Prevalence and Patterns of Antimicrobial Resistance among Escherichia coli and Staphylococcus spp. in a Veterinary University Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Enrolment Criteria
2.2. Sample Collection
2.3. Sample and Population Composition
2.4. Bacteria Isolation and Identification
2.5. Antimicrobial Susceptibility Testing
2.6. mecA PCR
2.7. Statistical Methods
3. Results
3.1. Detection of E. coli and Staphylococcus spp.
3.2. Occurrence and Pattern of Antimicrobial Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antimicrobial Resistance: Global Report on Surveillance. Available online: https://apps.who.int/iris/handle/10665/112642. (accessed on 10 July 2021).
- Septimus, E.J. Antimicrobial Resistance. Med. Clin. North Am. 2018, 102, 819–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weese, J.S. Antimicrobial resistance in companion animals. Anim. Health Res. Rev. 2008, 9, 169–176. [Google Scholar] [CrossRef]
- Guardabassi, L.; Schwarz, S.; Lloyd, D.H. Pet animals as reservoirs of antimicrobial-resistant bacteria: Review. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef]
- Perreten, V.; Kadlec, K.; Schwarz, S.; Andersson, U.G.; Finn, M.; Greko, C.; Moodley, A.; Kania, S.A.; Frank, L.A.; Bemis, D.A.; et al. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: An international multicentre study. J. Antimicrob. Chemother. 2010, 65, 1145–1154. [Google Scholar] [CrossRef] [Green Version]
- Piano Nazionale di Contrasto dell’Antimicrobico-Resistenza (PNCAR) 2017–2020. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_2660_allegato.pdf (accessed on 10 July 2021).
- Rantala, M.; Lahti, E.; Kuhalampi, J.; Pesonen, S.; Järvinen, A.K.; Saijonmaa-Koulumies, L.; Honkanen-Buzalski, T. Antimicrobial resistance in Staphylococcus spp., Escherichia coli and Enterococcus spp. in dogs given antibiotics for chronic dermatological disorders, compared with non-treated control dogs. Acta Vet.- Scand. 2004, 45, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.S.; Morton, J.M.; Cobbold, R.N.; Filippich, L.J.; Trott, D.J. Risk factors for dogs becoming rectal carriers of multidrug-resistant Escherichia coli during hospitalization. Epidemiol. Infect. 2011, 139, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Filius, P.M.G.; Gyssens, I.C.; Kershof, I.M.; Roovers, P.J.E.; Ott, A.; Vulto, A.G.; Verbrugh, H.A.; Endtz, H.P. Colonization and Resistance Dynamics of Gram-Negative Bacteria in Patients during and after Hospitalization. Antimicrob. Agents Chemother. 2005, 49, 2879–2886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogeer-Gyles, J.; Mathews, K.A.; Sears, W.; Prescott, J.F.; Weese, J.S.; Boerlin, P. Development of antimicrobial drug resistance in rectalEscherichia coliisolates from dogs hospitalized in an intensive care unit. J. Am. Vet.- Med. Assoc. 2006, 229, 694–699. [Google Scholar] [CrossRef]
- Qekwana, D.N.; Oguttu, J.W.; Sithole, F.; Odoi, A. Patterns and predictors of antimicrobial resistance among Staphylococcus spp. from canine clinical cases presented at a veterinary academic hospital in South Africa. BMC Vet.- Res. 2017, 13, 116. [Google Scholar] [CrossRef] [Green Version]
- The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/5598 (accessed on 10 July 2021).
- Cain, C.L. Antimicrobial Resistance in Staphylococci in Small Animals. Veter- Clin. North Am. Small Anim. Pr. 2013, 43, 19–40. [Google Scholar] [CrossRef]
- The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2017/2018. Available online: https://www.efsa.europa.eu/it/efsajournal/pub/6007 (accessed on 10 July 2021).
- Baptiste, K.E.; Williams, K.; Willams, N.J.; Wattret, A.; Clegg, P.D.; Dawson, S.; Corkill, J.E.; O’Neill, T.; Hart, C.A. Methicillin-resistant Staphylococci in Companion Animals. Emerg. Infect. Dis. 2005, 11, 1942–1944. [Google Scholar] [CrossRef]
- Wieler, L.H.; Ewers, C.; Guenther, S.; Walther, B.; Lübke-Becker, A. Methicillin-resistant staphylococci (MRS) and extended-spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae in companion animals: Nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinical samples. Int. J. Med. Microbiol. 2011, 301, 635–641. [Google Scholar] [CrossRef]
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; Van Duijkeren, E.; Mateus, A.; Moreno, M.; Pyörälä, S.; Ruzauskas, M.; et al. Public health risk of antimicrobial resistance transfer from companion animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef] [PubMed]
- Clermont, O.; Lescat, M.; O’Brien, C.L.; Gordon, D.M.; Tenaillon, O.; Denamur, E. Evidence for a human-specific Escherichia coli clone. Environ. Microbiol. 2008, 10, 1000–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BioEdit. Available online: http://www.mbio.ncsu.edu/BioEdit/bioedit.html (accessed on 13 November 2020).
- Molecular Evolutionary Genetics Analysis. Available online: https://www.megasoftware.net/ (accessed on 13 November 2020).
- Basic Local Alignment Search Tool. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 24 July 2021).
- Bauer, M.A.W.; Kirby, M.W.M.M.; Sherris, M.J.C.; Turck, M.M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 3rd ed.; Clinical and Laboratory Standards Institute: Malvern, PA, USA, Document VET01, ED3:2015.
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Stegger, M.; Andersen, P.S.; Kearns, A.; Pichon, B.; Holmes, M.; Edwards, G.; Laurent, F.; Teale, C.; Skov, R.; Larsen, A. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecALGA251. Clin. Microbiol. Infect. 2012, 18, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Murphy, C.P.; Reid-Smith, R.J.; Boerlin, P.; Weese, J.S.; Prescott, J.F.; Janecko, N.; Hassard, L.; McEwen, S.A. Escherichia coli and selected veterinary and zoonotic pathogens isolated from environmental sites in companion animal veterinary hospitals in southern Ontario. Can. Vet. J. 2010, 51, 963–972. [Google Scholar] [PubMed]
- Costa, D.; Poeta, P.; Sáenz, Y.; Coelho, A.C.; Matos, M.; Vinue, L.; Rodrigues, J.; Torres, C. Prevalence of antimicrobial resistance and resistance genes in faecal Escherichia coli isolates recovered from healthy pets. Vet.- Microbiol. 2008, 127, 97–105. [Google Scholar] [CrossRef]
- Murphy, C.; Reid-Smith, R.J.; Prescott, J.F.; Bonnett, B.N.; Poppe, C.; Boerlin, P.; Weese, J.S.; Janecko, N.; McEwen, S.A. Occurrence of antimicrobial resistant bacteria in healthy dogs and cats presented to private veterinary hospitals in southern Ontario: A preliminary study. Can. Vet. J. 2009, 50, 1047–1053. [Google Scholar]
- Marchetti, L.; Buldain, D.; Castillo, L.G.; Buchamer, A.; Chirino-Trejo, M.; Mestorino, N. Pet and Stray Dogs as Reservoirs of Antimicrobial-Resistant Escherichia coli. Int. J. Microbiol. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Moyaert, H.; De Graef, E.; Haesebrouck, F.; Decostere, A. Acquired antimicrobial resistance in the intestinal microbiota of diverse cat populations. Res. Vet.- Sci. 2006, 81, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.-M.; Lee, H.-S.; Byun, J.-W.; Yoon, S.-S.; Jung, S.-C.; Joo, Y.-S.; Lim, S.-K. Prevalence of Antimicrobial Resistance in Fecal Escherichia coli Isolates from Stray Pet Dogs and Hospitalized Pet Dogs in Korea. Microb. Drug Resist. 2010, 16, 75–79. [Google Scholar] [CrossRef]
- Hanberger, H.; Arman, D.; Gill, H.; Jindrák, V.; Kalenic, S.; Kurcz, A.; Licker, M.; Naaber, P.; Scicluna, E.A.; Vaniš, V.; et al. Surveillance of microbial resistance in European Intensive Care Units: A first report from the Care-ICU programme for improved infection control. Intensiv. Care Med. 2008, 35, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Endimiani, A.; Brilhante, M.; Bernasconi, O.J.; Perreten, V.; Schmidt, J.S.; Dazio, V.; Nigg, A.; Brawand, S.G.; Kuster, S.P.; Schuller, S.; et al. Employees of Swiss veterinary clinics colonized with epidemic clones of carbapenemase-producing Escherichia coli. J. Antimicrob. Chemother. 2019, 75, 766–768. [Google Scholar] [CrossRef]
- Gentilini, F.; Turba, M.E.; Pasquali, F.; Mion, D.; Romagnoli, N.; Zambon, E.; Terni, D.; Peirano, G.; Pitout, J.D.D.; Parisi, A.; et al. Hospitalized Pets as a Source of Carbapenem-Resistance. Front. Microbiol. 2018, 9, 2872. [Google Scholar] [CrossRef] [PubMed]
- Nigg, A.; Brilhante, M.; Dazio, V.; Clément, M.; Collaud, A.; Brawand, S.G.; Willi, B.; Endimiani, A.; Schuller, S.; Perreten, V. Shedding of OXA-181 carbapenemase-producing Escherichia coli from companion animals after hospitalisation in Switzerland: An outbreak in 2018. Eurosurveillance 2019, 24, 1900071. [Google Scholar] [CrossRef]
- Peterson, L. Squeezing the antibiotic balloon: The impact of antimicrobial classes on emerging resistance. Clin. Microbiol. Infect. 2005, 11, 4–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, D.J.; Filippich, L.J.; Bensink, J.C.; Downs, M.T.; McKenzie, S.E.; Townsend, K.M.; Moss, S.M.; Chin, J.J.-C. Canine model for investigating the impact of oral enrofloxacin on commensal coliforms and colonization with multidrug-resistant Escherichia coli. J. Med Microbiol. 2004, 53, 439–443. [Google Scholar] [CrossRef]
- Boothe, D.M.; Debavalya, N. Impact of routine antimicrobial therapy on canine faecal Escherichia coli antimicrobial resistance: A pilot study. Intern. J. Appl Res. Vet. Med. 2011, 4, 396–406. [Google Scholar]
- Schmidt, V.M.; Pinchbeck, G.; McIntyre, K.M.; Nuttall, T.; McEwan, N.J.; Dawson, S.; Williams, N. Routine antibiotic therapy in dogs increases the detection of antimicrobial-resistant faecal Escherichia coli. J. Antimicrob. Chemother. 2018, 73, 3305–3316. [Google Scholar] [CrossRef]
- Bannoehr, J.; Guardabassi, L. Staphylococcus pseudintermedius in the dog: Taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet. Dermatol. 2012, 23, 253-e52. [Google Scholar] [CrossRef]
- Schmidt, V.M.; Williams, N.J.; Pinchbeck, G.; E Corless, C.; Shaw, S.; McEwan, N.; Dawson, S.; Nuttall, T. Antimicrobial resistance and characterisation of staphylococci isolated from healthy Labrador retrievers in the United Kingdom. BMC Vet.- Res. 2014, 10, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lilenbaum, W.; Nunes, E.; Azeredo, M. Prevalence and antimicrobial susceptibility of staphylococci isolated from the skin surface of clinically normal cats. Lett. Appl. Microbiol. 1998, 27, 224–228. [Google Scholar] [CrossRef]
- Couto, N.; Monchique, C.; Belas, A.; Marques, C.; Gama, L.; Pomba, C. Trends and molecular mechanisms of antimicrobial resistance in clinical staphylococci isolated from companion animals over a 16 year period. J. Antimicrob. Chemother. 2016, 71, 1479–1487. [Google Scholar] [CrossRef]
- Detwiler, A.; Bloom, P.; Petersen, A.; Rosser, E.J., Jr. Multi-drug and methicillin resistance of Staphylococci from canine patients at a veterinary teaching hospital (2006–2011). Vet. Q. 2013, 33, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierowiec, K.; Płoneczka-Janeczko, K.; Rypuła, K. Is the colonisation of Staphylococcus aureus in pets associated with their close contact with owners? PLoS ONE 2016, 11, e0156052. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, E.; Boag, A.; Brodbelt, D.; Grierson, J. Evaluation of surface contamination with Staphylococci in a veterinary hospital using a quantitative microbiological method. J. Small Anim. Pract. 2010, 51, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Rojas, I.; Barquero-Calvo, E.; van Balen, J.C.; Rojas, N.; Muñoz-Vargas, L.; Hoet, A.E. High prevalence of multidrug-resistant community-acquired methicillin-resistant Staphylococcus aureus at the largest veterinary teaching hospital in Costa Rica. Vector Borne Zoonotic Dis. 2017, 17, 645–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neely, A.N.; Maley, M.P. Survival of Enterococci and Staphylococci on Hospital Fabrics and Plastic. J. Clin. Microbiol. 2000, 38, 724–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weese, J.S.; van Duijkeren, E. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet.- Microbiol. 2010, 140, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Stull, J.W.; Weese, J.S. Hospital-Associated Infections in Small Animal Practice. Vet.- Clin. North Am. Small Anim. Pr. 2015, 45, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Vengust, M.; Anderson, M.; Rousseau, J.; Weese, J. Methicillin-resistant staphylococcal colonization in clinically normal dogs and horses in the community. Lett. Appl. Microbiol. 2006, 43, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.L.; Morris, D.O.; Griffeth, G.C.; Shofer, F.S.; Rankin, S.C. Surveillance of healthy cats and cats with inflammatory skin disease for colonization of the skin by methicillin-resistant coagulase-positive staphylococci and Staphylococcus schleiferi ssp. schleiferi. Vet.- Dermatol. 2007, 18, 252–259. [Google Scholar] [CrossRef]
- Kottler, S.; Middleton, J.; Perry, J.; Weese, J.; Cohn, L. Prevalence ofStaphylococcus aureusand Methicillin-ResistantStaphylococcus aureusCarriage in Three Populations. J. Vet.- Intern. Med. 2010, 24, 132–139. [Google Scholar] [CrossRef]
- Hanselman, B.A.; Kruth, S.A.; Rousseau, J.; Weese, J.S. Coagulase positive staphylococcal colonization of humans and their household pets. Can. Vet.- J. 2009, 50, 954–958. [Google Scholar]
- Gómez-Sanz, E.; Torres, C.; Lozano, C.; Sáenz, Y.; Zarazaga, M. Detection and characterization of methicillin-resistant Staphylococcus pseudintermedius in healthy dogs in La Rioja, Spain. Comp. Immunol. Microbiol. Infect. Dis. 2011, 34, 447–453. [Google Scholar] [CrossRef]
- Kjellman, E.E.; Slettemeås, J.S.; Small, H.; Sunde, M. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) from healthy dogs in Norway–occurrence, genotypes and comparison to clinical MRSP. MicrobiologyOpen 2015, 4, 857–866. [Google Scholar] [CrossRef]
- Loeffler, A.; Boag, A.K.; Sung, J.; Lindsay, J.; Guardabassi, L.; Dalsgaard, A.; Smith, H.; Stevens, K.B.; Lloyd, D.H. Prevalence of methicillin-resistant Staphylococcus aureus among staff and pets in a small animal referral hospital in the UK. J. Antimicrob. Chemother. 2005, 56, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Grönthal, T.; Moodley, A.; Nykäsenoja, S.; Junnila, J.; Guardabassi, L.; Thomson, K.; Rantala, M. Large Outbreak Caused by Methicillin Resistant Staphylococcus pseudintermedius ST71 in a Finnish Veterinary Teaching Hospital–From Outbreak Control to Outbreak Prevention. PLoS ONE 2014, 9, e110084. [Google Scholar] [CrossRef] [PubMed]
- Lehner, G.; Linek, M.; Bond, R.; Lloyd, D.H.; Prenger-Berninghoff, E.; Thom, N.; Straube, I.; Verheyen, K.; Loeffler, A. Case–control risk factor study of methicillin-resistant Staphylococcus pseudintermedius (MRSP) infection in dogs and cats in Germany. Vet.- Microbiol. 2014, 168, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbarossa, A.; Rambaldi, J.; Miraglia, V.; Giunti, M.; Diegoli, G.; Zaghini, A. Survey on antimicrobial prescribing patterns in small animal veterinary practice in Emilia Romagna, Italy. Vet. Rec. 2017, 181, 69. [Google Scholar] [CrossRef] [PubMed]
Hospital Area | No. of Patient Swabs | Isolates n (%) | N. of Environment Swabs | Isolates n (%) | Total Isolates n (%) |
---|---|---|---|---|---|
Escherichia coli | |||||
CA | 16 | 12 (75%) | 16 | - | 12 (37%) |
ICU admission | 32 | 27 (84%) | 32 | - | 27 (42%) |
ICU discharge | 32 | 28 (87%) | 32 | 3 (9%) | 31 (48%) |
Staphylococcus spp. | |||||
CA | 16 | 9 (56%) | 16 | 10 (62%) | 19 (59%) |
ICU admission | 32 | 23 (72%) | 32 | 27 (84%) | 50 (78%) |
ICU discharge | 32 | 20 (62%) | 32 | 21 (66%) | 41 (64%) |
Staphylococcal Species | Coagulase | No. of Isolates | % |
---|---|---|---|
S. pseudintermedius | Positive | 34 | 30 |
S. haemolyticus | Negative | 3 | 10 |
S. aureus | Positive | 7 | 6 |
S. epidermidis | Negative | 7 | 6 |
S. felis | Negative | 6 | 5 |
S. hominis | Negative | 3 | 3 |
S. cohnii | Negative | 2 | 2 |
S. simulans | Negative | 2 | 2 |
S. vitulinus | Negative | 1 | 1 |
S. capitis | Negative | 1 | 1 |
S. succinus | Negative | 1 | 1 |
S. xylosus | Negative | 1 | 1 |
Staphylococcus spp. | / | 32 | 29 |
Total | 110 | 69 |
Antimicrobial Agent | Admission (Total Isolates, n = 27) | Discharge (Total Isolates, n = 31) | p | ||
---|---|---|---|---|---|
R | % | R | % | ||
AMP | 6 | 22 | 20 | 65 | 0.02 |
AMC | 3 | 11 | 16 | 52 | 0.007 |
CAZ | 4 | 15 | 14 | 45 | 0.04 |
CZ | 3 | 11 | 14 | 45 | 0.02 |
IMP | 1 | 4 | 10 | 32 | 0.01 |
GMN | 2 | 7 | 14 | 45 | 0.006 |
C | 1 | 4 | 5 | 16 | 0.14 |
ENR | 4 | 15 | 17 | 55 | 0.01 |
NA | 4 | 15 | 18 | 58 | 0.008 |
TE | 6 | 22 | 18 | 58 | 0.03 |
SXT | 4 | 15 | 16 | 52 | 0.02 |
MDR | 4 | 15 | 18 | 58 | 0.009 |
Antimicrobial Agent | Admission (Total Isolates n = 50) | Discharge Total Isolates n = 41) | p | ||
---|---|---|---|---|---|
No. | % | No. | % | ||
AMP | 31 | 62 | 24 | 59 | 0.83 |
AMC | 15 | 30 | 12 | 29 | 0.95 |
OX | 25 | 50 | 16 | 39 | 0.44 |
KF | 16 | 32 | 11 | 27 | 0.65 |
EFT | 18 | 36 | 13 | 32 | 0.73 |
IMP | 3 | 6 | 0 | 0 | 0.12 |
S | 22 | 44 | 24 | 59 | 0.33 |
GMN | 20 | 40 | 17 | 41 | 0.91 |
DA | 27 | 54 | 26 | 63 | 0.56 |
ENR | 18 | 36 | 17 | 41 | 0.68 |
E | 28 | 56 | 27 | 66 | 0.55 |
TE | 22 | 44 | 22 | 54 | 0.51 |
SXT | 14 | 28 | 14 | 34 | 0.60 |
MDR | 26 | 51 | 27 | 66 | 0.39 |
OX-Resistant CoPS | CA | ICU |
---|---|---|
OX-resistant Staphylococcus aureus | 1/24 | 3/24 |
OX-resistant Staphylococcus pseudintermedius | 0/24 | 15/24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocca, G.; Piva, S.; Magno, S.D.; Scarpellini, R.; Giacometti, F.; Serraino, A.; Giunti, M. Prevalence and Patterns of Antimicrobial Resistance among Escherichia coli and Staphylococcus spp. in a Veterinary University Hospital. Vet. Sci. 2021, 8, 308. https://doi.org/10.3390/vetsci8120308
Cocca G, Piva S, Magno SD, Scarpellini R, Giacometti F, Serraino A, Giunti M. Prevalence and Patterns of Antimicrobial Resistance among Escherichia coli and Staphylococcus spp. in a Veterinary University Hospital. Veterinary Sciences. 2021; 8(12):308. https://doi.org/10.3390/vetsci8120308
Chicago/Turabian StyleCocca, Giorgia, Silvia Piva, Sara Del Magno, Raffaele Scarpellini, Federica Giacometti, Andrea Serraino, and Massimo Giunti. 2021. "Prevalence and Patterns of Antimicrobial Resistance among Escherichia coli and Staphylococcus spp. in a Veterinary University Hospital" Veterinary Sciences 8, no. 12: 308. https://doi.org/10.3390/vetsci8120308
APA StyleCocca, G., Piva, S., Magno, S. D., Scarpellini, R., Giacometti, F., Serraino, A., & Giunti, M. (2021). Prevalence and Patterns of Antimicrobial Resistance among Escherichia coli and Staphylococcus spp. in a Veterinary University Hospital. Veterinary Sciences, 8(12), 308. https://doi.org/10.3390/vetsci8120308