In Vitro Anthelmintic Activity of Four Plant-Derived Compounds against Sheep Gastrointestinal Nematodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Egg Recovery, Suspension and Cultivation of GIS Eggs and Larvae
2.3. In Vitro Evaluation of the Anthelmintic Activity of Tested Compounds
2.4. Identification of GIS Nematode Genera
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Villalba, J.J.; Miller, J.; Ungar, E.D.; Landau, S.Y.; Glendinning, J. Ruminant self-medication against gastrointestinal nematodes: Evidence, mechanism, and origins. Parasite 2014, 21, 31. [Google Scholar] [CrossRef] [PubMed]
- Van Houtert, M.F.; Sykes, A.R. Implications of nutrition for the ability of ruminants to withstand gastrointestinal nematode infections. Int. J. Parasitol. 2010, 26, 1151–1167. [Google Scholar] [CrossRef]
- Roeber, F.; Jex, A.R.; Gasser, R.B. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance—An Australian perspective. Parasit. Vectors 2013, 6, 153. [Google Scholar] [CrossRef] [PubMed]
- Zanzani, S.A.; Gazzonis, A.L.; Di Cerbo, A.; Varady, M.; Manfredi, M.T. Gastrointestinal nematodes of dairy goats, anthelmintic resistance and practices of parasite control in Northern Italy. BMC Vet. Res. 2014, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Meenakshisundaram, A.; Harikrishnan, T.J.; Anna, T. Anthelmintic activity of Indigofera tinctoria against gastrointestinal nematodes of sheep. Vet. World 2016, 9, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Geurden, T.; Hoste, H.; Jacquiet, P.; Traversa, D.; Sotiraki, S.; Frangipane di Regalbono, A.; Tzanidakis, N.; Kostopoulou, D.; Gaillac, C.; Privat, S.; et al. Anthelmintic resistance and multidrug resistance in sheep gastro-intestinal nematodes in France, Greece and Italy. Vet. Parasitol. 2014, 201, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Levine, N.D. Nematode Parasites of Domestic Animals and of Man; Burgess Publishing Company: Minneapolis, MN, USA, 1968. [Google Scholar]
- Zvinorova, P.I.; Halimani, T.E.; Muchadeyi, F.C.; Matika, O.; Riggio, V.; Dzama, K. Breeding for resistance to gastrointestinal nematodes–the potential in low-input/output small ruminant production systems. Vet. Parasitol. 2016, 225, 19–28. [Google Scholar] [CrossRef] [PubMed]
- McRae, K.M.; McEwan, J.C.; Dodds, K.G.; Gemmell, N.J. Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. BMC Genom. 2014, 15, 637. [Google Scholar] [CrossRef] [PubMed]
- Werne, S.; Isensee, A.; Maurer, V.; Perler, E.; Drewek, A.; Heckendorn, F. Integrated control of gastrointestinal nematodes in lambs using a bioactive feed × breed approach. Vet. Parasitol. 2013, 198, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Piedrafita, D.; Preston, S.; Kemp, J.; de Veer, M.; Sherrard, J.; Kraska, T.; Elhay, M.; Meeusen, E. The effect of different adjuvants on immune parameters and protection following vaccination of sheep with a larval-specific antigen of the gastrointestinal nematode, Haemonchus contortus. PLoS ONE 2013, 8, e78357. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.E.; Burke, J.M.; Terrill, T.H.; Kearney, M.T. A comparison of two integrated approaches of controlling nematode parasites in small ruminants. Vet. Parasitol. 2011, 178, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Hostea, H.; Torres-Acostab, J.F.J. Non chemical control of helminths in ruminants: Adapting solutions for changing worms in a changing world. Vet. Parasitol. 2011, 180, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Kanojiya, D.; Shanker, D.; Sudan, V.; Jaiswal, A.K.; Parashar, R. In vitro and in vivo efficacy of extracts of leaves of Eucalyptus globulus on ovine gastrointestinal nematodes. Parasitol. Res. 2015, 114, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Alawa, C.B.I.; Adamu, A.M.; Gefu, J.O.; Ajanusi, O.J.; Abdu, P.A.; Chiezey, N.P.; Alawa, J.N.; Bowman, D.D. In vitro screening of two Nigerian medicinal plants (Vernonia amygdalina and Annona senegalensis) for anthelmintic activity. Vet. Parasitol. 2003, 113, 78–81. [Google Scholar] [CrossRef]
- Baloyi, M.A.; Laing, M.D.; Yobo, K.S. Use of mixed cultures of biocontrol agents to control sheep nematodes. Vet. Parasitol. 2012, 184, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Traversa, D.; Paoletti, B.; Otranto, D.; Miller, J. First report of multiple drug resistance in trichostrongyles affecting sheep under field conditions in Italy. J. Parasitol. Res. 2007, 101, 1713–1716. [Google Scholar] [CrossRef] [PubMed]
- Jackson, F.; Miller, J. Alternative approaches to control-quo vadit? Vet. Parasitol. 2006, 139, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Nordi, E.C.; Costa, R.L.; David, C.M.; Parren, G.A.; Freitas, A.C.; Lameirinha, L.P.; Katiki, L.M.; Bueno, M.S.; Quirino, C.R.; Gama, P.E.; et al. Supplementation of moist and dehydrated citrus pulp in the diets of sheep artificially and naturally infected with gastrointestinal nematodes on the parasitological parameters and performance. Vet. Parasitol. 2014, 205, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Fichi, G.; Mattellini, M.; Meloni, E.; Flamini, G.; Perrucci, S. In vitro anthelmintic activity of two aloe-derived active principles against sheep gastrointestinal nematodes. Nat. Prod. Commun. 2017, 12, 1897–1899. [Google Scholar]
- Chagas, A.C.; Vieira, L.S.; Freitas, A.R.; Araújo, M.R.; Araújo-Filho, J.A.; Araguão, W.R.; Navarro, A.M. Anthelmintic efficacy of neem (Azadirachta indica A. Juss) and the homeopathic product Fator Vermes in Morada Nova sheep. Vet. Parasitolol. 2008, 151, 68–73. [Google Scholar] [CrossRef] [PubMed]
- García, D.; Escalante, M.; Delgado, R.; Ubeira, F.M.; Leiro, J. Anthelminthic and antiallergic activities of Mangifera indica L. stem bark components Vimang and mangiferin. Phytother. Res. 2003, 17, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Barrau, E.; Fabre, N.; Fouraste, I.; Hoste, H. Effect of bioactive compounds from sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: Role of tannins and flavonol glycosides. Parasitology 2005, 131, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Kozan, E.-; Anul, S.A.; Tatli, I.I. In vitro anthelmintic effect of Vicia pannonica var. purpurascens on trichostrongylosis in sheep. Exp. Parasitol. 2013, 134, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Villaseñor, I.M.; Angelada, J.; Canlas, A.P.; Echegoyen, D. Bioactivity studies on beta-sitosterol and its glucoside. Phytother. Res. 2002, 16, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.A.; Coop, R.L.; Wall, R.L. Veterinary Parasitology, 3rd ed.; Blackwell Publishing: Oxford, UK, 2007. [Google Scholar]
- Taylor, M.A. A larval development test for the detection of anthelmintic resistance in nematodes of sheep. Res. Vet. Sci. 1990, 49, 198–202. [Google Scholar] [CrossRef]
- Hubert, J.; Kerboeuf, D. A microlarval development assay for the detection of anthelmintic resistance in sheep nematodes. Vet. Rec. 1992, 130, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Adamu, M.; Naidoo, V.; Eloff, J.N. Efficacy and toxicity of thirteen plant leaf acetone extracts used in ethnoveterinary medicine in South Africa on egg hatching and larval development of Haemonchus contortus. BMC Vet. Res. 2013, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Coles, G.C.; Bauer, C.; Borgsteede, F.H.M.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992, 44, 35–44. [Google Scholar] [CrossRef]
- Coles, G.C.; Jackson, F.; Pomroy, W.E.; Prichard, R.K.; von Samson-Himmelstjerna, G.; Silvestre, A.; Taylor, M.A.; Vercruysse, J. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 2006, 136, 167–185. [Google Scholar] [CrossRef] [PubMed]
- Glantz, S.A. Statistica per Discipline Biomediche, 5th ed.; Mc Graw-Hill: Milan, Italy, 2003. [Google Scholar]
- Previtera, A. Elementi di Biostatistica; Casa Editrice Santini: Sarzana, Italy, 1976; p. 677. [Google Scholar]
- Ministry of Agriculture, Fisheries and Food (MAFF). Manual of Veterinary Parasitological Laboratory Techniques; Her Majesty’s Stationary Office (HMSO): London, UK, 1986; pp. 1–152. [Google Scholar]
- Sargison, N.D.; Jackson, J.; Gilleard, S. Effects of age and immune suppression of sheep on fecundity, hatching and larval feeding of different strains of Haemonchus contortus. Vet. J. 2011, 189, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Kotze, A.C.; Ruffell, A.P.; Knox, M.R.; Kelly, G.A. Relative potency of macrocyclic lactones in in vitro assays with larvae of susceptible and drug-resistant Australian isolates of Haemonchus contortus and H. placei. Vet. Parasitol. 2014, 203, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Kupčinskas, T.; Stadalienė, I.; Šarkūnas, M.; Riškevičienė, V.; Várady, M.; Höglund, J.; Petkevičius, S. Prevalence of anthelmintic resistance on Lithuanian sheep farms assessed by in vitro methods. Acta Vet. Scand. 2015, 57, 88. [Google Scholar] [CrossRef] [PubMed]
- Van der Watt, E.; Pretorius, J.C. Purification and identification of active antibacterial components in Carpobrotus edulis L. J. Ethnopharm. 2001, 76, 87–91. [Google Scholar] [CrossRef]
- Arrieta, J.; Reyes, B.; Calzada, F.; Cedillo-Rivera, R.; Navarrete, A. Amoebicidal and giardicidal compounds from the leaves of Zanthoxylum liebmannianun. Fitoterapia 2001, 72, 295–297. [Google Scholar] [CrossRef]
- Imran, M.; Arshad, M.S.; Butt, M.S.; Kwon, J.H.; Arshad, M.U.; Sultan, M.T. Mangiferin: A natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis. 2017, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Perrucci, S.; Fichi, G.; Buggiani, C.; Rossi, G.; Flamini, G. Efficacy of mangiferin against Cryptosporidium parvum in a neonatal mouse model. Parasitol. Res. 2006, 99, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Pubchem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/rutin#section=Top (accessed on 25 August 2018).
- Liu, Y.; Garzon, J.; Friesen, J.B.; Zhangd, Y.; McAlpine, J.B.; Lankin, D.C.; Chen, S.; Pauli, G.F. Countercurrent assisted quantitative recovery of metabolites from plant-associated natural deep eutectic solvents. Fitoterapia 2016, 112, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewick, P.M. The Acetate Pathway: The Acetate Pathway: Fatty Acids and Polyketides. In Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 39–135. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470742761 (accessed on 25 August 2018).
- Dewick, P.M. The Shikimate Pathway: Aromatic Amino Acids and Phenylpropanoids. In Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 137–186. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470742761 (accessed on 25 August 2018).
- Dewick, P.M. The Mevalonate and Methylerythritol Phosphate Pathways: Terpenoids and Steroids. In Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 187–310. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470742761 (accessed on 25 August 2018).
- De-Eknamkul, W.; Potduang, B. Biosynthesis of β-Sitosterol and Stigmasterol in Croton sublyratus Proceeds via a Mixed Origin of Isoprene Units. Phytochemistry 2003, 62, 389–398. [Google Scholar] [CrossRef]
Treatment | EHT | sd | LDT | sd | LMT | sd |
---|---|---|---|---|---|---|
Untreated Controls | 92.89 | 8.01 | 98.29 | 4.02 | 1.1 | 0.02 |
Tbz (0.1%) Controls | 7.13 | 11.68 | 0 | 0 | 100 | 0 |
Mangiferin (0.25%) | 58.28 | 15.6 | 0 | 0 | 100 | 0 |
Mangiferin (0.125%) | 80.24 | 6.53 | 0 | 0 | 100 | 0 |
Mangiferin (0.0625%) | 92.13 | 2.54 | 79.3 | 7.2 | 30.65 | 4.46 |
Quercetin (1%) | 51.41 | 4.25 | 100 | 0 | 48.32 | 3.01 |
Rutin (1%) | 23.71 | 6.35 | 0 | 0 | 100 | 0 |
Rutin (0.75%) | 55.18 | 9.79 | 0 | 0 | 100 | 0 |
Rutin (0.5%) | 71.53 | 9.04 | 0 | 0 | 100 | 0 |
β-sitosterol (1%) | 42.74 | 29.48 | 1 | 2.2 | 80.28 | 5.1 |
β-sitosterol (0.75%) | 44.74 | 30.36 | 8.02 | 11.74 | 50.09 | 10.35 |
β-sitosterol (0.5%) | 100 | 0 | 93.01 | 8.53 | 6 | 12.97 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovanelli, F.; Mattellini, M.; Fichi, G.; Flamini, G.; Perrucci, S. In Vitro Anthelmintic Activity of Four Plant-Derived Compounds against Sheep Gastrointestinal Nematodes. Vet. Sci. 2018, 5, 78. https://doi.org/10.3390/vetsci5030078
Giovanelli F, Mattellini M, Fichi G, Flamini G, Perrucci S. In Vitro Anthelmintic Activity of Four Plant-Derived Compounds against Sheep Gastrointestinal Nematodes. Veterinary Sciences. 2018; 5(3):78. https://doi.org/10.3390/vetsci5030078
Chicago/Turabian StyleGiovanelli, Federica, Matteo Mattellini, Gianluca Fichi, Guido Flamini, and Stefania Perrucci. 2018. "In Vitro Anthelmintic Activity of Four Plant-Derived Compounds against Sheep Gastrointestinal Nematodes" Veterinary Sciences 5, no. 3: 78. https://doi.org/10.3390/vetsci5030078
APA StyleGiovanelli, F., Mattellini, M., Fichi, G., Flamini, G., & Perrucci, S. (2018). In Vitro Anthelmintic Activity of Four Plant-Derived Compounds against Sheep Gastrointestinal Nematodes. Veterinary Sciences, 5(3), 78. https://doi.org/10.3390/vetsci5030078