Hydrothermal Processing of Clarias gariepinus (Burchell, 1822) Filets: Insights on the Nutritive Value and Organoleptic Parameters
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tacon, A.G. Trends in global aquaculture and aquafeed production: 2000–2017. Rev. Fish. Sci. Aquac. 2020, 28, 43–56. [Google Scholar] [CrossRef]
- Cahu, C.; Salen, P.; De Lorgeril, M. Farmed and wild fish in the prevention of cardiovascular diseases: Assessing possible differences in lipid nutritional values. Nutr. Metab. Cardiovasc. Dis. 2004, 14, 34–41. [Google Scholar] [CrossRef]
- FAO Fisheries Department, Fishery Information, Data and Statistics Unit. Fishstatj, a Tool for Fishery Statistics Analysis, Release: 3.5.0, Universal SOFTWARE for fishery STATISTICAL time Series. Global Aquaculture Production: QUANTITY 1950–2017; value 1950–2017; Global Capture Production; FAO: Rome, Italy, 2019; pp. 1950–2017. [Google Scholar]
- Olufeagba, S.O.; Okomoda, V.T.; Shaibu, G. Embryogenesis and early growth of pure strains and hybrids between Clarias gariepinus (Burchell, 1822) and Heterobranchus longifilis Valenciennes, 1840. North Am. J. Aquac. 2016, 78, 346–355. [Google Scholar] [CrossRef]
- Okomoda, V.T.; Koh, I.C.C.; Hassan, A.; Amornsakun, T.; Shahreza, M.S. Performance and characteristics of the progenies from the crosses of Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822). Aquaculture 2018, 489, 96–104. [Google Scholar] [CrossRef]
- The European Food Information Council Review. 2010. Available online: http://www.eufic.org/article/en/expid/cooking-review-eufic/ (accessed on 18 June 2015).
- Rosa, R.; Bandarra, N.M.; Nunes, M.L. Nutritional quality of African catfish Clarias gariepinus (Burchell 1822): A positive criterion for the future development of the European production of Siluroidei. Int. J. Food Sci. Technol. 2007, 42, 342–351. [Google Scholar] [CrossRef]
- Karimian-Khosroshahi, N.; Hosseini, H.; Rezaei, M.; Khaksar, R.; Mahmoudzadeh, M. Effect of Different Cooking Methods on Minerals, Vitamins, and Nutritional Quality Indices of Rainbow Trout (Oncorhynchus mykiss). Int. J. Food Prop. 2016, 19, 2471–2480. [Google Scholar] [CrossRef]
- Oluwaniyi, O.; Dosumu, O.; Awolola, G. Effect of Cooking Method on the Proximate, Amino Acid, and Fatty Acid Compositions of Clarias gariepinus and Oreochromis niloticus. JOTCSA 2017, 4, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Garcıá-Arias, M.T.; Pontes, E.A.; Garcıá-Linares, M.C.; Garcıá-Fernández, M.C.; Sánchez-Muniz, F.J. Cooking–freezing–reheating (CFR) of sardine (Sardina pilchardus). Effect of different cooking and reheating procedures on the proximate and fatty acid compositions. Food Chem. 2003, 83, 349–356. [Google Scholar] [CrossRef]
- Garcıá-Arias, M.T.; Pontes, E.A.; Garcıá-Linares, M.C.; Garcıá-Fernandez, M.C.; Sánchez-Muniz, F.J. Grilling of sardine fillets. Effects of frozen and thawed modality on their protein quality. Lebensm. Wiss. Technol. Food Sci. Technol. 2003, 36, 763–769. [Google Scholar] [CrossRef]
- Neff, M.R.; Bhavsar, S.P.; Braekevelt, E.; Arts, M.T. Effects of different cooking methods on fatty acid profiles in four freshwater fishes from the Laurentian Great Lakes region. Food Chem. 2014, 164, 544–550. [Google Scholar] [CrossRef]
- Yenmak, S.; Joerakate, W.; Poompuang, S. Prediction of fillet yield in hatchery populations of Asian sea bass, Lates calcarifer (Bloch, 1790) using body weight and measurements. Int. Aquat. Res. 2018, 10, 253–261. [Google Scholar] [CrossRef] [Green Version]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis AOAC International Methods 934.01, 988.05, 920.39 and 942.05; AOAC International: Arlington, VA, USA, 2001. [Google Scholar]
- Spackman, D.H.; Stein, E.H.; Moore, S. Automatic recording apparatus for use in chromatography of amino acid. Anal. Chem. 1958, 30, 119. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Offical Analytical Chemists, 17th ed.; AOAC International: Rockville, MD, USA, 1994; pp. 25–31. [Google Scholar]
- Tobor, T.G. Fish Production and Processing on Nigeria; NIOMR Tech. Paper No.22; Nigerian Institute for Oceanography and Marine Research: Lagos, Nigeria, 1994. [Google Scholar]
- Garcıá-Arias, M.T.; Navarro, M.P.; Garcıá -Linares, M.C. Effects of different thermal treatments and storage on the proximate composition and protein quality in canned tuna. Arch. Latinoam. Nutr. 2004, 54, 112–117. [Google Scholar] [PubMed]
- Ali, A. Nutritive and Organoleptic Properties in Processed Fish Fillets Obtained from Iran. Food Sci. Technol. 2014, 34, 287–291. [Google Scholar]
- Anne, G.; Sue, W. Cooking Fish with Finesse. The Inquisitive Cook. 1998. Available online: https://www.exploratorium.edu/cooking/icooks/article.html (accessed on 1 June 2020).
- Larsen, D.; Quek, S.; Eyres, L. Effect of cooking method on the fatty acid profile of New Zealand King Salmon (Oncorhynchus tshawytscha). Food Chem. 2010, 119, 785–790. [Google Scholar] [CrossRef]
- Oparaku, N.F.; Nwaka, F.C. The effects of different processing methods (oven drying, solar drying, smoking and boiling) on the proximate composition and organoleptic properties of three fish species (Clarias gariepinus, Trachurus trecae and Synodontis clarias). Int. J. Biol. Biol. Sci. 2013, 2, 143–149. [Google Scholar]
- Tiamiyu, L.O.; Okomoda, V.F.; Izundu, C.I. Nutritional value of hydrothermally processed Citrullus lunatus seeds in the diet of Clarias gariepinus. Int. J. Aquac. 2015, 5, 1–4. [Google Scholar]
- Okomoda, V.T.; Tiamiyu, L.O.; Uma, S.G. Effects of hydrothermal processing on nutritional value of Canavalia ensiformis and its utilization by Clarias gariepinus (Burchell, 1822). Aquac. Rep. 2016, 3, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Musa, S.O.; Tiamiyu, L.O.; Solomon, S.G.; Ayuba, V.O.; Okomoda, V.T. Nutritional value of hydrothermally processed Jatropha curcas kernel and its effect on growth and hematological parameters of Clarias gariepinus (Burchell, 1822). Aquac. Rep. 2018, 10, 32–38. [Google Scholar] [CrossRef]
- Rawat, K.; Nirmala, C.; Bisht, M.S. Processing Techniques for Reduction of Cyanogenic Glycosides from Bamboo Shoots. In Proceedings of the 10 th World Bamboo Congress, Damyang, Korea, 17–22 September 2015. [Google Scholar]
- Tiamiyu, L.O.; Ayuba, V.O.; Okomoda, V.F.; Umar, S. Growth response of Cyprinus carpio fingerlings fed diets containing hydrothermally processed Citrullus lunatus seed meal. J. Aquac. Eng. Fish. Res. 2016, 2, 1–10. [Google Scholar]
- Weber, J.; Bochi, V.C.; Ribeiro, C.P.; Victorio, A.M.; Emanuelli, T. Effect of Different Cooking Methods on the Oxidation, Proximate and Fatty Acid Composition of Silver Catfish (Rhamdia Quelen) Fillets. Food Chem. 2008, 106, 140–146. [Google Scholar] [CrossRef]
- Wang, Y.J.; Miller, L.A.; Perren, M.; Addis, P.B. Omega-3 fatty acids in Lake Superior fish. J. Food Sci. 1990, 55, 71–76. [Google Scholar] [CrossRef]
- Snyder, R.J.; Hennessey, T.M. Cold tolerance and homeoviscous adaptation in freshwater alewives (Alosa pseudoharengus). Fish. Physiol. Biochem. 2003, 29, 117–419. [Google Scholar] [CrossRef]
- Ackman, R.G. Fish Lipids, Part 1. In Advances in Fish Sciences and Technology; Connell, J.J., Ed.; Fishing News Books Ltd.: Farnham, Surrey, UK, 1980; pp. 86–103. [Google Scholar]
- Yashodhara, B.M.; Umakanth, S.; Pappachan, J.M.; Bhat, S.K.; Kamath, R.; Choo, B.H. Omega-3 fatty acids: A comprehensive review of their role in health and disease. Postgrad. Med. J. 2009, 85, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Pawlosky, R.J.; Hibbeln, J.R.; Novotny, J.A.; Salem, N. Physiological compartmental analysis of α-linolenic acid metabolism in adult humans. J. Lipid Res. 2001, 42, 1257–1265. [Google Scholar]
- Health Canada. Canada’s Food Guide. 2011. Available online: http://www.hc-sc.gc.ca (accessed on 9 February 2012).
- U.K Scienfitic Advisory Committee on Nutrition. Advice on Fish Consumption: Benefits and Risks. 2004. Available online: www.sacn.gov.uk (accessed on 1 June 2020).
- European Food Safety Authority. Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J. 2012, 10, 2815–2863. [Google Scholar]
- Food and Agriculture Organization of the United Nations; World Health Organization. Fats and Oils in Human Nutrition. Rome. 1994. Available online: http://www.fao.org/docrep/V4700E/V4700E00.htm (accessed on 1 June 2020).
- Bhouri, A.M.I.; Bouhlel, L.; Chouba, M.; Hammami, M.; El Cafsi, M.; Chaouch, A. Total lipid content, fatty acid and mineral compositions of muscles and liver in wild and farmed sea bass (Dicentrarchus labrax). Afr. J. Food Sci. 2010, 4, 530–552. [Google Scholar]
- Kołakowska, A.; Domiszewski, Z.; Bienkiewicz, G.; Szczygielski, M. Effects of thermal treatment of Baltic herring and sprat on n-3 PUFA and lipid oxidation. In Proceedings of the Lipid Fo-rum: 21st Nordic Lipid Symposium, Bergen, Norway, 5–8 June 2001. [Google Scholar]
- Bakar, J.; Rahimabadi, E.Z.; Che Man, Y.B. Lipid characteristics in cooked, chill reheated fillets of Indo-Pacific king mackerel (Scomberomorous guttatus). Food Sci. Technol. 2008, 41, 2144–2150. [Google Scholar] [CrossRef]
- Stephen, N.M.; Jeya Shakila, R.; Jeyasekaran, G.; Sukumar, D. Effect of different types of heat processing on chemical changes in tuna. J. Food Sci. Technol. 2010, 47, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Kołakowska, A.; Bienkiewicz, G. Stability of fish during microwave heating. Acta Ichthyol. Piscat. 1999, 29, 101–111. [Google Scholar] [CrossRef] [Green Version]
Parameters | Raw | Time (minutes) | p-Value | |||
---|---|---|---|---|---|---|
10 | 20 | 30 | 40 | |||
Moisture | 63.31 ± 0.03 a | 60.43 ± 0.24 b | 59.43 ± 0.12 c | 58.47 ± 0.25 d | 57.44 ± 0.10 e | 0.001 |
Ash | 1.49 ± 0.06 d | 3.39 ± 0.06 c | 3.55 ± 0.03 b | 3.92 ± 0.02 a | 3.93 ± 0.04 a | 0.001 |
Fat | 1.44 ± 0.01 d | 2.59 ± 0.13 c | 2.67 ± 0.05 c | 3.67 ± 0.00 a | 3.44 ± 0.12 b | 0.001 |
Fiber | 1.68 ± 0.05 c | 2.07 ± 0.02 b | 2.17 ± 0.02 a | 2.09 ± 0.01 ab | 2.6 ± 0.01 b | 0.002 |
Protein | 18.66 ± 0.10 e | 22.45 ± 0.12 d | 24.84 ± 0.05 b | 25.83 ± 0.04 a | 23.41 ± 0.06 c | 0.001 |
NFE | 13.44 ± 0.22 a | 9.08 ± 0.42 b | 7.16 ± 0.15 c | 6.03 ± 0.30 d | 9.73 ± 0.24 d | 0.011 |
Amino Acids | Raw | Time (Minutes) | p-Value | |||
---|---|---|---|---|---|---|
10 | 20 | 30 | 40 | |||
EAA | ||||||
Lysine | 1.28 ± 0.01 d | 1.47 ± 0.03 c | 1.59 ± 0.01 c | 2.18 ± 0.02 a | 2.05 ± 0.02 b | 0.001 |
Histidine | 0.11 ± 0.01 d | 0.35 ± 0.01 b | 0.42 ± 0.02 a | 0.43 ± 0.01 a | 0.25 ± 0.01 c | 0.001 |
Arginine | 0.58 ± 0.01 d | 0.65 ± 0.01 c | 0.74 ± 0.04 b | 1.06 ± 0.02 a | 0.78 ± 0.02 b | 0.003 |
Threonine | 1.08 ± 0.03 d | 1.86 ± 0.03 c | 1.92 ± 0.01 b | 2.07 ± 0.01 a | 1.95 ± 0.02 b | 0.002 |
Valine | 0.71 ± 0.01 e | 1.18 ± 0.01 d | 1.43 ± 0.03 c | 1.98 ± 0.01 a | 1.88 ± 0.01 b | 0.001 |
Methionine | 0.95 ± 0.02 a | 0.69 ± 0.02 b | 0.55 ± 0.01 c | 0.44 ± 0.01 d | 0.31 ± 0.02 e | 0.011 |
Isoleucine | 0.72 ± 0.02 d | 1.23 ± 0.02 c | 1.46 ± 0.03 a | 1.47 ± 0.01 a | 1.31 ± 0.01 b | 0.001 |
Leucine | 0.91 ± 0.02 d | 1.43 ± 0.02 c | 1.57 ± 0.04 b | 1.62 ± 0.02 a | 1.60 ± 0.04 a | 0.001 |
Phenylalanine | 0.51 ± 0.01 e | 1.03 ± 0.01 d | 1.42 ± 0.02 c | 1.76 ± 0.01 a | 1.54 ± 0.02 b | 0.001 |
NEAA | ||||||
Aspartic acid | 1.58 ± 0.01 c | 1.75 ± 0.01 b | 1.89 ± 0.02 a | 1.84 ± 0.01 a | 1.75 ± 0.03 b | 0.001 |
Serine | 0.22 ± 0.01 d | 0.58 ± 0.01 c | 0.73 ± 0.01 b | 0.89 ± 0.01 a | 0.69 ± 0.03 b | 0.001 |
Glutamic acid | 2.39 ± 0.02 d | 3.01 ± 0.02 c | 3.19 ± 0.01 b | 3.54 ± 0.02 a | 3.16 ± 0.01 b | 0.001 |
Proline | 0.51 ± 0.01 c | 0.95 ± 0.01 b | 1.04 ± 0.01 b | 1.19 ± 0.01 a | 1.21 ± 0.02 a | 0.002 |
Glycine | 1.10 ± 0.02 d | 1.58 ± 0.01 c | 1.69 ± 0.01 b | 1.97 ± 0.02 a | 1.71 ± 0.02 b | 0.001 |
Alanine | 0.82 ± 0.02 d | 1.12 ± 0.02 c | 1.71 ± 0.02 b | 1.98 ± 0.01 a | 1.68 ± 0.01 b | 0.011 |
Cystine | 1.25 ± 0.01 a | 1.19 ± 0.01 b | 1.18 ± 0.03 b | 1.08 ± 0.01 c | 0.95 ± 0.01 d | 0.001 |
Tyrosine | 0.51 ± 0.16 c | 0.86 ± 0.05 b | 0.94 ± 0.01 a | 0.98 ± 0.01 a | 0.89 ± 0.01 b | 0.001 |
Fatty Acid | Raw | Time (Minutes) | p-Value | |||
---|---|---|---|---|---|---|
10 | 20 | 30 | 40 | |||
C12:0 | 1.85 ± 0.02 d | 1.97 ± 0.11 c | 2.01 ± 0.01 c | 2.22 ± 0.02 a | 2.14 ± 0.03 b | 0.003 |
C14:0 | 0.68 ± 0.02 | 0.69 ± 0.01 | 0.76 ± 0.01 | 0.77 ± 0.02 | 0.78 ± 0.03 | 0.233 |
C15:0 | 0.16 ± 0.04 | 0.17 ± 0.01 | 0.17 ± 0.02 | 0.17 ± 0.03 | 0.17 ± 0.01 | 0.081 |
C16:0 | 1.57 ± 0.02 d | 2.01 ± 0.05 c | 2.12 ± 0.10 b | 2.13 ± 0.01 ab | 2.15 ± 0.02 a | 0.001 |
C17:0 | 0.16 ± 0.03 | 0.18 ± 0.02 | 0.18 ± 0.02 | 0.21 ± 0.01 | 0.20 ± 0.01 | 0.090 |
C18:0 | 0.59 ± 0.06 | 0.67 ± 0.14 | 0.67 ± 0.03 | 0.71 ± 0.04 | 0.71 ± 0.11 | 0.211 |
C20:0 | 0.85 ± 0.01 | 0.86 ± 0.03 | 0.88 ± 0.01 | 0.89 ± 0.02 | 0.85 ± 0.02 | 0.156 |
C22:0 | 0.45 ± 0.01 c | 1.05 ± 0.01 b | 1.07 ± 0.02 b | 1.15 ± 0.04 a | 1.20 ± 0.01 a | 0.001 |
ΣSFA | 6.31 ± 0.04 e | 7.60 ± 0.02 d | 7.86 ± 0.01 c | 8.25 ± 0.03 a | 8.20 ± 0.01 b | 0.001 |
C16:1 n-7 | 0.38 ± 0.04 d | 0.45 ± 0.02 c | 0.48 ± 0.01 b | 0.53 ± 0.01 a | 0.46 ± 0.03 b | 0.001 |
C18:1 n-7 | 0.14 ± 0.04 | 0.14 ± 0.02 | 0.15 ± 0.01 | 0.15 ± 0.03 | 0.15 ± 0.01 | 0.120 |
C18:1 n-9 | 0.81 ± 0.06 | 0.81 ± 0.03 | 0.82 ± 0.02 | 0.82 ± 0.05 | 0.81 ± 0.10 | 0.522 |
C20:1 n-9 | 0.55 ± 0.01 a | 0.50 ± 0.03 b | 0.49 ± 0.02 c | 0.45 ± 0.04 d | 0.42 ± 0.01 e | 0.001 |
ΣMUFA | 1.88 ± 0.04 d | 1.90 ± 0.05 c | 1.94 ± 0.03 b | 2.01 ± 0.05 a | 1.84 ± 0.01 d | 0.001 |
C16:3 n-3 | 0.32 ± 0.01 c | 1.01 ± 0.02 b | 1.03 ± 0.03 b | 1.10 ± 0.10 a | 1.09 ± 0.01 a | 0.001 |
C16:4 n-3 | 0.01 ± 0.01 c | 0.01 ± 0.02 c | 0.09 ± 0.01 b | 0.12 ± 0.03 a | 0.08 ± 0.02 b | 0.001 |
C18:3 n-3 | 0.02 ± 0.01 d | 0.04 ± 0.01 c | 0.09 ± 0.02 b | 0.15 ± 0.03 a | 0.09 ± 0.02 b | 0.001 |
C18:4 n-3 | 0.21 ± 0.01 e | 0.30 ± 0.01 d | 0.47 ± 0.02 c | 0.71 ± 0.01 a | 0.62 ± 0.02 b | 0.001 |
C20:3 n-3 | 1.02 ± 0.04 d | 1.12 ± 0.02 c | 1.29 ± 0.31 b | 1.45 ± 0.50 a | 1.39 ± 0.21 b | 0.001 |
C20:4 n-3 | 0.06 ± 0.01 | 0.07 ± 0.03 | 0.07 ± 0.01 | 0.09 ± 0.02 | 0.06 ± 0.02 | 0.058 |
C20:5 n-3 | 1.58 ± 0.03 d | 1.83 ± 0.01 c | 2.14 ± 0.02 b | 2.43 ± 0.01 a | 2.12 ± 0.01 b | 0.002 |
C22:6 n-3 | 2.24 ± 0.01 d | 3.05 ± 0.04 c | 3.31 ± 0.02 b | 3.39 ± 0.04 a | 3.28 ± 0.01 b | 0.001 |
C18:2 n-6 | 0.32 ± 0.14 d | 0.46 ± 0.05 c | 0.49 ± 0.31 b | 0.52 ± 0.50 a | 0.49 ± 0.21 b | 0.001 |
C18:3 n-6 | 0.74 ± 0.02 e | 0.81 ± 0.05 d | 0.99 ± 0.03 c | 1.15 ± 0.05 a | 1.09 ± 0.01 b | 0.001 |
C20:4 n-6 | 0.15 ± 0.01 | 0.17 ± 0.03 | 0.17 ± 0.01 | 0.17 ± 0.02 | 0.17 ± 0.02 | 0.334 |
C22:4 n-6 | 0.16 ± 0.01 | 0.14 ± 0.04 | 0.14 ± 0.02 | 0.13 ± 0.04 | 0.12 ± 0.01 | 0.111 |
C22:5 n-6 | 0.11 ± 0.01 d | 0.14 ± 0.01 c | 0.19 ± 0.02 b | 0.22 ± 0.50 a | 0.19 ± 0.21 b | 0.001 |
EPA+DHA | 3.82 ± 0.03 d | 4.88 ± 0.02 c | 5.45 ± 0.02 b | 5.82 ± 0.01 a | 5.40 ± 0.02 b | 0.001 |
ΣPUFA | 6.93 ± 0.03 d | 8.27 ± 0.02 c | 9.51 ± 0.02 b | 10.25 ± 0.01 a | 9.86 ± 0.02 b | 0.001 |
PUFA:SFA | 1.07 ± 0.05 d | 1.10 ± 0.03 c | 1.21 ± 0.01 b | 1.25 ± 0.03 a | 1.20 ± 0.02 b | 0.001 |
Parameters | Time (Minutes) | p-Value | |||
---|---|---|---|---|---|
10 | 20 | 30 | 40 | ||
Flavor | 3.17 ± 0.48 | 4.00 ± 0.52 | 4.33 ± 0.21 | 4.00 ± 0.37 | 0.252 |
Appearance | 4.00 ± 0.63 | 3.67 ± 0.49 | 3.68 ± 0.33 | 2.50 ± 0.56 | 0.217 |
Texture | 3.67 ± 0.56 | 4.17 ± 0.40 | 3.67 ± 0.42 | 3.33 ± 0.49 | 0.668 |
Palatability | 2.07 ± 0.02 | 2.17 ± 0.02 | 2.09 ± 0.01 | 2.6 ± 0.01 | 0.374 |
Well cooked | 2.67 ± 0.42 | 3.33 ± 0.33 | 3.50 ± 0.34 | 3.33 ± 0.67 | 0.597 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okomoda, V.T.; Tiamiyu, L.O.; Ricketts, A.O.; Oladimeji, S.A.; Agbara, A.; Ikhwanuddin, M.; Alabi, K.I.; Abol-Munafi, A.B. Hydrothermal Processing of Clarias gariepinus (Burchell, 1822) Filets: Insights on the Nutritive Value and Organoleptic Parameters. Vet. Sci. 2020, 7, 133. https://doi.org/10.3390/vetsci7030133
Okomoda VT, Tiamiyu LO, Ricketts AO, Oladimeji SA, Agbara A, Ikhwanuddin M, Alabi KI, Abol-Munafi AB. Hydrothermal Processing of Clarias gariepinus (Burchell, 1822) Filets: Insights on the Nutritive Value and Organoleptic Parameters. Veterinary Sciences. 2020; 7(3):133. https://doi.org/10.3390/vetsci7030133
Chicago/Turabian StyleOkomoda, Victor Tosin, Lateef Oloyede Tiamiyu, Amighty Olorunpelumi Ricketts, Sunday Abraham Oladimeji, Austine Agbara, Mhd Ikhwanuddin, Korede Isaiah Alabi, and Ambok Bolong Abol-Munafi. 2020. "Hydrothermal Processing of Clarias gariepinus (Burchell, 1822) Filets: Insights on the Nutritive Value and Organoleptic Parameters" Veterinary Sciences 7, no. 3: 133. https://doi.org/10.3390/vetsci7030133
APA StyleOkomoda, V. T., Tiamiyu, L. O., Ricketts, A. O., Oladimeji, S. A., Agbara, A., Ikhwanuddin, M., Alabi, K. I., & Abol-Munafi, A. B. (2020). Hydrothermal Processing of Clarias gariepinus (Burchell, 1822) Filets: Insights on the Nutritive Value and Organoleptic Parameters. Veterinary Sciences, 7(3), 133. https://doi.org/10.3390/vetsci7030133