Current and Future Molecular Diagnostics of Tick-Borne Diseases in Cattle
Abstract
:1. Introduction
2. Protozoal Agents
2.1. Babesiosis
2.2. Theileriosis and East Coast Fever
3. Bacterial Agents
3.1. Anaplasmosis
3.2. Lyme Borreliosis
3.3. Ehrlichiosis (Heartwater)
4. Viral Agents
4.1. Tick Borne Encephalitis
4.2. Crimean-Congo Hemorrhagic Fever
4.3. Severe Fever Thromocytopenia Syndrome
5. Multiplex Diagnostics of Tick-Borne Pathogens in Cattle
6. Advantages of the Nucleic Acid Multiplex Diagnostic Approaches
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nuttall, P.A. Tick saliva and its role in pathogen transmission. Wien. Klin. Wochenschr. 2019, 22, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almazan, C.; Tipacamu, G.A.; Rodriguez, S.; Mosqueda, J.; de Leon, A.P. Immunological control of ticks and tick-borne diseases that impact cattle health and production. Front. Biosci. 2018, 23, 1535–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moyo, S.; Swanepoel, F.J.C. Multifunctionality of livestock in developing communities. Role Livest. Dev. Communities Enhancing Multifunct. 2010, 3, 69. [Google Scholar]
- Robinson, T.P.; William Wint, G.R.; Conchedda, G.; Van Boeckel, T.P.; Ercoli, V.; Palamara, E.; Cinardi, G.; D’Aietti, L.; Hay, S.; Gilbert, M. Mapping the Global Distribution of Livestock. PLoS ONE 2014, 9, e96084. [Google Scholar] [CrossRef] [Green Version]
- Peel, D.S.; Mathews, K.H., Jr.; Johnson, R.J. Trade, the Expanding Mexican Beef Industry, and Feedlot and Stocker Cattle Production in Mexico. USDA-Economic Research Service 2011, LDP-M-206-01. Available online: http://www.ers.usda.gov/media/118317/ldpm20601.pdf (accessed on 12 March 2022).
- Marcelino, I.; Almeida, A.; Ventosa, M.; Pruneau, L.; Meyer, D.; Martinez, D.; Lefrançois, T.; Vachiéry, N.; Coelho, A.V. Tick-borne diseases in cattle: Applications of proteomics to develop new generation vaccines. J. Proteom. 2012, 75, 4232–4250. [Google Scholar] [CrossRef]
- Johansson, M.; Mysterud, A.; Flykt, A. Livestock owners’ worry and fear of tick-borne diseases. Parasites Vectors 2020, 13, 331. [Google Scholar] [CrossRef]
- Perveen, N.; Muzaffar, S.; Al-Deeb, M. Ticks and Tick-Borne Diseases of Livestock in the Middle East and North Africa: A Review. Insects 2021, 12, 83. [Google Scholar] [CrossRef]
- Aguilar-Díaz, H.; Quiroz-Castañeda, R.E.; Cobaxin-Cárdenas, M.; Salinas-Estrella, E.; Amaro-Estrada, I. Advances in the Study of the Tick Cattle Microbiota and the Influence on Vectorial Capacity. Front. Vet. Sci. 2021, 8, 710352. [Google Scholar] [CrossRef]
- Esteve-Gasent, M.D.; Rodríguez-Vivas, R.I.; Medina, R.F.; Ellis, D.; Schwartz, A.; Garcia, B.C.; Hunt, C.; Tietjen, M.; Bonilla, D.; Thomas, D.; et al. Research on Integrated Management for Cattle Fever Ticks and Bovine Babesiosis in the United States and Mexico: Current Status and Opportunities for Binational Coordination. Pathogens 2020, 9, 871. [Google Scholar] [CrossRef]
- Blouin, E.F.; de la Fuente, J.; Garcia-Garcia, J.C.; Sauer, J.R.; Saliki, J.T.; Kocan, K.M. Applications of a cell culture system for studying the interaction of Anaplasma marginale with tick cells. Anim. Health Res. Rev. 2002, 3, 57–68. [Google Scholar] [CrossRef]
- Rodriguez-Vivas, R.I.; Jonsson, N.N.; Bhushan, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol. Res. 2017, 117, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Merino, O.; Alberdi, P.; De La Lastra, J.M.P.; De La Fuente, J. Tick vaccines and the control of tick-borne pathogens. Front. Cell. Infect. Microbiol. 2013, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Eogden, N.; Mechai, S.; Margos, G. Changing geographic ranges of ticks and tick-borne pathogens: Drivers, mechanisms and consequences for pathogen diversity. Front. Cell. Infect. Microbiol. 2013, 3, 46. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, C.; Dibernardo, A.; Koffi, J.; Wood, H.; Leighton, P.A.; Lindsay, L.R. Increased risk of tick-borne diseases with climate and environmental changes. Can. Commun. Dis. Rep. 2019, 45, 83–89. [Google Scholar] [CrossRef]
- Primus, S.; Akoolo, L.; Schlachter, S.; Gedroic, K.; Rojtman, A.D.; Parveen, N. Efficient detection of symptomatic and asymptomatic patient samples for Babesia microti and Borrelia burgdorferi infection by multiplex qPCR. PLoS ONE 2018, 13, e0196748. [Google Scholar] [CrossRef]
- Okba, N.M.A.; Müller, M.A.; Li, W.; Wang, C.; GeurtsvanKessel, C.H.; Corman, V.M.; Lamers, M.M.; Sikkema, R.S.; De Bruin, E.; Chandler, F.D.; et al. Severe Acute Respiratory Syndrome Coronavirus 2−Specific Antibody Responses in Coronavirus Disease Patients. Emerg. Infect. Dis. 2020, 26, 478–1488. [Google Scholar] [CrossRef]
- Telford, S.R.; Gorenflot, A.; Brasseur, P.; Spielman, A. Babesial Infections in Humans and Wildlife. Parasit. Protozoa 1993, 5, 1–47. [Google Scholar]
- Teal, A.E.; Habura, A.; Ennis, J.; Keithly, J.S.; Madison-Antenucci, S. A New Real-Time PCR Assay for Improved Detection of the Parasite Babesia microti. J. Clin. Microbiol. 2012, 50, 903–908. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.A.; Rojas, C.; Figueroa, J.V. Diagnostic Tools for the Identification of Babesia sp. in Persistently Infected Cattle. Pathogens 2019, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Aubry, P.; Geale, D.W. A Review of Bovine Anaplasmosis. Transbound. Emerg. Dis. 2010, 58, 1–30. [Google Scholar] [CrossRef]
- Burgess, E.; Wachal, M.; Cleven, T. Borrelia burgdorferi infection in dairy cows, rodents, and birds from four Wisconsin dairy farms. Vet. -Microbiol. 1993, 35, 61–77. [Google Scholar] [CrossRef]
- Oliver, J.; Means, R.G.; Kogut, S.; Prusinski, M.; Howard, J.J.; Layne, L.J.; Chu, F.K.; Reddy, A.; Lee, L.; White, D.J. Prevalence of Borrelia burgdorferi in Small Mammals in New York State. J. Med. Èntomol. 2006, 43, 924–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, J.L.; White, K.K. Lyme borreliosis in cattle and horses: A review of the literature. Cornell Vet. 1992, 82, 253–274. [Google Scholar] [PubMed]
- Springer, A.; Glass, A.; Probst, J.; Strube, C. Tick-borne zoonoses and commonly used diagnostic methods in human and veterinary medicine. Parasitol. Res. 2021, 120, 4075–4090. [Google Scholar] [CrossRef]
- Vachiéry, N.; Marcelino, I.; Martinez, D.; Lefrançois, T. Opportunities in Diagnostic and Vaccine Approaches to Mitigate Potential Heartwater Spreading and Impact on the American Mainland. Dev. Biol. 2013, 135, 191–200. [Google Scholar] [CrossRef]
- Esmaeilnejad, B.; Tavassoli, M.; Samiei, A.; Hajipour, N. Molecular verification of transplacental transmission of Theileria lestoquardi in goat. Parasitol. Res. 2018, 117, 3315–3318. [Google Scholar] [CrossRef]
- Mans, B.J.; Pienaar, R.; Latif, A. A review of Theileria diagnostics and epidemiology. Int. J. Parasitol. Parasites Wildl. 2015, 4, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Tezer, H.; Polat, M. Diagnosis of Crimean-Congo hemorrhagic fever. Expert Rev. Anti-Infect. Ther. 2015, 13, 555–566. [Google Scholar] [CrossRef]
- Beck, C.; Desprès, P.; Paulous, S.; Vanhomwegen, J.; Lowenski, S.; Nowotny, N.; Durand, B.; Garnier, A.; Blaise-Boisseau, S.; Guitton, E.; et al. A High-Performance Multiplex Immunoassay for Serodiagnosis of Flavivirus-Associated Neurological Diseases in Horses. BioMed Res. Int. 2015, 2015, 678084. [Google Scholar] [CrossRef] [Green Version]
- Klaus, C.; Beer, M.; Saier, R.; Schubert, H.; Bischoff, S.; Süss, J. Evaluation of serological tests for detecting tick-borne encephalitis virus (TBEV) antibodies in animals. Berl. Munch. Tierarztl. Wochenschr. 2011, 124, 443–449. [Google Scholar] [CrossRef]
- Klaus, C.; Ziegler, U.; Hoffmann, D.; Press, F.; Fast, C.; Beer, M. Tick-borne encephalitis virus (TBEV) antibodies in animal sera—Occurrence in goat flocks in Germany, longevity and ability to recall immunological information after more than six years. BMC Vet. Res. 2019, 15, 399. [Google Scholar] [CrossRef] [PubMed]
- Gebrekidan, H.; Nelson, L.; Smith, G.; Gasser, R.B.; Jabbar, A. An outbreak of oriental theileriosis in dairy cattle imported to Vietnam from Australia. Parasitology 2016, 144, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Salih, D.A.; Njahira, M.N.; Hassan, S.K.; El Hussein, A.M.; Liu, Z.; Yin, H.; Pelle, R.; Skilton, R.A. Genotyping of Theileria lestoquardi from sheep and goats in Sudan to support control of Malignant Ovine Theileriosis. Vet. Parasitol. 2017, 239, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abate, H.L.; Dos Santos, N.J.R.; Brito, D.R.B.; Valente, J.D.M.; Vieira, T.S.W.J.; Garcia, J.L.; Vieira, R.; Vidotto, O. Theileria sp. in water buffaloes from Maranhão State, northeastern Brazil. Rev. Bras. Parasitol. Vet. 2018, 27, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Cao, S.; Sevinc, F.; Sevinc, M.; Ceylan, O.; Moumouni, P.F.A.; Jirapattharasate, C.; Liu, M.; Wang, G.; Iguchi, A.; et al. Molecular detection and genetic identification of Babesia bigemina, Theileria annulata, Theileria orientalis and Anaplasma marginale in Turkey. Ticks Tick-Borne Dis. 2016, 7, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Bishop, R.; Musoke, A.; Morzaria, S.; Gardner, M.; Nene, V. Theileria: Intracellular protozoan parasites of wild and domestic ruminants transmitted by ixodid ticks. Parasitology 2004, 129, S271–S283. [Google Scholar] [CrossRef] [PubMed]
- Brown, C. Tropical theileriosis. In Foreign Animal Diseases; United States Animal Health Association: Boca Raton, FL, USA, 2008; pp. 405–409. [Google Scholar]
- Olds, C.L.; Paul, T.; Scoles, G.A. Detection of Theileria parva in tissues of cattle undergoing severe East Coast fever disease show significant parasite DNA accumulation in the spleen. Vet. Parasitol. 2016, 232, 32–35. [Google Scholar] [CrossRef] [Green Version]
- Modarelli, J.J.; Ferro, P.J.; De León, A.A.P.; Esteve-Gasent, M.D. TickPath Layerplex: Adaptation of a real-time PCR methodology for the simultaneous detection and molecular surveillance of tick-borne pathogens. Sci. Rep. 2019, 9, 6950. [Google Scholar] [CrossRef] [Green Version]
- Ros-García, A.; Nicolás, A.; García-Pérez, A.L.; Juste, R.A.; Hurtado, A. Development and evaluation of a real-time PCR assay for the quantitative detection of Theileria annulata in cattle. Parasites Vectors 2012, 5, 171. [Google Scholar] [CrossRef] [Green Version]
- Oakes, V.J.; Yabsley, M.J.; Schwartz, D.; LeRoith, T.; Bissett, C.; Broaddus, C.; Schlater, J.L.; Todd, S.M.; Boes, K.M.; Brookhart, M.; et al. Theileria orientalis Ikeda Genotype in Cattle, Virginia, USA. Emerg. Infect. Dis. 2019, 25, 1653–1659. [Google Scholar] [CrossRef] [Green Version]
- Spickler, A.R. Theileriosis in Cattle and Small Ruminants; USDA APHIS: 2019. Available online: http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php (accessed on 12 March 2022).
- Oosterwijk, J.V.; Wikel, S.K. Resistance to ticks and the path to anti-tick and transmission blocking. Vaccines. 2021, 9, 725–753. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, F.; Pérez de León, A.; Rodriguez-Vivas, R.; Jonsson, N.; Miller, R.; Andreotti, R.E. Acaricide research and development, resistance and resistance monitoring. In Biology of Ticks, 2nd ed.; Sonenhine, D.E., Roe, R.M., Eds.; Oxford University Press: New York, NY, USA, 2014; Volume 2. [Google Scholar]
- Martínez-García, G.; Santamaría-Espinosa, R.; Lira-Amaya, J.; Figueroa, J. Challenges in Tick-Borne Pathogen Detection: The Case for Babesia spp. Identification in the Tick Vector. Pathogens 2021, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.H.; Rebesquini, R.; Setim, D.H.; Scariot, C.A.; Vieira, M.I.B.; Zanella, R.; Da Motta, A.C.; Alves, L.P.; Bondan, C. Chemoprophylaxis for babesiosis and anaplasmosis in cattle: Case report. Rev. Bras. Parasitol. Vet. 2020, 29, e010520. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Haque, M.; Singh, N.K.; Rath, S.S. Molecular detection of Anaplasma marginale infection in carrier cattle. Ticks Tick-Borne Dis. 2012, 3, 55–58. [Google Scholar] [CrossRef]
- Tana-Hernández, L.; Navarrete-Arroyo, K.; Ron-Román, J.; Reyna-Bello, A.; Chávez-Larrea, M.A. PCR-diagnosis of Anaplasma marginale in cattle populations of Ecuador and its molecular identification through sequencing of ribosomal 16S fragments. BMC Vet. Res. 2017, 13, 392. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Ganta, R.R.; Stone, D.; Alhassan, A.; Lanza-Perea, M.; Belmar, V.M.; Karasek, I.; Cooksey, E.; Butler, C.M.; Gibson, K.; et al. Development of a Multiplex PCR and Magnetic DNA Capture Assay for Detecting Six Species Pathogens of the Genera Anaplasma and Ehrlichia in Canine, Bovine, Caprine and Ovine Blood Samples from Grenada, West Indies. Pathogens 2021, 10, 192. [Google Scholar] [CrossRef]
- Okafor, C.C.; Collins, S.L.; Daniel, J.A.; Coetzee, J.F.; Whitlock, B.K. Factors associated with seroprevalence of bovine anaplasmosis in Mississippi, USA. Vet. -Parasitol. Reg. Stud. Rep. 2019, 17, 100301. [Google Scholar] [CrossRef]
- Branda, J.A.; Steere, A.C. Laboratory diagnosis of lyme borreliosis. Clin. Micobiol Rev. 2021, 34, 1–45. [Google Scholar] [CrossRef]
- Lischer, C.J.; Leutenegger, C.M.; Braun, U.; Lutz, H. Diagnosis of Lyme disease in two cows by the detection of Borrelia burgdorferi DNA. Vet. Rec. 2000, 146, 497–499. [Google Scholar] [CrossRef]
- Dunaj, J.; Moniuszko, A.; Zajkowska, J.; Pancewicz, S. The role of PCR in diagnostics of Lyme borreliosis. Przegl. Epidemiol. 2013, 67, 35–39. [Google Scholar]
- Chávez, A.S.O.; O’Neal, A.; Santambrogio, L.; Kotsyfakis, M.; Pedra, J.H.F. Message in a vesicle—Trans-kingdom intercommunication at the vector–host interface. J. Cell Sci. 2019, 132, jcs224212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyot, H.; Ramery, E.; O’Grady, L.; Sandersen, C.; Rollin, F. Emergence of bovine ehrlichiosis in Belgian cattle herds. Ticks Tick-Borne Dis. 2011, 2, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Allsopp, B. Heartwater—Ehrlichia ruminantium infection. Rev. Sci. Tech. 2015, 34, 557–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böhm, B.; Schade, B.; Bauer, B.; Hoffmann, B.; Hoffmann, D.; Ziegler, U.; Beer, M.; Klaus, C.; Weissenböck, H.; Böttcher, J. Tick-borne encephalitis in a naturally infected sheep. BMC Vet. Res. 2017, 13, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salat, J.; Ruzek, D. Tick-borne encephalitis in domestic animals. Acta Virol. 2020, 64, 226–232. [Google Scholar] [CrossRef]
- Paulsen, K.M.; Granquist, E.G.; Okstad, W.; Vikse, R.; Stiasny, K.; Andreassen, A.K.; Stuen, S. Experimental infection of lambs with tick-borne encephalitis virus and co-infection with Anaplasma phagocytophilum. PLoS ONE 2019, 14, e0226836. [Google Scholar] [CrossRef] [Green Version]
- Süss, J. Tick-borne encephalitis 2010: Epidemiology, risk areas, and virus strains in Europe and Asia—An overview. Ticks Tick-Borne Dis. 2011, 2, 2–15. [Google Scholar] [CrossRef]
- Paulsen, K.M.; Stuen, S.; Das Neves, C.; Suhel, F.; Gurung, D.; Soleng, A.; Stiasny, K.; Vikse, R.; Andreassen, A.K.; Granquist, E.G. Tick-borne encephalitis virus in cows and unpasteurized cow milk from Norway. Zoonoses Public Health 2018, 66, 216–222. [Google Scholar] [CrossRef]
- Wallenhammar, A.; Lindqvist, R.; Asghar, N.; Gunaltay, S.; Fredlund, H.; Davidsson, Å.; Andersson, S.; Överby, A.K.; Johansson, M. Revealing new tick-borne encephalitis virus foci by screening antibodies in sheep milk. Parasites Vectors 2020, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hudopisk, N.; Korva, M.; Janet, E.; Simetinger, M.; Grgič-Vitek, M.; Gubensek, J.; Natek, V.; Kraigher, A.; Strle, F.; Avšič-Županc, T. Tick-borne Encephalitis Associated with Consumption of Raw Goat Milk, Slovenia, 2012. Emerg. Infect. Dis. 2013, 19, 806–808. [Google Scholar] [CrossRef]
- Offerdahl, D.K.; Clancy, N.G.; Bloom, M.E. Stability of a Tick-Borne Flavivirus in Milk. Front. Bioeng. Biotechnol. 2016, 4, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balogh, Z.; Egyed, L.; Ferenczi, E.; Bán, E.; Szomor, K.N.; Takács, M.; Berencsi, G. Experimental Infection of Goats with Tick-Borne Encephalitis Virus and the Possibilities to Prevent Virus Transmission by Raw Goat Milk. Intervirology 2012, 55, 194–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salát, J.; Formanová, P.; Huňady, M.; Eyer, L.; Palus, M.; Ruzek, D. Development and testing of a new tick-borne encephalitis virus vaccine candidate for veterinary use. Vaccine 2018, 36, 7257–7261. [Google Scholar] [CrossRef] [PubMed]
- Buchan, B.W.; Jobe, D.A.; Mashock, M.; Gerstbrein, D.; Faron, M.L.; Ledeboer, N.A.; Callister, S.M. Evaluation of a Novel Multiplex High-Definition PCR Assay for Detection of Tick-Borne Pathogens in Whole-Blood Specimens. J. Clin. Microbiol. 2019, 57, e00513–e00519. [Google Scholar] [CrossRef] [Green Version]
- Ergunay, K.; Tkachev, S.; Kozlova, I.; Růžek, D. A Review of Methods for Detecting Tick-Borne Encephalitis Virus Infection in Tick, Animal, and Human Specimens. Vector-Borne Zoonotic Dis. 2016, 16, 4–12. [Google Scholar] [CrossRef]
- Nasirian, H. Crimean-Congo hemorrhagic fever (CCHF) seroprevalence: A systematic review and meta-analysis. Acta Trop. 2019, 196, 102–120. [Google Scholar] [CrossRef]
- Nasirian, H. New aspects about Crimean-Congo hemorrhagic fever (CCHF) cases and associated fatality trends: A global systematic review and meta-analysis. Comp. Immunol. Microbiol. Infect. Dis. 2020, 69, 101429. [Google Scholar] [CrossRef]
- Madison-Antenucci, S.; Kramer, L.D.; Gebhardt, L.L.; Kauffman, E. Emerging Tick-Borne Diseases. Clin. Microbiol. Rev. 2020, 33, e00083-18. [Google Scholar] [CrossRef]
- Mangombi, J.B.; Roqueplo, C.; Sambou, M.; Dahmani, M.; Mediannikov, O.; Comtet, L.; Davoust, B. Seroprevalence of Crimean-Congo Hemorrhagic Fever in Domesticated Animals in Northwestern Senegal. Vector-Borne Zoonotic Dis. 2020, 20, 797–799. [Google Scholar] [CrossRef]
- Sorvillo, T.E.; Rodriguez, S.E.; Hudson, P.; Carey, M.; Rodriguez, L.L.; Spiropoulou, C.F.; Bird, B.H.; Spengler, J.R.; Bente, D.A. Towards a Sustainable One Health Approach to Crimean–Congo Hemorrhagic Fever Prevention: Focus Areas and Gaps in Knowledge. Trop. Med. Infect. Dis. 2020, 5, 113. [Google Scholar] [CrossRef]
- Bente, D.A.; Forrester, N.L.; Watts, D.M.; McAuley, A.J.; Whitehouse, C.A.; Bray, M. Crimean-Congo hemorrhagic fever: History, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antivir. Res. 2013, 100, 159–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawman, D.W.; Feldmann, H. Recent advances in understanding Crimean–Congo hemorrhagic fever virus. F1000Research 2018, 7, 1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tipih, T.; Burt, F.J. Crimean–Congo Hemorrhagic Fever Virus: Advances in Vaccine Development. BioRes. Open Access 2020, 9, 137–150. [Google Scholar] [CrossRef]
- Sunbul, M.; Leblebicioglu, H.; Fletcher, T.; Elaldi, N.; Ozkurt, Z.; Bastug, A.; Yilmaz, G.; Guner, R.; Duygu, F.; Beeching, N. Crimean–Congo haemorrhagic fever and secondary bacteraemia in Turkey. J. Infect. 2015, 71, 597–599. [Google Scholar] [CrossRef]
- Seo, J.-W.; Kim, D.; Yun, N.; Kim, D.-M. Clinical Update of Severe Fever with Thrombocytopenia Syndrome. Viruses 2021, 13, 1213. [Google Scholar] [CrossRef] [PubMed]
- Crump, A.; Tanimoto, T. Severe Fever with Thrombocytopenia Syndrome: Japan under Threat from Life-threatening Emerging Tick-borne Disease. JMA J. 2020, 3, 295–302. [Google Scholar] [CrossRef]
- Yu, X.J.; Liang, M.F.; Zhang, S.Y.; Liu, Y.; Li, J.D.; Sun, Y.L.; Zhang, L.; Zhang, Q.F.; Popov, V.L.; Li, C.; et al. Fever with Thrombocytopenia Associated with a Novel Bunyavirus in China. N. Engl. J. Med. 2011, 364, 1523–1532. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Yin, H.; Xu, X.; Liu, G.; Jiang, S.; Wang, W.; Han, X.; Liu, J.; Niu, G.; Zhang, X.; et al. A Cross-Sectional Survey of Severe Fever with Thrombocytopenia Syndrome Virus Infection of Domestic Animals in Laizhou City, Shandong Province, China. Jpn. J. Infect. Dis. 2014, 67, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kim, E.-J.; Song, J.-Y.; Choi, J.S.; Lee, J.Y.; Cho, I.-S.; Shin, Y.-K. Development and evaluation of a competitive enzyme-linked immunosorbent assay using a monoclonal antibody for diagnosis of severe fever with thrombocytopenia syndrome virus in bovine sera. J. Vet. Sci. 2016, 17, 307–314. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, L.; Sun, L.; Lu, J.; Wu, W.; Li, C.; Zhang, Q.; Zhang, F.; Jin, C.; Wang, X.; et al. Critical Epitopes in the Nucleocapsid Protein of SFTS Virus Recognized by a Panel of SFTS Patients Derived Human Monoclonal Antibodies. PLoS ONE 2012, 7, e38291. [Google Scholar] [CrossRef]
- Sun, Y.; Liang, M.; Qu, J.; Jin, C.; Zhang, Q.; Li, J.; Jiang, X.; Wang, Q.; Lu, J.; Gu, W.; et al. Early diagnosis of novel SFTS bunyavirus infection by quantitative real-time RT-PCR assay. J. Clin. Virol. 2012, 53, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, P.; Li, K.-F.; Wang, H.-L.; Dai, Y.-X.; Cheng, X.; Yan, J.-B. Animals as amplification hosts in the spread of severe fever with thrombocytopenia syndrome virus: A systematic review and meta-analysis. Int. J. Infect. Dis. 2019, 79, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.-M.; Yu, M.-A.; Park, S.-J.; Kim, Y.-I.; Robles, N.J.; Kwon, H.-I.; Kim, E.-H.; Si, Y.-J.; Nguyen, H.D.; Choi, Y.K. Seroprevalence and genetic characterization of severe fever with thrombocytopenia syndrome virus in domestic goats in South Korea. Ticks Tick-Borne Dis. 2018, 9, 1202–1206. [Google Scholar] [CrossRef] [PubMed]
- Kadkhoda, K.; Semus, M.; Jelic, T.; Walkty, A. Case Report: A Case of Colorado Tick Fever Acquired in Southwestern Saskatchewan. Am. J. Trop. Med. Hyg. 2018, 98, 891–893. [Google Scholar] [CrossRef] [Green Version]
- Pace, E.J.; O’Reilly, M. Tickborne Diseases: Diagnosis and Management. Am. Fam. Physician 2020, 101, 530–540. [Google Scholar]
- Sellati, T.J.; Barberio, D.M. Mechanisms of Dysregulated Antibody Response in Lyme Disease. Front. Cell. Infect. Microbiol. 2020, 10, 567252. [Google Scholar] [CrossRef]
- Connally, N.P.; Hinckley, A.F.; Feldman, K.; Kemperman, M.; Neitzel, D.; Wee, S.-B.; White, J.L.; Mead, P.S.; Meek, J.I. Testing practices and volume of non-Lyme tickborne diseases in the United States. Ticks Tick-Borne Dis. 2015, 7, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Theel, E.S. The Past, Present, and (Possible) Future of Serologic Testing for Lyme Disease. J. Clin. Microbiol. 2016, 54, 1191–1196. [Google Scholar] [CrossRef] [Green Version]
- Seriburi, V.; Ndukwe, N.; Chang, Z.; Cox, M.; Wormser, G. High frequency of false positive IgM immunoblots for Borrelia burgdorferi in Clinical Practice. Clin. Microbiol. Infect. 2012, 18, 1236–1240. [Google Scholar] [CrossRef] [Green Version]
- Biggs, H.M.; Behravesh, C.B.; Bradley, K.K.; Dahlgren, F.; Drexler, N.A.; Dumler, J.S.; Folk, S.M.; Kato, C.Y.; Lash, R.R.; Levin, M.L.; et al. Diagnosis and Management of Tickborne Rickettsial Diseases: Rocky Mountain Spotted Fever and Other Spotted Fever Group Rickettsioses, Ehrlichioses, and Anaplasmosis—United States. MMWR Recomm. Rep. 2016, 65, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Tokarz, R.; Mishra, N.; Tagliafierro, T.; Sameroff, S.; Caciula, A.; Chauhan, L.; Patel, J.; Sullivan, E.; Gucwa, A.; Fallon, B.; et al. A multiplex serologic platform for diagnosis of tick-borne diseases. Sci. Rep. 2018, 8, 3158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, B.; Freer, H.; Rollins, A.; Erb, H. A fluorescent bead-based multiplex assay for the simultaneous detection of antibodies to B. burgdorferi outer surface proteins in canine serum. Vet. Immunol. Immunopathol. 2011, 140, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.; Freer, H.; Rollins, A.; Erb, H.N.; Lu, Z.; Gröhn, Y. Development of a multiplex assay for the detection of antibodies to Borrelia burgdorferi in horses and its validation using Bayesian and conventional statistical methods. Vet. Immunol. Immunopathol. 2011, 144, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Embers, M.E.; Hasenkampf, N.R.; Barnes, M.B.; Didier, E.S.; Philipp, M.T.; Tardo, A.C. Five-Antigen Fluorescent Bead-Based Assay for Diagnosis of Lyme Disease. Clin. Vaccine Immunol. 2016, 23, 294–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, P.W. Molecular diagnosis of infections and resistance in veterinary and human parasites. Vet. Parasitol. 2011, 180, 12–46. [Google Scholar] [CrossRef]
- Applied BioCode, Inc. Respiratory Virus Panel Nucleic Acid Assay System. U.S Food & Drug Adminstration. 2019. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?id=K192485 (accessed on 12 March 2022).
- Applied BioCode, Inc. Gastrointestinal Pathogen Panel Multiplex Nucleic Acid-Based Assay System. U.S Food & Drug Adminstration. 2019. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K190585 (accessed on 12 March 2022).
- Huang, H.-S.; Tsai, C.-L.; Chang, J.; Hsu, T.-C.; Lin, S.; Lee, C.-C. Multiplex PCR system for the rapid diagnosis of respiratory virus infection: Systematic review and meta-analysis. Clin. Microbiol. Infect. 2017, 24, 1055–1063. [Google Scholar] [CrossRef] [Green Version]
- Wojno, K.J.; Baunoch, D.; Luke, N.; Opel, M.; Korman, H.; Kelly, C.; Jafri, S.M.A.; Keating, P.; Hazelton, D.; Hindu, S.; et al. Multiplex PCR Based Urinary Tract Infection (UTI) Analysis Compared to Traditional Urine Culture in Identifying Significant Pathogens in Symptomatic Patients. Urology 2019, 136, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Elnifro, E.M.; Ashshi, A.M.; Cooper, R.J.; Klapper, P.E. Multiplex PCR: Optimization and Application in Diagnostic Virology. Clin. Microbiol. Rev. 2000, 13, 559–570. [Google Scholar] [CrossRef]
- Chatanga, E.; Maganga, E.; Mohamed, W.M.A.; Ogata, S.; Pandey, G.S.; Abdelbaset, A.E.; Hayashida, K.; Sugimoto, C.; Katakura, K.; Nonaka, N.; et al. High infection rate of tick-borne protozoan and rickettsial pathogens of cattle in Malawi and the development of a multiplex PCR for Babesia and Theileria species identification. Acta Trop. 2022, 231, 106413. [Google Scholar] [CrossRef]
- Bilgiç, H.B.; Karagenç, T.; Simuunza, M.; Shiels, B.; Tait, A.; Eren, H.; Weir, W. Development of a multiplex PCR assay for simultaneous detection of Theileria annulata, Babesia bovis and Anaplasma marginale in cattle. Exp. Parasitol. 2013, 133, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Vieira, L.L.; Canever, M.F.; Cardozo, L.L.; Cardoso, C.P.; Herkenhoff, M.E.; Neto, A.T.; Vogel, C.I.G.; Miletti, L.C. Prevalence of Anaplasma marginale, Babesia bovis, and Babesia bigemina in cattle in the Campos de Lages region, Santa Catarina state, Brazil, estimated by multiplex-PCR. Parasite Epidemiol. Control 2019, 6, e00114. [Google Scholar] [CrossRef] [PubMed]
- Polz, M.F.; Cavanaugh, C.M. Bias in Template-to-Product Ratios in Multitemplate PCR. Appl. Environ. Microbiol. 1998, 64, 3724–3730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahsan, H. Monoplex and multiplex immunoassays: Approval, advancements, and alternatives. Comp. Clin. Pathol. 2021, 31, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Goodger, W.J.; Carpenter, T.; Riemann, H. Estimation of economic loss associated with anaplasmosis in California beef cattle. J. Am. Vet. Med. Assoc. 1979, 174, 1333–1336. [Google Scholar] [PubMed]
- Critical Needs and Gaps in Understanding Prevention, Amelioration, and Resolution of Lyme and Other Tick-Borne Diseases: The Short-Term and Long-Term Outcomes: Workshop Report. In The National Academies Collection: Reports Funded by National Institutes of Health; National Academies Press: Washington, DC, USA, 2011.
- Paddock, C.D.; Lane, R.S.; Staples, J.E.; Labruna, M.B. Changing paradigms for tick-borne diseases in the Americas. In Global Health Impacts of Vector-Borne Diseases: Workshop Summary; National Academies of Sciences, Engineering, and Medicine; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- CDC. Tickborne Disease Surveillance Data Summary. Centers for Disease Control and Prevention. 2019. Available online: https://www.cdc.gov/ticks/data-summary/index.html (accessed on 12 March 2022).
- Brett, M.E.; Hinckley, A.F.; Zielinski-Gutierrez, E.C.; Mead, P.S. U.S. healthcare providers’ experience with Lyme and other tick-borne diseases. Ticks Tick-Borne Dis. 2014, 5, 404–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karim, S.; Budachetri, K.; Mukherjee, N.; Williams, J.; Kausar, A.; Hassan, M.J.; Adamson, S.; Dowd, S.E.; Apanskevich, D.; Arijo, A.; et al. A study of ticks and tick-borne livestock pathogens in Pakistan. PLoS Negl. Trop. Dis. 2017, 11, e0005681. [Google Scholar] [CrossRef]
Disease | Pathogen Name | Available Diagnostic Test | References |
---|---|---|---|
Anaplasmosis | Anaplasma phagocytophilum | Microscopy, Serology, PCR # | [21] |
Anaplasma marginale | |||
Babesiosis | Babesia bovis, Babesia bigemina | ELISA *, IFA **, PCR | [19,20] |
Borreliosis & | Borrelia miyamotoi, Borrelia theileri | Serology, | |
Lyme disease | Borrelia burgdorferi | PCR, IFA, ELISA | [22,23,24,25] |
Ehrichia ruminantium | |||
Ehrlichiosis | Ehrlichia bovis | Serology, ELISA, PCR | [26] |
Theileriosis & | Theileria orientalis, Theileria parva | PCR, Serology, ELISA, IFA | [27,28] |
East coast fever | Theileria annulata | ||
CCHF = | CCHF virus | PCR, ELISA | [29] |
TBE † | Tick-borne encephalitis virus | ELISA, SNT ‡, IHC ⊥ | [30,31,32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, K.; Weakley, M.; Do, T.; Mir, S. Current and Future Molecular Diagnostics of Tick-Borne Diseases in Cattle. Vet. Sci. 2022, 9, 241. https://doi.org/10.3390/vetsci9050241
Garcia K, Weakley M, Do T, Mir S. Current and Future Molecular Diagnostics of Tick-Borne Diseases in Cattle. Veterinary Sciences. 2022; 9(5):241. https://doi.org/10.3390/vetsci9050241
Chicago/Turabian StyleGarcia, Kathryn, Mina Weakley, Tram Do, and Sheema Mir. 2022. "Current and Future Molecular Diagnostics of Tick-Borne Diseases in Cattle" Veterinary Sciences 9, no. 5: 241. https://doi.org/10.3390/vetsci9050241
APA StyleGarcia, K., Weakley, M., Do, T., & Mir, S. (2022). Current and Future Molecular Diagnostics of Tick-Borne Diseases in Cattle. Veterinary Sciences, 9(5), 241. https://doi.org/10.3390/vetsci9050241