Strategies to Combat Heat Stress in Broiler Chickens: Unveiling the Roles of Selenium, Vitamin E and Vitamin C
Abstract
:1. Introduction
2. Bioactive Compounds in Heat Stress
2.1. Ascorbic Acid
2.2. Vitamin E
2.3. Selenium
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meremikwu, V.; Ibekwe, H.; Essien, A. Improving broiler performance in the tropics using quantitative nutrition. World’s Poult. Sci. J. 2013, 69, 633–638. [Google Scholar] [CrossRef]
- Sahin, N.; Sahin, K.; Onderci, M.; Karatepe, M.; Smith, M.; Kucuk, O. Effects of dietary lycopene and vitamin E on egg production, antioxidant status and cholesterol levels in Japanese quail. Asian Australas. J. Anim. Sci. 2006, 19, 224. [Google Scholar] [CrossRef]
- Daghir, N. Nutritional strategies to reduce heat stress in broilers and broiler breeders. Lohmann Inf. 2009, 44, 6–15. [Google Scholar]
- Sohail, M.; Hume, M.; Byrd, J.; Nisbet, D.; Ijaz, A.; Sohail, A.; Shabbir, M.; Rehman, H. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult. Sci. 2012, 91, 2235–2240. [Google Scholar] [CrossRef]
- Suganya, T.; Senthilkumar, S.; Deepa, K.; Amutha, R. Nutritional management to alleviate heat stress in broilers. Int. J. Sci. EnDVOi Technol. 2015, 4, 661–666. [Google Scholar]
- Mack, L.; Felver-Gant, J.; Dennis, R.; Cheng, H.W. Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poult. Sci. 2013, 92, 285–294. [Google Scholar] [CrossRef]
- Youssef, A.; Exadaktylos, V.; Berckmans, D.A. Towards real-time control of chicken activity in a ventilated chamber. Biosyst. Eng. 2015, 135, 31–43. [Google Scholar] [CrossRef]
- Hall, D.M.; Buettner, G.R.; Oberley, L.W.; Xu, L.; Matthes, R.D.; Gisolfi, C.V. Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am. J. Physiol.-Heart Circ. Physiol. 2001, 280, H509–H521. [Google Scholar] [CrossRef] [Green Version]
- Pearce, S.C.; Mani, V.; Boddicker, R.L.; Johnson, J.S.; Weber, T.E.; Ross, J.W.; Rhoads, R.P.; Baumgard, L.H.; Gabler, N.K. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLoS ONE 2013, 8, e70215. [Google Scholar] [CrossRef]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Zhao, W.; Le, H.H.; McQuade, R.; Furness, J.B.; Dunshea, F.R. Dietary Betaine Improves Intestinal Barrier Function and Ameliorates the Impact of Heat Stress in Multiple Vital Organs as Measured by Evans Blue Dye in Broiler Chickens. Animals 2020, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Oskoueian, E.; Abdullah, N.; Idrus, Z.; Ebrahimi, M.; Goh, Y.M.; Shakeri, M.; Oskoueian, A. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes. BMC Complementary Altern. Med. 2014, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Quinteiro-Filho, W.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.; Sakai, M.; Sá, L.; Ferreira, A.; Palermo-Neto, J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 2010, 89, 1905–1914. [Google Scholar] [CrossRef]
- Gabler, N.; Pearce, S. The impact of heat stress on intestinal function and productivity in grow-finish pigs. Anim. Prod. Sci. 2015, 55, 1403–1410. [Google Scholar] [CrossRef]
- Piekarski, A.; Bottje, W.; Dridi, S. Heat stress: A global concern. Adv. Food Technol. Nutr. Sci. 2015, 1, 102–103. [Google Scholar] [CrossRef]
- Lan, X.; Schmidt, C.J.; Lamont, S.J. Heat-Susceptible and Heat-Resistant Chicken Lines Reveal Differentially Expressed Genes in Liver in Response to Heat Stress. Anim. Ind. Rep. 2016, 662, 56. [Google Scholar]
- Attia, Y.; Abdalah, A.; Zeweil, H.; Bovera, F.; El-Din, A.T.; Araft, M.J.C.J.A.S. Effect of inorganic or organic selenium supplementation on productive performance, egg quality and some physiological traits of dual-purpose breeding hens. Czech. J. Anim. Sci. 2010, 55, 505–519. [Google Scholar] [CrossRef] [Green Version]
- Abidin, Z.; Khatoon, A. Heat stress in poultry and the beneficial effects of ascorbic acid (vitamin C) supplementation during periods of heat stress. World’s Poult. Sci. J. 2013, 69, 135–152. [Google Scholar] [CrossRef]
- Lohakare, J.; Ryu, M.; Hahn, T.-W.; Lee, J.; Chae, B. Effects of supplemental ascorbic acid on the performance and immunity of commercial broilers. J. Appl. Poult. Res. 2005, 14, 10–19. [Google Scholar] [CrossRef]
- Lohakare, J.; Chae, B.; Hahn, T. Effects of feeding methods (water vs. feed) of vitamin C on growth performance and carcass characteristics in broiler chickens. Asian Australas. J. Anim. Sci. 2004, 17, 1112–1117. [Google Scholar] [CrossRef]
- Dar, T.A.; Singh, L.R. Protein Modificomics: From Modifications to Clinical Perspectives; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Cánovas, M.; Bernal, V.; Sevilla, A.; Iborra, J. Salt stress effects on the central and carnitine metabolisms of Escherichia coli. Biotechnol. Bioeng. 2007, 96, 722–737. [Google Scholar] [CrossRef]
- Harrison, F.E.; May, J.M. Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radic. Biol. Med. 2009, 46, 719–730. [Google Scholar] [CrossRef] [Green Version]
- Combs, G.F., Jr.; McClung, J.P. The Vitamins: Fundamental Aspects in Nutrition and Health; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Rush, R.; Geffen, L. Dopamine β-hydroxylase in health and disease. CRC Crit. Rev. Clin. Lab. Sci. 1980, 12, 241–277. [Google Scholar] [CrossRef]
- Furusawa, H.; Sato, Y.; Tanaka, Y.; Inai, Y.; Amano, A.; Iwama, M.; Kondo, Y.; Handa, S.; Murata, A.; Nishikimi, M. Vitamin C is not essential for carnitine biosynthesis in vivo: Verification in vitamin C-depleted senescence marker protein-30/gluconolactonase knockout mice. Biol. Pharm. Bull. 2008, 31, 1673–1679. [Google Scholar] [CrossRef] [Green Version]
- Hao, S.; Avraham, Y.; Bonne, O.; Berry, E.M. Separation-induced body weight loss, impairment in alternation behavior, and autonomic tone: Effects of tyrosine. Pharmacol. Biochem. Behav. 2001, 68, 273–281. [Google Scholar] [CrossRef]
- Peeters, E.; Neyt, A.; Beckers, F.; De Smet, S.; Aubert, A.; Geers, R. Influence of supplemental magnesium, tryptophan, vitamin C, and vitamin E on stress responses of pigs to vibration. J. Anim. Sci. 2005, 83, 1568–1580. [Google Scholar] [CrossRef] [Green Version]
- Watson, R.R.; Zibadi, S.; Preedy, V.R. Dietary Components and Immune Function; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Sorice, A.; Guerriero, E.; Capone, F.; Colonna, G.; Castello, G.; Costantini, S. Ascorbic acid: Its role in immune system and chronic inflammation diseases. Mini Rev. Med. Chem. 2014, 14, 444–452. [Google Scholar] [CrossRef]
- Doba, T.; Burton, G.W.; Ingold, K.U. Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochim. Biophys. Acta 1985, 835, 298–303. [Google Scholar] [CrossRef]
- Maurice, D.; Lightsey, S.; Toler, J. Ascorbic acid biosynthesis in hens producing strong and weak eggshells. Br. Poult. Sci. 2004, 45, 404–408. [Google Scholar] [CrossRef]
- Sahin, K.; Kucuk, O.; Sahin, N.; Sari, M. Effects of Vitamin C and Vitamin E on Lipid Peroxidation Status, Serum Hormone, Metabolite, and Mineral Concentrations of Japanese Quails Reared under Heat Stress (34 °C). Int. J. Vitam. Nutr. Res. 2002, 72, 91–100. [Google Scholar] [CrossRef]
- Mahmoud, K.Z.; Edens, F.; Eisen, E.; Havenstein, G. Ascorbic acid decreases heat shock protein 70 and plasma corticosterone response in broilers (Gallus gallus domesticus) subjected to cyclic heat stress. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2004, 137, 35–42. [Google Scholar] [CrossRef]
- Ali, M.; Howlider, M.; Azad, A.; Rahman, M. Vitamin C and electrolyte supplementation to support growth and meat yield of broilers in a hot humid environment. J. Bangladesh Agric. Univ. 2010, 8, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Asli, M.M.; Hosseini, S.A.; Lotfollahian, H.; Shariatmadari, F. Effect of probiotics, yeast, vitamin E and vitamin C supplements on performance and immune response of laying hen during high environmental temperature. Int. J. Poult. Sci. 2007, 6, 895–900. [Google Scholar] [CrossRef]
- Seven, I.; Aksu, T.; Seven, P.T. The effects of propolis on biochemical parameters and activity of antioxidant enzymes in broilers exposed to lead-induced oxidative stress. Asian-Australas. J. Anim. Sci. 2010, 23, 1482–1489. [Google Scholar] [CrossRef]
- Packer, L.; Weber, S.U.; Rimbach, G. Molecular aspects of α-tocotrienol antioxidant action and cell signalling. J. Nutr. 2001, 131, 369S–373S. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Lin, H.; Wang, X.; Song, Z.; Jiao, H. Vitamin E supplementation alleviates the oxidative stress induced by dexamethasone treatment and improves meat quality in broiler chickens. Poult. Sci. 2010, 89, 318–327. [Google Scholar] [CrossRef]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C. Chemistry and biology of vitamin E. Mol. Nutr. Food Res. 2005, 49, 7–30. [Google Scholar] [CrossRef]
- Azzi, A.; Boscoboinik, D.; Clement, S.; Ozer, N.K.; Ricciarelli, R.; Stocker, A.; Tasinato, A.; Sirikci, O. Signalling functions of alpha-tocopherol in smooth muscle cells. Int. J. Vitam. Nutr. Res. Int. Z. Vitam. Ernahr. J. Int. Vitaminol. Nutr. 1997, 67, 343–349. [Google Scholar]
- Liu, Y.; Hyde, A.S.; Simpson, M.A.; Barycki, J.J. Emerging regulatory paradigms in glutathione metabolism. In Advances in Cancer Research; Elsevier: Amsterdam, The Netherlands, 2014; Volume 122, pp. 69–101. [Google Scholar]
- Attia, Y.A.; Abd El-Hamid, A.E.-H.E.; Abedalla, A.A.; Berika, M.A.; Al-Harthi, M.A.; Kucuk, O.; Sahin, K.; Abou-Shehema, B.M. Laying performance, digestibility and plasma hormones in laying hens exposed to chronic heat stress as affected by betaine, vitamin C, and/or vitamin E supplementation. SpringerPlus 2016, 5, 1619. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Zhang, L.; Shan, A. The effect of vitamin E on laying performance and egg quality in laying hens fed corn dried distillers grains with solubles. Poult. Sci. 2013, 92, 2956–2964. [Google Scholar] [CrossRef]
- Habibian, M.; Ghazi, S.; Moeini, M.M.; Abdolmohammadi, A. Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions. Int. J. Biometeorol. 2014, 58, 741–752. [Google Scholar] [CrossRef]
- Kirunda, D.; Scheideler, S. The efficacy of vitamin E (DL-α-tocopheryl acetate) supplementation in hen diets to alleviate egg quality deterioration associated with high temperature exposure. Poult. Sci. 2001, 80, 1378–1383. [Google Scholar] [CrossRef]
- Bollengier-Lee, S. Optimal dietary concentration of vitamin E for alleviating the effect of heat stress on egg production in laying hens. Br. Poult. Sci. 1999, 40, 102–107. [Google Scholar] [CrossRef]
- Villacorta, L.; Graça-Souza, A.V.; Ricciarelli, R.; Zingg, J.-M.; Azzi, A. α-Tocopherol induces expression of connective tissue growth factor and antagonizes tumor necrosis factor-α–mediated downregulation in human smooth muscle cells. Circ. Res. 2003, 92, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Muller, D.P. Vitamin E and neurological function. Mol. Nutr. Food Res. 2010, 54, 710–718. [Google Scholar] [CrossRef]
- McDowell, L.R. Vitamins in Animal Nutrition: Comparative Aspects to Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Sahin, K.; Kucuk, O. Effects of vitamin C and vitamin E on performance, digestion of nutrients and carcass characteristics of Japanese quails reared under chronic heat stress (34 C). J. Anim. Physiol. Anim. Nutr. 2001, 85, 335–341. [Google Scholar] [CrossRef]
- Sahin, K.; Sahin, N.; Onderci, M.; Yaralioglu, S.; Kucuk, O. Protective role of supplemental vitamin E on lipid peroxidation, vitamins E, A and some mineral concentrations of broilers reared under heat stress. Vet. Med. (Praha)- 2001, 46, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Sonam, K.; Guleria, S. Synergistic antioxidant activity of natural products. Annal. Pharmacol. Pharm. 2017, 2, 1086. [Google Scholar]
- Pond, W.G.; Church, D.C.; Pond, K.R. Basic Animal Nutrition and Feeding; John Wiley and Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Costa, M. O papel do zinco e do cromo no desempenho de porcas. PorkworldPaulínia 2005, 4, 58–60. [Google Scholar]
- Linder, M. Nutritional and metabolism of the trace elements. In Nutritional Biochemistry and Metabolism with Clinical Applications; Elsevier: New York, NY, USA, 1991; pp. 215–276. [Google Scholar]
- MacDonald, R.S. The role of zinc in growth and cell proliferation. J. Nutr. 2000, 130, 1500S–1508S. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.; Borchers, A.T.; Yoshida, S.; Gershwin, M.E. Evaluation of the immune system in the nutritionally at-risk host. In Nutrition and Immunology; Springer: Berlin/Heidelberg, Germany, 2000; pp. 21–31. [Google Scholar]
- Ibs, K.-H.; Rink, L. Zinc-altered immune function. J. Nutr. 2003, 133, 1452S–1456S. [Google Scholar] [CrossRef]
- Sahin, K.; Kucuk, O. Zinc supplementation alleviates heat stress in laying Japanese quail. J. Nutr. 2003, 133, 2808–2811. [Google Scholar] [CrossRef]
- Onderci, M.; Sahin, N.; Sahin, K.; Kilic, N. Antioxidant properties of chromium and zinc. Biol. Trace Elem. Res. 2003, 92, 139–149. [Google Scholar] [CrossRef]
- Kucuk, O.; Kahraman, A.; Kurt, I.; Yildiz, N.; Onmaz, A. A combination of zinc and pyridoxine supplementation to the diet of laying hens improves performance and egg quality. Biol. Trace Elem. Res. 2008, 126, 165–175. [Google Scholar] [CrossRef]
- Salgueiro, M.J.; Zubillaga, M.; Lysionek, A.; Sarabia, M.I.; Caro, R.; De Paoli, T.; Hager, A.; Weill, R.; Boccio, J. Zinc as an essential micronutrient: A review. Nutr. Res. 2000, 20, 737–755. [Google Scholar] [CrossRef]
- Kim, E.-S.; Noh, S.K.; Koo, S.I. Marginal zinc deficiency lowers the lymphatic absorption of α-tocopherol in rats. J. Nutr. 1998, 128, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.S.; Kucuk, O. Zinc in cancer prevention. Cancer Metastasis Rev. 2002, 21, 291–295. [Google Scholar] [CrossRef]
- Tate, D.J.; Miceli, M.V.; Newsome, D.A. Zinc protects against oxidative damage in cultured human retinal pigment epithelial cells. Free Radic. Biol. Med. 1999, 26, 704–713. [Google Scholar] [CrossRef]
- Tappel, A.; Tappel, A. Oxidant free radical initiated chain polymerization of protein and other biomolecules and its relationship to diseases. Med Hypotheses 2004, 63, 98–99. [Google Scholar] [CrossRef]
- Nunes, V.A.; Gozzo, A.J.; Cruz-Silva, I.; Juliano, M.A.; Viel, T.A.; Godinho, R.O.; Meirelles, F.V.; Sampaio, M.U.; Sampaio, C.A.; Araujo, M.S. Vitamin E prevents cell death induced by mild oxidative stress in chicken skeletal muscle cells. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005, 141, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, P.R. Mechanisms by which selenium influences immune responses. Arch. Immunol. Ther. Exp. 2007, 55, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Best, B. Selenium: AntiOxidant, Anti-Carcinogen, and Immune System Booster. Tanggal 2007. Available online: http://www.benbest.com/nutrceut/Selenium.html (accessed on 27 October 2017).
- Ibrahim, M.; Eljack, B.; Fadlalla, I. Selenium supplementation to broiler diets. Anim. Sci. J. 2011, 2, 12–17. [Google Scholar]
- Krstić, B.; Jokić, Ž.; Pavlović, Z.; Živković, D. Options for the production of selenized chicken meat. Biol. Trace Elem. Res. 2012, 146, 68–72. [Google Scholar] [CrossRef]
- Niu, Z.; Liu, F.; Yan, Q.; Li, L. Effects of different levels of selenium on growth performance and immunocompetence of broilers under heat stress. Arch. Anim. Nutr. 2009, 63, 56–65. [Google Scholar] [CrossRef]
- Habibian, M.; Ghazi, S.; Moeini, M.M. Effects of dietary selenium and vitamin E on growth performance, meat yield, and selenium content and lipid oxidation of breast meat of broilers reared under heat stress. Biol. Trace Elem. Res. 2016, 169, 142–152. [Google Scholar] [CrossRef]
- Tayeb, I.; Qader, G.K. Effect of feed supplementation of selenium and vitamin E on production performance and some hematological parameters of broiler. Kahramanmaras Sutcu Imam Univ. J. Nat. Sci. 2012, 15, 46–56. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakeri, M.; Oskoueian, E.; Le, H.H.; Shakeri, M. Strategies to Combat Heat Stress in Broiler Chickens: Unveiling the Roles of Selenium, Vitamin E and Vitamin C. Vet. Sci. 2020, 7, 71. https://doi.org/10.3390/vetsci7020071
Shakeri M, Oskoueian E, Le HH, Shakeri M. Strategies to Combat Heat Stress in Broiler Chickens: Unveiling the Roles of Selenium, Vitamin E and Vitamin C. Veterinary Sciences. 2020; 7(2):71. https://doi.org/10.3390/vetsci7020071
Chicago/Turabian StyleShakeri, Majid, Ehsan Oskoueian, Hieu Huu Le, and Mehdi Shakeri. 2020. "Strategies to Combat Heat Stress in Broiler Chickens: Unveiling the Roles of Selenium, Vitamin E and Vitamin C" Veterinary Sciences 7, no. 2: 71. https://doi.org/10.3390/vetsci7020071
APA StyleShakeri, M., Oskoueian, E., Le, H. H., & Shakeri, M. (2020). Strategies to Combat Heat Stress in Broiler Chickens: Unveiling the Roles of Selenium, Vitamin E and Vitamin C. Veterinary Sciences, 7(2), 71. https://doi.org/10.3390/vetsci7020071