, Y.; Murata, T.; Nakama, S. Establishment and characterization of a new cell line derived from feline mammary tumor. J. Vet. Med. Sci. 1998, 60, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Uyama, R.; Hong, S.H.; Nakagawa, T.; Yazawa, M.; Kadosawa, T.; Mochizuki, M.; Tsujimoto, H.; Nishimura, R.; Sasaki, N. Establishment and characterization of eight feline mammary adenocarcinoma cell lines. J. Vet. Med. Sci. 2005, 67, 1273–1276. [Google Scholar] [CrossRef] [PubMed]
Gene | Type/Name | DNA Mutations | Expression Profile | Protein | References |
---|---|---|---|---|---|
TP53 | Suppressor gene | Missense mutations and deletions | Mutant proteins Nuclear immunopositivity | p53 | Mayr et al. 2000 [60], Mayr et al. 1995 [61], Mayr et al. 1998 [62], Nasir et al. 2000 [77] |
ERRB2 | Growth factor receptor tyrosine kinase 2 | Sequence variants/haplotypes non-synonymous mutations | Underexpression Overexpression | erbB-2 | Santos et al. 2012 [4], Santos et al. 2013 [41], De Maria et al. 2005 [2], Órdas et al. 2007 [79], Soares et al. 2013 [63], Soares et al. 2016 [78] |
MST1R | Tyrosine kinase receptor | Point mutations | Overexpression | MST1R | De Maria et al. 2002 [48] |
ER | Estrogen receptor | Sequence/isoform variants | Exon deleted splicing variants Underexpression in metastases when compared to the primary tumors | ER | Cardazzo et al. 2005 [50], Soares et al. 2016 [78] |
TWIST1 | Oncogene | Intronic germline sequence variants | Underexpression Overexpression | Twist-1 | Baptista et al. 2012 [49], Yang et al. 2004 [72], Watanabe et al. 2004 [122] |
BCL-2 | Protein Phosphatase 1 Blocks the apoptotic death | No information | Overexpression | pro-survival protein BCL-2 | Madewell et al. 1999 [76] |
CCNA2 | Cyclin A Regulator of CDK kinases | No information | Regular expression | Cyclin A | Murakami et al. 2000 [51] |
COX2 | Cytochrome C Oxidase Assembly Factor | No information | Variable expression | COX-2 | Sayasith et al. 2009 [80] |
PTEN | Suppressor gene Phosphatase and Tensin homolog | No information | Underexpression | PTEN | Ressel et al. 2009 [81] |
AKT | Serine-threonine protein kinase | No information | Overexpression | Akt | Maniscalco et al. 2012 [82] |
mTOR | Mechanistic Target of Rapamycin (Serine/Threonine Kinase) | No information | Overexpression and activation by phosphorylation via the PI3K/AKT signaling pathway in triple negative FMCs | mTOR | Maniscalco et al. 2013 [83] |
CXCR4 | Chemokine (CXC Motif) Receptor 4 | No information | Overexpression | CXCR4 | Ferrari et al. 2012 [84] |
CTNNs | Cadherin-Associated Protein | No information | Underespression | Catenins | Zappulli et al. 2012 [85] |
CDH1 CDH2 | Adhesion proteins | No information | Underexpression and abnormal cellular location | E-cadherin N-cadherin | Zappulli et al. 2012 [85], Buendia et al. 2014 [86] |
CDH3 | Adhesion proteins | No information | Overexpression | P-cadherin | Figueira et al. 2014 [119] |
CLDN2 CLDN7 | Tight junctions membrane proteins | No information | Underexpression | Claudins 2 and 7 | Flores et al. 2014a, b [87,88] |
NOTCH1 | Transmembrane protein | No information | Overexpression and aberrant location | NOTCH-1 | Ressel et al. 2014 [89] |
PR | Progesterone Receptor | No information | Underexpression in metastases | PR | Soares et al. 2016 [78] |
KRT 5/6 | Cytokeratin Intermediate filament protein | No information | Variable expression | CK5/6 | Soares et al. 2016 [78] |
MKI67 | Nuclear protein associated to cellular proliferation | No information | Overexpression in metastases | Ki-67 | Soares et al. 2016 [90] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adega, F.; Borges, A.; Chaves, R. Cat Mammary Tumors: Genetic Models for the Human Counterpart. Vet. Sci. 2016, 3, 17. https://doi.org/10.3390/vetsci3030017
Adega F, Borges A, Chaves R. Cat Mammary Tumors: Genetic Models for the Human Counterpart. Veterinary Sciences. 2016; 3(3):17. https://doi.org/10.3390/vetsci3030017
Chicago/Turabian StyleAdega, Filomena, Ana Borges, and Raquel Chaves. 2016. "Cat Mammary Tumors: Genetic Models for the Human Counterpart" Veterinary Sciences 3, no. 3: 17. https://doi.org/10.3390/vetsci3030017
APA StyleAdega, F., Borges, A., & Chaves, R. (2016). Cat Mammary Tumors: Genetic Models for the Human Counterpart. Veterinary Sciences, 3(3), 17. https://doi.org/10.3390/vetsci3030017