Phylogenetic and Mutation Analysis of the Venezuelan Equine Encephalitis Virus Sequence Isolated in Costa Rica from a Mare with Encephalitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Datasets
2.2. Recombination Analysis
2.3. Phylogenetic Analyses
2.4. Selection Analysis
2.5. Mutations Analysis
2.6. 3D Structure Analysis
3. Results
3.1. Selection and Mutation Analysis
3.2. Structural Analysis of Variant Residues of Costa Rican Isolate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, D.H.; Eddy, G.A.; Sudia, W.D.; Reeves, W.C.; Newhouse, V.F.; Johnson, K.M. An epidemiologic study of Venezuelan equine encephalomyelitis in Costa Rica. 1970. Am. J. Epidemiol. 1972, 95, 565–578. [Google Scholar] [CrossRef]
- Estrada-Franco, J.G.; Navarro-Lopez, R.; Freier, J.E.; Cordova, D.; Clements, T.; Moncayo, A.; Kang, W.; Gomez-Hernandez, C.; Rodriguez-Dominguez, G.; Ludwig, G.V.; et al. Venezuelan equine encephalitis virus, southern Mexico. Emerg. Infect. Dis. 2004, 10, 2113–2121. [Google Scholar] [CrossRef]
- Guzmán-Terán, C.; Calderón-Rangel, A.; Rodriguez-Morales, A.; Mattar, S. Venezuelan equine encephalitis virus: The problem is not over for tropical America. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 19. [Google Scholar] [CrossRef]
- Lord, R.D. Encefalitis Equina Venezolana su historia y distribucion geografica. Bol. Off. Panam. Salud 1973, 75, 530–541. [Google Scholar]
- Kubes, V.; Ríos, F.A. The Causative Agent of Infectious Equine Encephalomyelitis in Venezuela. Science 1938, 90, 20–21. [Google Scholar] [CrossRef]
- Strauss, J.H.; Strauss, E.G. The alphaviruses: Gene expression, replication, and evolution. Microbiol. Rev. 1994, 58, 491–562. [Google Scholar] [CrossRef]
- Forrester, N.L.; Wertheim, J.O.; Dugan, V.G.; Auguste, A.J.; Lin, D.; Adams, A.P.; Chen, R.; Gorchakov, R.; Leal, G.; Estrada-Franco, J.G.; et al. Evolution and spread of Venezuelan equine encephalitis complex alphavirus in the Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005693. [Google Scholar] [CrossRef]
- Powers, A.M.; Oberste, M.S.; Brault, A.C.; Rico-Hesse, R.; Schmura, S.M.; Smith, J.F.; Kang, W.; Sweeney, W.P.; Weaver, S.C. Repeated emergence of epidemic/epizootic Venezuelan equine encephalitis from a single genotype of enzootic subtype ID virus. J. Virol. 1997, 71, 6697–6705. [Google Scholar] [CrossRef] [Green Version]
- Oberste, M.S.; Schmura, S.M.; Weaver, S.C.; Smith, J.F. Geographic distribution of Venezuelan equine encephalitis virus subtype IE genotypes in Central America and Mexico. Am. J. Trop. Med. Hyg. 1999, 60, 630–634. [Google Scholar] [CrossRef] [Green Version]
- Franck, P.T.; Johnson, K.M. An Outbreak of Venezuelan Equine Encephalomyelitis in Central America. Am. J. Epidemiol. 1971, 94, 487–495. [Google Scholar] [CrossRef]
- Aguilar, P.V.; Estrada-Franco, J.G.; Navarro-Lopez, R.; Ferro, C.; Haddow, A.D.; Weaver, S.C. Endemic Venezuelan equine encephalitis in the Americas: Hidden under the dengue umbrella. Future Virol. 2011, 6, 721–740. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, L.G. Estudio serológico de Arbovirus grupo A en equinos de Costa Rica. Rev. Latinoam. Microbiol. 1973, 15, 95–98. [Google Scholar]
- León, B.; Käsbohrer, A.; Hutter, S.E.; Baldi, M.; Firth, C.L.; Romero-Zúñiga, J.J.; Jiménez, C. National Seroprevalence and Risk Factors for Eastern Equine Encephalitis and Venezuelan Equine Encephalitis in Costa Rica. J. Equine Vet. Sci. 2020, 92, 103140. [Google Scholar] [CrossRef]
- León, B.; Jiménez, C.; González, R.; Ramirez-Carvajal, L. First complete coding sequence of a Venezuelan equine encephalitis virus strain isolated from an equine encephalitis case in Costa Rica. Microbiol. Resour. Announc. 2019, 8, e00672-19. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2017, 35, 518–522. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–8. [Google Scholar]
- Rambaut, A.; Lam, T.T.; Max Carvalho, L.; Pybus, O.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [Green Version]
- Baele, G.; Lemey, P.; Bedford, T.; Rambaut, A.; Suchard, M.A.; Alekseyenko, A.V. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 2012, 29, 2157–2167. [Google Scholar] [CrossRef] [Green Version]
- Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; Duchêne, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kühnert, D.; De Maio, N.; et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [Green Version]
- Murrell, B.; Weaver, S.; Smith, M.D.; Wertheim, J.O.; Murrell, S.; Aylward, A.; Eren, K.; Pollner, T.; Martin, D.P.; Smith, D.M.; et al. Gene-wide identification of episodic selection. Mol. Biol. Evol. 2015, 32, 1365–1371. [Google Scholar] [CrossRef] [Green Version]
- Kosakovsky Pond, S.L.; Frost, S.D.W. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 2005, 22, 1208–1222. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.D.; Wertheim, J.O.; Weaver, S.; Murrell, B.; Scheffler, K.; Kosakovsky Pond, S.L. Less is more: An adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 2015, 32, 1342–1353. [Google Scholar] [CrossRef] [Green Version]
- Kosakovsky Pond, S.L.; Frost, S.D.W. Datamonkey: Rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 2005, 21, 2531–2533. [Google Scholar] [CrossRef]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER suite: Protein structure and function prediction. Nat. Methods 2014, 12, 7–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Hryc, C.F.; Cong, Y.; Liu, X.; Jakana, J.; Gorchakov, R.; Baker, M.L.; Weaver, S.C.; Chiu, W. 4.4 Å cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. EMBO J. 2011, 30, 3854–3863. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger Release 2021-4: MacroModel; Schrödinger, LLC: New York, NY, USA, 2021.
- Pires, D.E.V.; Ascher, D.B.; Blundell, T.L. DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 2014, 42, 314–319. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2016, 34, 772–773. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Goddard, T.D.; Huang, C.C.; Meng, E.C.; Pettersen, E.F.; Couch, G.S.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 2018, 27, 14–25. [Google Scholar] [CrossRef]
- Oberste, M.S.; Fraire, M.; Navarro, R.; Zepeda, C.; Zarate, M.L.; Ludwig, G.V.; Kondig, J.F.; Weaver, S.C.; Smith, J.F.; Rico-Hesse, R. Association of Venezuelan equine encephalitis virus subtype IE with two equine epizootics in Mexico. Am. J. Trop. Med. Hyg. 1998, 59, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Campillo-Sainz, C. Incidencia de las infecciones por arbovirus eneefalitógenos en Méxieo. Rev. Salud Pública Mex. 1968, 10, 25–29. [Google Scholar]
- Scherer, W.F.; Dickerman, R.W.; Chia, C.W.; Ventura, A.; Moorhouse, A.; Geiger, R.; Najera, A.D. Venezuelan Equine Encephalitis Virus in Veracruz, Mexico, and the Use of Hamsters as Sentinels. Science 1964, 145, 274–275. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Salazar, D.; Estrada-Franco, J.G.; Carrara, A.S.; Aronson, J.F.; Weaver, S.C. Equine amplification and virulence of subtype IE Venezuelan equine encephalitis viruses isolated during the 1993 and 1996 Mexican epizootics. Emerg. Infect. Dis. 2003, 9, 161–168. [Google Scholar] [CrossRef]
- Yound, N.A.; Johnson, K.M. Antigenic variants of venezuelan equine encephalitis virus: Their geographic distribution and epidemiologic significance. Am. J. Epidemiol. 1969, 89, 286–307. [Google Scholar] [CrossRef]
- Brault, A.C.; Powers, A.M.; Ortiz, D.; Estrada-Franco, J.G.; Navarro-Lopez, R.; Weaver, S.C. Venezuelan equine encephalitis emergence: Enhanced vector infection from a single amino acid substitution in the envelope glycoprotein. Proc. Natl. Acad. Sci. USA 2004, 101, 11344–11349. [Google Scholar] [CrossRef] [Green Version]
- Brault, A.C.; Powers, A.M.; Holmes, E.C.; Woelk, C.H.; Weaver, S.C. Positively Charged Amino Acid Substitutions in the E2 Envelope Glycoprotein Are Associated with the Emergence of Venezuelan Equine Encephalitis Virus. J. Virol. 2002, 76, 1718–1730. [Google Scholar] [CrossRef] [Green Version]
- Brault, A.C.; Powers, A.M.; Weaver, S.C. Vector Infection Determinants of Venezuelan Equine Encephalitis Virus Reside within the E2 Envelope Glycoprotein. J. Virol. 2002, 76, 6387–6392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varjak, M.; Zusinaite, E.; Merits, A. Novel Functions of the Alphavirus Nonstructural Protein nsP3 C-Terminal Region. J. Virol. 2010, 84, 2352–2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foy, N.J.; Akhrymuk, M.; Shustov, A.V.; Frolova, E.I.; Frolov, I. Hypervariable Domain of Nonstructural Protein nsP3 of Venezuelan Equine Encephalitis Virus Determines Cell-Specific Mode of Virus Replication. J. Virol. 2013, 87, 7569–7584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberste, M.S.; Parker, M.D.; Smith, J.F. Complete sequence of Venezuelan equine encephalitis virus subtype IE reveals conserved and hypervariable domains within the C terminus of nsP3. Virology 1996, 219, 314–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.Y.; Atasheva, S.; Frolova, E.I.; Frolov, I. Venezuelan Equine Encephalitis Virus nsP2 Protein Regulates Packaging of the Viral Genome into Infectious Virions. J. Virol. 2013, 87, 4202–4213. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Knollmann-Ritschel, B. Current understanding of the molecular basis of venezuelan equine encephalitis virus pathogenesis and vaccine development. Viruses 2019, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Greene, I.P.; Paessler, S.; Austgen, L.; Anishchenko, M.; Brault, A.C.; Bowen, R.A.; Weaver, S.C. Envelope glycoprotein mutations mediate equine amplification and virulence of epizootic venezuelan equine encephalitis virus. J. Virol. 2005, 79, 9128–9133. [Google Scholar] [CrossRef] [Green Version]
BUSTED | FEL | ABSREL | ||
---|---|---|---|---|
PP | PN | |||
NSP1 535 | NF | 0 | 216 | NF |
MK796243 | NF | 0 | 0 | NF |
NSP2 794 | F | 0 | 527 | NF |
MK796243 | NF | 2 * | 0 | NF |
NSP3 558 MK796243 | NF NF | 2 2 * | 269 0 | F, 1/163 KC344438_GTM_1978_IE_2 NF |
NSP4 607 | F | 0 | 418 | NF |
MK796243 | NF | 2 * | 0 | NF |
CAPSIDE 285 | NF | 0 | 157 | NF |
MK796243 | NF | 0 | 0 | NF |
E1 442 | NF | 1 | 234 | NF |
MK796243 | NF | 2 * | 0 | NF |
E2 423 | NF | 0 | 259 | NF |
MK796243 | NF | 2 * | 0 | NF |
E3 59 | NF | 0 | 34 | NF |
MK796243 | NF | 0 | 0 | NF |
SUBTYPE # Seq | |||||||
---|---|---|---|---|---|---|---|
Site | aa | IAB 8 | IC 38 | ID 17 | IE-1 2 | IE-2 25 | IE-3 20 |
NSP 3/HVD-NSP3 | |||||||
343 | P | 2 | |||||
L | 1 | 12 | |||||
S | 24 | 7 | |||||
- | 1 | ||||||
N | 8 | 38 | 16 | ||||
D | 1 | ||||||
- | 1 | ||||||
389 | C | 3 | |||||
R | 2 | 22 | 1 | ||||
H | 19 | ||||||
E | 1 | ||||||
G | 8 | 38 | 16 | ||||
SP-E1 | |||||||
347 | A | 10 | 2 | 25 | 20 | ||
T | 8 | 37 | 7 | ||||
S | 1 |
Pacific IE-2 | Pacific IE-2 | Pacific IE-2 | Pacific IE-2 | Caribbean IE-3 | Caribbean IE-3 | Panama IE-1 | ||
---|---|---|---|---|---|---|---|---|
MK796243 CRC 2015 | KC344441 NIC 1968 | KC344435 GUA 1968 | AF448535 MEX 1996 | KC344446 MEX 1965 | KC344457 MEX 1963 | KC344432 PAN 1961 | ||
NSP1 (535aa) | ||||||||
120 | Sπ | T | A | A | A | A | A | |
508 | Eπ | A | A | A | A | A | A | |
NSP2 (794aa) | ||||||||
75 | H ** | Q | Q | Q | Q | Q | Q | |
454 * | E | D | D | D | D | D | D | |
495 * | Aπ | T | T | S | T | T | T | |
535 | T | T | A | A | A | A | A | |
617 | Y | H | H | Y | H | H | H | |
NSP3 (604aa) | ||||||||
65 | I ** | L | L | L | L | L | I | |
344 * | P | P | T | L | T | T | T | |
350 | Sπ | P | P | P | P | P | P | |
356 | Sπ | S | P | P | P | P | P | |
366 | Dπ | E | E | E | E | E | D | |
389 | Cπ *** | S | S | S | S | S | S | |
439 | Nπ | T | T | T | T | T | T | |
452 | K | K | Q | Q | Q | Q | R | |
465 * | Gπ | E | E | E | E | E | E | |
470 | Sπ | T | T | T | T | T | T | |
528 | Cπ | S | S | S | S | S | S | |
NSP4 (607aa) | ||||||||
105 * | V | L | L | L | L | L | L | |
235 * | D | E | E | E | E | E | E | |
E1 (442aa) | ||||||||
208 | V ** | I | V | V | I | I | I | |
211 * | Tπ | S | S | S | S | S | S | |
389 * | Aπ | T | T | T | T | T | T | |
E2 (423a) | ||||||||
81 * | Rπ | Q | Q | Q | Q | Q | Q | |
182 * | Rπ | S | S | S | S | S | S | |
282 | Lπ | S | S | S | S | S | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
León, B.; González, G.; Nicoli, A.; Rojas, A.; Pizio, A.D.; Ramirez-Carvajal, L.; Jimenez, C. Phylogenetic and Mutation Analysis of the Venezuelan Equine Encephalitis Virus Sequence Isolated in Costa Rica from a Mare with Encephalitis. Vet. Sci. 2022, 9, 258. https://doi.org/10.3390/vetsci9060258
León B, González G, Nicoli A, Rojas A, Pizio AD, Ramirez-Carvajal L, Jimenez C. Phylogenetic and Mutation Analysis of the Venezuelan Equine Encephalitis Virus Sequence Isolated in Costa Rica from a Mare with Encephalitis. Veterinary Sciences. 2022; 9(6):258. https://doi.org/10.3390/vetsci9060258
Chicago/Turabian StyleLeón, Bernal, Gabriel González, Alessandro Nicoli, Alicia Rojas, Antonella Di Pizio, Lisbeth Ramirez-Carvajal, and Carlos Jimenez. 2022. "Phylogenetic and Mutation Analysis of the Venezuelan Equine Encephalitis Virus Sequence Isolated in Costa Rica from a Mare with Encephalitis" Veterinary Sciences 9, no. 6: 258. https://doi.org/10.3390/vetsci9060258