Effects of Housing and Management Factors on Selected Indicators of the Welfare Quality® Protocol in Loose-Housed Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Farm Selection
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Body Condition Score
3.2. Integument Alterations
3.3. Lameness
3.4. Milk Somatic Cell Count
3.5. Social Behaviour
4. Discussion
4.1. Limitations of the Study
4.2. Comparison of Prevalences
4.3. Body Condition Score
4.4. Integument Alterations
4.5. Lameness
4.6. Milk Somatic Cell Count
4.7. Social Behaviour
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EFSA. Animal Welfare Risk Assessment Guidelines on Housing and Management. Technical Report (EFSA-Q-2009-00844). Wageningen UR Livestock Research. 2010. Available online: http://www.efsa.europa.eu/en/supporting/pub/en-87 (accessed on 4 March 2022).
- Arnott, G.; Ferris, C.P.; O’Connell, N.E. Review: Welfare of dairy cows in continuously housed and pasture-based production systems. Animal 2016, 11, 261–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bewley, J.M.; Robertson, L.M.; Eckelkamp, E.A. A 100-Year Review: Lactating dairy cattle housing management. J. Dairy Sci. 2017, 100, 10418–10431. [Google Scholar] [CrossRef] [PubMed]
- Dippel, S.; Dolezal, M.; Brenninkmeyer, C.; Brinkmann, J.; March, S.; Knierim, U.; Winckler, C. Risk factors for lameness in cubicle housed Austrian Simmental dairy cows. Prev. Vet. Med. 2009, 90, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Solano, L.; Barkema, H.W.; Pajor, E.A.; Mason, S.; LeBlanc, S.J.; Zaffino Heyerhoff, J.C.; Nash, C.G.R.; Haley, D.B.; Vasseur, E.; Pellerin, D.; et al. Prevalence of lameness and associated risk factors in Canadian Holstein-Friesian cows housed in freestall barns. J. Dairy Sci. 2015, 98, 6978–6991. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.B.; Bennett, T.B.; Nordlund, K.V. Effect of free stall surface on daily activity patterns in dairy cows with relevance to lameness prevalence. J. Dairy Sci. 2004, 87, 2912–2922. [Google Scholar] [CrossRef] [Green Version]
- Kester, E.; Holzhauer, M.; Frankena, K. A descriptive review of the prevalence and risk factors of hock lesions in dairy cows. Vet. J. 2014, 202, 222–228. [Google Scholar] [CrossRef]
- Brenninkmeyer, C.; Dippel, S.; Brinkmann, J.; March, S.; Winckler, C.; Knierim, U. Hock lesion epidemiology in cubicle housed dairy cows across two breeds, farming systems and countries. Prev. Vet. Med. 2013, 109, 236–245. [Google Scholar] [CrossRef]
- Rodrigues, A.C.O.; Caraviello, D.Z.; Ruegg, P.L. Management of Wisconsin dairy herds enrolled in milk quality teams. J. Dairy Sci. 2005, 88, 2660–2671. [Google Scholar] [CrossRef]
- Wenz, J.R.; Jensen, S.M.; Lombard, J.E.; Wagner, B.A.; Dinsmore, R.P. Herd management practices and their association with bulk tank somatic cell count on United States dairy operations. J. Dairy Sci. 2007, 90, 3652–3659. [Google Scholar] [CrossRef]
- Doherr, M.G.; Roesch, M.; Schaeren, W.; Schallibaum, M.; Blum, J.W. Risk factors associated with subclinical mastitis in dairy cows on Swiss organic and conventional production system farms. Vet. Med. 2007, 52, 487–495. [Google Scholar] [CrossRef] [Green Version]
- De Vries, M.; Bokkers, E.A.M.; van Reenen, C.G.; Engel, B.; van Schaik, G.; Dijkstra, T.; de Boer, I.J.M. Housing and management factors associated with indicators of dairy cattle welfare. Prev. Vet. Med. 2015, 118, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Collings, L.K.M.; Weary, D.M.; Chapinal, N.; von Keyserlingk, M.A.G. Temporal feed restriction and overstocking increase competition for feed by dairy cattle. J. Dairy Sci. 2011, 94, 5480–5486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winckler, C.; Tucker, C.B.; Weary, D. Effects of under- and overstocking freestalls on dairy cattle behavior. Appl. Anim. Beh. Sci. 2015, 170, 14–19. [Google Scholar] [CrossRef]
- Espejo, L.A.; Endres, M.I. Herd-level risk factors for lameness in high-producing Holstein cows housed in freestall barns. J. Dairy Sci. 2007, 90, 306–314. [Google Scholar] [CrossRef]
- Lombard, J.E.; Tucker, C.B.; von Keyserlingk, M.A.G.; Kopral, C.A.; Weary, D.M. Associations between cow hygiene, hock injuries, and free stall usage on US dairy farms. J. Dairy Sci. 2010, 93, 4668–4676. [Google Scholar] [CrossRef]
- Barrientos, A.K.; Chapinal, N.; Weary, D.M.; Galo, E.; von Keyserlingk, M.A.G. Herd-level risk factors for hock injuries in freestall-housed dairy cows in the northeastern United States and California. J. Dairy Sci. 2013, 96, 3758–3765. [Google Scholar] [CrossRef] [Green Version]
- De Vries, M.; Bokkers, E.A.M.; van Schaik, G.; Engel, B.; Dijkstra, T.; de Boer, I.J.M. Improving the time efficiency of identifying dairy herds with poorer welfare in a population. J. Dairy Sci. 2016, 99, 8282–8296. [Google Scholar] [CrossRef] [Green Version]
- Sumner, C.L.; von Keyserlingk, M.A.G.; Weary, D.M. How benchmarking motivates farmers to improve dairy calf management. J. Dairy Sci. 2018, 101, 3323–3333. [Google Scholar] [CrossRef]
- Jewell, M.T.; Cameron, M.; Spears, J.; McKenna, S.L.; Cockram, M.S.; Sanchez, J.; Keefe, G.P. Prevalence of hock, knee, and neck skin lesions and associated risk factors in dairy herds in the Maritime Provinces of Canada. J. Dairy Sci. 2019, 102, 3376–3391. [Google Scholar] [CrossRef] [Green Version]
- Welfare Quality® (WQP). Welfare Quality® Assessment Protocol for Cattle. Welfare Quality® Consortium: Lelystad, Netherlands. 2012. Available online: http://www.welfarequalitynetwork.net/media/1088/cattle_protocol_without_veal_calves.pdf (accessed on 21 March 2022).
- Destatis. Land- und Forstwirtschaft, Fischerei Rinder- und Schweinebestand. Statistisches Bundesamt. Fachserie 3 Reihe 4.1. 2017. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Tiere-Tierische-Erzeugung/Publikationen/Downloads-Tiere-und-tierische-Erzeugung/viehbestand-tierische-erzeugung-2030400177004.html (accessed on 7 April 2022).
- Von Keyserlingk, M.A.G.; Barrientos, A.; Ito, K.; Galo, E.; Weary, D.M. Benchmarking cow comfort on North American freestall dairies: Lameness, leg injuries, lying time, facility design, and management for high-producing Holstein dairy cows. J. Dairy Sci. 2012, 95, 7399–7408. [Google Scholar] [CrossRef] [Green Version]
- Coignard, M.; Guatteo, R.; Veissier, I.; de Boyer des Roches, A.; Mounier, L.; Lehébel, A.; Bareille, N. Description and factors of variation of the overall health score in French dairy cattle herds using the Welfare Quality® Assessment protocol. Prev. Vet. Med. 2013, 112, 296–308. [Google Scholar] [CrossRef] [PubMed]
- De Vries, M.; Engel, B.; den Uijl, I.; van Schaik, G.; Dijkstra, T.; de Boer, I.J.M.; Bokkers, E.A.M. Assessment time of the Welfare Quality® protocol for dairy cattle. Anim. Welf. 2014, 22, 85–93. [Google Scholar] [CrossRef]
- Heath, C.A.E.; Lin, Y.; Mullan, S.; Browne, W.J.; Main, D.C.J. Implementing Welfare Quality® in UK assurance schemes: Evaluating the challenges. Anim. Welf. 2014, 23, 95–107. [Google Scholar] [CrossRef]
- Krueger, A.; Cruickshank, J.; Trevisi, E.; Bionaz, M. Systems for evaluation of welfare on dairy farms. J. Dairy Res. 2020, 87, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Maroto Molina, F.; Pérez Marín, C.C.; Molina Moreno, L.; Agüera Buendia, E.I.; Pérez Marín, D.C. Welfare Quality® for dairy cows: Towards a sensor-based assessment. J. Dairy Res. 2020, 87, 28–33. [Google Scholar] [CrossRef] [PubMed]
- De Boyer des Roches, A.; Lardy, R.; Capdeville, J.; Mounier, L.; Veissier, I. Do International Commission of Agricultural and Biosystems Engineering (CIGR) dimension recommendations for loose housing of cows improve animal welfare? J. Dairy Sci. 2019, 102, 10235–10249. [Google Scholar] [CrossRef]
- Gaworski, M.; Bockowski, M. Method for comparing current versus recommended housing conditions in dairy cattle production. Agric. Food Sci. 2018, 27, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.; Borda, C.; Diugan, E.A.; Niculae, M.; Stefan, R.; Sandru, C.D. The effect of the housing system on the welfare quality of dairy cows. Ital. J. Anim. Sci. 2014, 13, 15–22. [Google Scholar] [CrossRef]
- Zuliani, A.; Romanzin, A.; Corazzin, M.; Salvador, S.; Abrahantes, J.C.; Bovolenta, S. Welfare assessment in traditional mountain dairy farms: Above and beyond resource-based measures. Anim. Welf. 2017, 26, 203–211. [Google Scholar] [CrossRef]
- De Boyer des Roches, A.; Veissier, I.; Coignard, M.; Bareille, N.; Guatteo, R.; Capdeville, J.; Gilot-Fromont, E.; Mounier, L. The major welfare problems of dairy cows in French commercial farms: An epidemiological approach. Anim. Welf. 2014, 23, 467–478. [Google Scholar] [CrossRef]
- Benatallah, A.; Ghozlane, F.; Marie, M. Dairy cow welfare assessment on Algerian farms. Afr. J. Agric. Res. 2015, 10, 895–901. [Google Scholar] [CrossRef] [Green Version]
- De Vries, M.; Bokkers, E.A.M.; van Schaik, G.; Botreau, R.; Engel, B.; Dijkstra, T.; de Boer, I.J.M. Evaluating results of the Welfare Quality multi-criteria evaluation model for classification of dairy cattle welfare at the herd level. J. Dairy Sci. 2013, 96, 6264–6273. [Google Scholar] [CrossRef] [PubMed]
- Armbrecht, L.; Lambertz, C.; Albers, D.; Gauly, M. Assessment of welfare indicators in dairy farms offering pasture at differing levels. Animal 2019, 13, 2336–2347. [Google Scholar] [CrossRef] [PubMed]
- Haskell, M.J.; Rennie, L.J.; Bowell, V.A.; Bell, M.J.; Lawrence, A.B. Housing system, milk production, and zero-grazing effects on lameness and leg injury in dairy cows. J. Dairy Sci. 2006, 89, 4259–4266. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.B.; Hess, J.P.; Foy, M.R.; Bennett, T.B.; Brotzman, R.L. Management characteristics, lameness, and body injuries of dairy cattle housed in high-performance dairy herds in Wisconsin. J. Dairy Sci. 2016, 99, 5879–5891. [Google Scholar] [CrossRef] [Green Version]
- Wagner, K.; Brinkmann, J.; Bergschmidt, A.; Renziehausen, C.; March, S. The effects of farming systems (organic vs. conventional) on dairy cow welfare, based on the Welfare Quality® protocol. Animal 2021, 15, 100301–100309. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, S.N.; Wemelsfelder, F.; Sandoe, P.; Forkman, B. The correlation of qualitative behavior assessments with Welfare Quality® protocol outcomes in on-farm welfare assessment of dairy cattle. Appl. Anim. Beh. Sci. 2013, 143, 9–17. [Google Scholar] [CrossRef] [Green Version]
- De Graaf, S.; Ampe, B.; Tuyttens, F.A.M. Assessing dairy cow welfare at the beginning and end of the indoor period using the Welfare Quality® protocol. Anim. Welf. 2017, 26, 213–221. [Google Scholar] [CrossRef]
- DeVries, T.J.; von Keyserlingk, M.A.G.; Beauchemin, K.A. Frequency of feed delivery affects the behavior of lactating dairy cows. J. Dairy. Sci. 2005, 88, 3553–3562. [Google Scholar] [CrossRef] [Green Version]
- Sova, A.D.; LeBlanc, S.J.; McBride, B.W.; DeVries, T.J. Associations between herd-level feeding management practices, feed sorting, and milk production in freestall dairy farms. J. Dairy Sci. 2013, 96, 4759–4770. [Google Scholar] [CrossRef]
- Hosseinkhani, A.; DeVries, T.J.; Proudfoot, K.L.; Valizadeh, R.; Veira, D.M.; von Keyserlingk, M.A.G. The effects of feed bunk competition on the feed sorting behavior of close-up dry cows. J. Dairy Sci. 2008, 91, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Endres, M.I.; Espejo, L.A. Feeding management and characteristics of rations for high-producing dairy cows in freestall herds. J. Dairy Sci. 2010, 93, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Llonch, P.; Mainau, E.; Ipharraguerre, I.R.; Bargo, F.; Tedo, G.; Blanch, M.; Manteca, X. Chicken or the Egg: The Reciprocal Association Between Feeding Behavior and Animal Welfare and Their Impact on Productivity in Dairy Cows. Front. Vet. Sci. 2018, 5, 305–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bewley, J.M.; Schutz, M.M. Review: An interdisciplinary review of body condition scoring for dairy cattle. Prof. Anim. Sci. 2008, 24, 507–529. [Google Scholar] [CrossRef] [Green Version]
- Adams, A.E.; Lombard, J.E.; Fossler, C.P.; Román-Muñiz, I.N.; Kopral, C.A. Associations between housing and management practices and the prevalence of lameness, hock lesions, and thin cows on US dairy operations. J. Dairy Sci. 2017, 100, 2119–2136. [Google Scholar] [CrossRef]
- Soonberg, M.; Kass, M.; Kaart, T.; Leming, R.; Arney, D.R. Additional concentrates do not affect feeding times of cows, but social positions of cows do. Agron. Res. 2018, 16, 1877–1884. [Google Scholar] [CrossRef]
- Berry, D.P.; Veerkamp, R.F.; Dillon, P. Phenotypic profiles for body weight, body condition score, energy intake, and energy balance across different parities and concentrate feeding levels. Livest. Sci. 2006, 104, 1–12. [Google Scholar] [CrossRef]
- Roche, J.R.; Friggens, N.C.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef] [Green Version]
- Nash, C.G.R.; Kelton, D.F.; DeVries, T.J.; Vasseur, E.; Coe, J.; Zaffino Heyerhoff, J.C.; Bouffard, V.; Pellerin, D.; Rushen, J.; de Passillé, A.M.; et al. Prevalence of and risk factors for hock and knee injuries on dairy cows in tiestall housing in Canada. J. Dairy Sci. 2016, 99, 6494–6506. [Google Scholar] [CrossRef]
- Blanco-Penedo, I.; Ouweltjes, W.; Ofner-Schröck, E.; Brügemann, K.; Emanuelson, U. Symposium review: Animal welfare in free-walk systems in Europe. J. Dairy Sci. 2020, 103, 5773–5782. [Google Scholar] [CrossRef]
- Wechsler, B.; Schaub, J.; Friedli, K.; Hauser, R. Behaviour and leg injuries in dairy cows kept in cubicle systems with straw bedding or soft lying mats. Appl. Anim. Behav. Sci. 2000, 69, 189–197. [Google Scholar] [CrossRef]
- Schenkenfelder, J.; Winckler, C. To meet or not to meet welfare outcome thresholds: A case-control study in dairy cow herds. Animal 2022, 16, 100461–100470. [Google Scholar] [CrossRef] [PubMed]
- Potterton, S.L.; Green, M.J.; Harris, J.; Millar, K.M.; Whay, H.R.; Huxley, J.N. Risk factors associated with hair loss, ulceration, and swelling at the hock in freestall-housed UK dairy herds. J. Dairy Sci. 2011, 94, 2952–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kielland, C.; Ruud, L.E.; Zanella, A.J.; Osteras, O. Prevalence and risk factors for skin lesions on legs of dairy cattle housed in freestalls in Norway. J. Dairy Sci. 2009, 92, 5487–5496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekman, L.; Nyman, A.-K.; Landin, H.; Persson Waller, K. Hock lesions in dairy cows in freestall herds: A cross-sectional study of prevalence and risk factors. Acta Vet. Scand. 2018, 60, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaffino Heyerhoff, J.C.; LeBlanc, S.J.; DeVries, T.J.; Nash, C.G.R.; Gibbons, J.; Orsel, K.; Barkema, H.W.; Solano, L.; Rushen, J.; de Passillé, A.M.; et al. Prevalence of and factors associated with hock, knee, and neck injuries on dairy cows in freestall housing in Canada. J. Dairy Sci. 2014, 97, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.B.; Jensen, M.B.; de Passillé, A.M.; Hänninen, L.; Rushen, J. Invited review: Lying time and the welfare of dairy cows. J. Dairy Sci. 2021, 104, 20–46. [Google Scholar] [CrossRef]
- Falk, A.C.; Weary, D.M.; Winckler, C.; von Keyserlingk, M.A.G. Preference for pasture versus freestall housing by dairy cattle when stall availability indoors is reduced. J. Dairy Sci. 2012, 95, 6409–6415. [Google Scholar] [CrossRef]
- Webster, A.J.F. Effects of housing and two forage diets on the development of claw horn lesions in dairy cows at first calving and in first lactation. Vet. J. 2001, 162, 56–65. [Google Scholar] [CrossRef]
- Oehm, A.W.; Knubben-Schweizer, G.; Rieger, A.; Stoll, A.; Hartnack, S. A systematic review and meta-analyses of risk factors associated with lameness in dairy cows. Vet. Res. 2019, 15, 346–359. [Google Scholar] [CrossRef]
- Chapinal, N.; Barrientos, A.K.; von Keyserlingk, M.A.G.; Galo, E.; Weary, D.M. Herd-level risk factors for lameness in freestall farms in the northeastern United States and California. J. Dairy Sci. 2013, 96, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Rouha-Mülleder, C.; Iben, C.; Wagner, E.; Laaha, G.; Troxler, J.; Waiblinger, S. Relative importance of factors influencing the prevalence of lameness in Austrian cubicle loose-housed dairy cows. Prev. Vet. Med. 2009, 92, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, B.E.; Grove White, D.; Oikonomou, G. A Cross-Sectional Study into the Prevalence of Dairy Cattle Lameness and Associated Herd-Level Risk Factors in England and Wales. Front. Vet. Sci. 2018, 5, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariza, J.M.; Levallois, P.; Bareille, N.; Arnoult, A.; Guatteo, R. Short communication: Evaluation of a foot dirtiness scoring system for dairy cows. J. Dairy Sci. 2020, 103, 4738–4742. [Google Scholar] [CrossRef]
- Solano, L.; Barkema, H.W.; Pickel, C.; Orsel, K. Effectiveness of a standardized footbath protocol for prevention of digital dermatitis. J. Dairy Sci. 2017, 100, 1295–1307. [Google Scholar] [CrossRef] [PubMed]
- Nyman, A.-K.; Ekman, T.; Emanuelson, U.; Gustafsson, A.H.; Holtenius, K.; Persson Waller, K.; Hallén Sandgren, C. Risk factors associated with the incidence of veterinary-treated clinical mastitis in Swedish dairy herds with a high milk yield and a low prevalence of subclinical mastitis. Prev. Vet. Med. 2007, 78, 142–160. [Google Scholar] [CrossRef]
- Barkema, H.W.; Schukken, Y.H.; Lam, T.J.G.M.; Beiboer, M.L.; Benedictus, G.; Brand, A. Management practices associated with the incidence rate on clinical mastitis. J. Dairy Sci. 1999, 82, 1643–1654. [Google Scholar] [CrossRef]
- Kabera, F.; Roy, J.-P.; Afifi, M.; Godden, S.; Stryhn, H.; Sanchez, J.; Dufour, S. Comparing Blanket vs. Selective Dry Cow Treatment Approaches for Elimination and Prevention of Intramammary Infections During the Dry Period: A Systematic Review and Meta-Analysis. Front. Vet. Sci. 2021, 8, 688450. [Google Scholar] [CrossRef]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [Green Version]
- Zecconi, A.; Gusmara, C.; Di Giusto, T.; Cipolla, M.; Marconi, P.; Zanini, L. Observational study on application of a selective dry-cow therapy protocol based on individual somatic cell count thresholds. Ital. J. Anim. Sci. 2020, 19, 1341–1348. [Google Scholar] [CrossRef]
- Hovinen, M.; Pyörälä, S. Invited review: Udder health of dairy cows in automatic milking. J. Dairy Sci. 2011, 94, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.W.; Ely, L.O.; Graves, W.M.; Gilson, W.D. Effect of milking frequency on DHI performance measures. J. Dairy Sci. 2002, 85, 3526–3533. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J.A.; Siegford, J.M. Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare. J. Dairy Sci. 2012, 95, 2227–2247. [Google Scholar] [CrossRef] [PubMed]
- Dohmen, W.; Neijenhuis, F.; Hogeveen, H. Relationship between udder health and hygiene on farms with an automatic milking system. J. Dairy Sci. 2010, 93, 4019–4033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkema, H.W.; von Keyserlingk, M.A.G.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.-P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foris, B.; Thompson, A.J.; von Keyserlingk, M.A.G.; Melzer, N.; Weary, D.M. Automatic detection of feeding- and drinking-related agonistic behaviour and dominance in dairy cows. J. Dairy Sci. 2019, 102, 9176–9186. [Google Scholar] [CrossRef]
- Fregonesi, J.A.; Tucker, C.B.; Weary, D.M. Overstocking reduces lying time in dairy cows. J. Dairy Sci. 2007, 90, 3349–3354. [Google Scholar] [CrossRef]
- Huzzey, J.M.; DeVries, T.J.; Valois, P.; von Keyserlingk, M.A.G. Stocking density and feed barrier design affect the feeding and social behavior of dairy cattle. J. Dairy Sci. 2006, 89, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Krawczel, P.D.; Klaiber, L.B.; Butzler, R.E.; Klaiber, L.M.; Dann, H.M.; Mooney, C.S.; Grant, R.J. Short-term increases in stocking density affect the lying and social behavior, but not the productivity, of lactating Holstein dairy cows. J. Dairy Sci. 2012, 95, 4298–4308. [Google Scholar] [CrossRef] [Green Version]
- Val-Laillet, D.; Veira, D.M.; von Keyserlingk, M.A.G. Short communication: Dominance in free-stall-housed dairy cattle is dependent upon resource. J. Dairy Sci. 2008, 91, 3922–3926. [Google Scholar] [CrossRef]
- Katainen, A.; Norring, M.; Manninen, E.; Laine, J.; Orava, T.; Kuoppala, K.; Saloniemi, H. Competitive behavior of dairy cows at a concentrate self-feeder. Acta Agric. Scand. A Anim. Sci. 2005, 55, 98–105. [Google Scholar] [CrossRef]
- Goncu, S.; Yesil, M.I.; Yilmaz, N. The Cattle Grooming Behavior and Some Problems with Technological Grooming Instruments for Cow Welfare. J. Environ. Sci. Engin. B 2019, 8, 190–196. [Google Scholar]
Farm Characteristics 1 | Housing Conditions | ||||||
---|---|---|---|---|---|---|---|
Parameter | Mean ± SD | Min | Max | Barn Design | Number | Percentage | |
Herd size [n] | 368 ± 346 | 45 | 1609 | Cubicles | Deep bedded | 46 | 73% |
Cows in milk [n] | 318 ± 302 | 41 | 1353 | Rubber mat | 17 | 27% | |
Group size [n] | 99 ± 46 | 32 | 237 | Floors | Solid | 32 | 51% |
Milk yield [kg/cow/a] | 9915 ± 943 | 6870 | 11,805 | Slatted | 31 | 49% | |
Fat content [%] | 4.0 ± 0.2 | 3.6 | 4.5 | Feeding | Feed rack | 30 | 48% |
Protein content [%] | 3.4 ± 0.1 | 3.2 | 3.6 | Neck tube | 33 | 52% | |
ECM [kg/cow/a] | 9880 ± 914 | 7091 | 11,747 | Insulation | Insulated | 32 | 51% |
BTSCC [cells/ml] | 249 ± 78 | 88.0 | 417.0 | Not insulated | 31 | 49% |
Indicator | Frequency Calculation | Method for Collecting Data |
---|---|---|
Body condition score | Body condition score observed on a sample of cows (Nfin) 1 on the day of the visit | Animal is assessed using the scale: 0—regular body condition 1—very lean body condition 2 2—very fat body condition |
Integument alterations | Prevalence of integument alterations observed on a sample of cows (Nfin) on the day of the visit | Observation of five body regions (neck/shoulder/back, hindquarter, tarsus, flank/side/udder, carpus) on one side of the animal. On each region, number of hairless patches and lesions/swellings of a minimum diameter of 2 cm are recorded |
Lameness (loose house) | Prevalence of lameness observed on a sample of cows (Nfin) on the day of the visit | Cows are observed when walking on a hard surface. Animal is assessed using the scale: 0—not lame: timing of steps and weight-bearing equal on all four feet 1—moderately lame: imperfect temporal rhythm in stride creating a limp 2—severely lame: reluctance to bear weight on one limb or more than one limb affected |
Milk somatic cell count | Prevalence of cows with subclinical udder inflammation within the last 3 months | Cow milk somatic cell counts are obtained from individual milk records and assessed using the scale: 0—somatic cell count below 400,000 cells/mL for the last 3 months 2—somatic cell count above 400,000 cells/mL at least once in the last 3 months |
Agonistic interactions | Observed in representative segments of the barn on the day of the visit | Recording using continuous behaviour sampling during a total period of 120 min: Number of head butts, displacements, chasing (-up) and fights |
Indicator/Criterion | Group | Level | Mean 1 | SD | Min | Max |
---|---|---|---|---|---|---|
Body condition score (%) | HW | <9.2 | 6.3 | 2.3 | 0.0 | 9.1 |
LW | >15.6 | 19.9 | 4.1 | 15.9 | 29.2 | |
Integument alterations (%) | HW | <27.1 | 16.5 | 6.5 | 6.3 | 27.1 |
LW | >38.0 | 47.4 | 6.9 | 38.6 | 62.7 | |
Lameness (%) | HW | <22.0 | 11.9 | 6.0 | 0.0 | 21.9 |
LW | >37.0 | 52.9 | 11.7 | 37.5 | 74.3 | |
Milk somatic cell count (%) | HW | <18.0 | 13.0 | 4.6 | 2.3 | 17.6 |
LW | >22.5 | 27.6 | 4.0 | 22.8 | 37.4 | |
Social behaviour (points) | HW | >90.0 | 92.6 | 1.9 | 90.1 | 96.6 |
LW | <83.5 | 71.6 | 13.7 | 40.4 | 83.0 |
Potential Influencing Factors | Level | LW * | HW * | OR | 95% CI | p |
---|---|---|---|---|---|---|
Feeding frequency (times/day) | 1 | 11 | 6 | 0.390 | 0.108,1.407 | 0.150 |
>1 | 10 | 14 | 1 | - | ||
Pushing of feed (times/day) | <4 | 7 | 6 | 0.571 | 0.108, 3.036 | 0.717 |
4–6 | 10 | 8 | 0.533 | 0.111, 2.564 | ||
>6 | 4 | 6 | 1 | - | ||
Calculation of rations (times/year) | <4 | 7 | 4 | 0.571 | 0.108, 3.036 | 0.599 |
4–11 | 7 | 9 | 1.286 | 0.286, 5.774 | ||
>11 | 6 | 6 | 1 | - | ||
Calculation of feed remains | No | 5 | 3 | 0.565 | 0.116, 2.758 | 0.480 |
Yes | 16 | 17 | 1 | - | ||
Body condition scoring (times/lactation) | <1 | 6 | 4 | 0.667 | 0.129, 3.446 | 0.803 |
1–3 | 7 | 8 | 1.143 | 0.266, 4.913 | ||
<4 | 7 | 7 | 1 | - | ||
Feeding regime 1 | PMR | 6 | 1 | 0.125 | 0.868, 73.613 | 0.066 |
TMR | 15 | 20 | 1 | - | ||
Feeding groups (rations) | 1 | 11 | 4 | 0.227 | 0.057, 0.913 | 0.037 |
>1 | 10 | 16 | 1 | - | ||
Amount of staple feed (%) | >66 | 6 | 3 | 0.300 | 0.054, 1.669 | 0.386 |
61–66 | 4 | 4 | 0.600 | 0.108, 3.338 | ||
<60 | 6 | 10 | 1 | - | ||
Amount of concentrates (kg/day) | <6.9 | 6 | 2 | 0.111 | 0.016, 0.778 | 0.085 |
6.9–8.5 | 4 | 7 | 0.519 | 0.104, 2.581 | ||
>8.5 | 6 | 9 | 1 | - | ||
Cow-to-feeding place ratio (%) | >118 | 7 | 4 | 0.762 | 0.151, 3.856 | 0.286 |
105–118 | 6 | 11 | 2.444 | 0.572, 10.447 | ||
<105 | 8 | 6 | 1 | - | ||
No significant effects for selected housing and management variables were found in the final model (p > 0.05) |
Potential Influencing Factors | Level | LW * | HW * | OR | 95% CI | p |
---|---|---|---|---|---|---|
Cubicle type 1 | RM | 4 | 4 | 1.000 | 0.214, 4.666 | 1.000 |
DB | 17 | 17 | 1 | - | ||
Cubicle cleaning (times/day) | 1 | 5 | 5 | 1.000 | 0.123, 8.128 | 1.000 |
2 | 14 | 14 | 1.000 | 0.098, 10.166 | ||
3 | 2 | 2 | 1 | - | ||
Mean cubicle width (cm) | <110 | 8 | 8 | 1.800 | 0.415, 7.814 | 0.303 |
110–113 | 4 | 8 | 3.599 | 0.710, 18.251 | ||
>113 | 9 | 5 | 1 | - | ||
Mean cubicle length (cm) | <186 | 6 | 3 | 0.563 | 0.105, 3.023 | 0.368 |
186–195 | 6 | 10 | 1.875 | 0.467, 7.526 | ||
>195 | 9 | 8 | 1 | - | ||
Mean distance neck rail to curb (cm) | <197 | 7 | 11 | 2.750 | 0.583, 12.976 | 0.372 |
197–205 | 7 | 5 | 1.250 | 0.233, 6.714 | ||
>205 | 7 | 4 | 1 | - | ||
Presence of brisket locator | Yes | 15 | 17 | 1.700 | 0.402, 7.198 | 0.471 |
No | 6 | 4 | 1 | - | ||
Mean neck rail height (cm) | <113 | 6 | 9 | 2.000 | 0.456, 8.777 | 0.621 |
113–119 | 7 | 6 | 1.143 | 0.250, 5.224 | ||
>119 | 8 | 6 | 1 | - | ||
Mean feeding place height (cm) | <129 | 8 | 3 | 0.234 | 0.041, 1.328 | 0.224 |
129–140 | 8 | 10 | 0.781 | 0.183, 3.342 | ||
>140 | 5 | 8 | 1 | - | ||
Feeding rack type 2 | NR | 12 | 9 | 0.563 | 0.166, 1.910 | 0.356 |
HL | 9 | 12 | 1 | - | ||
Feeding place inclined | Yes | 9 | 11 | 1.467 | 0.434, 4.951 | 0.537 |
No | 12 | 10 | 1 | - | ||
No significant effects for selected housing and management variables were found in the final model (p > 0.05) |
Potential Influencing Factors | Level | LW * | HW * | OR | 95% CI | p |
---|---|---|---|---|---|---|
Cow-to-stall ratio (%) | >105 | 10 | 4 | 0.343 | 0.070, 1.684 | 0.131 |
95–105 | 5 | 10 | 1.714 | 0.371, 7.918 | ||
<95 | 6 | 7 | 1 | - | ||
Grooves in the floor | No | 10 | 10 | 1.222 | 0.353, 4.235 | 0.752 |
Yes | 9 | 11 | 1 | - | ||
Frequency floor scraping (times/day) | <2 | 9 | 6 | 0.444 | 0.087, 2.276 | 0.525 |
2–10 | 5 | 7 | 0.933 | 0.169, 5.151 | ||
>10 | 4 | 6 | 1 | - | ||
Floor scraping type 1 | MAN | 4 | 6 | 1.385 | 0.312, 6.136 | 0.668 |
AUT | 12 | 13 | 1 | - | ||
Frequency claw trimming (times/year) | <2.0 | 13 | 7 | 0.179 | 0.028, 1.136 | 0.167 |
2–2.5 | 6 | 7 | 0.389 | 0.056, 2.697 | ||
>2.5 | 2 | 6 | 1 | - | ||
Type of claw trimming 2 | HER | 2 | 4 | 2.235 | 0.362, 13.782 | |
IND | 19 | 17 | 1 | - | ||
Person who trims claws 3 | PRO | 1 | 2 | 2.105 | 0.176, 25.166 | |
FAR | 20 | 19 | 1 | - | ||
Footbath routinely used | No | 11 | 1 | 0.041 | 0.005, 0.367 | 0.004 |
Yes | 9 | 20 | 1 | - | ||
Flooring type 4 | SLA | 16 | 9 | 0.234 | 0.062, 0.882 | 0.032 |
SOL | 5 | 12 | 1 | - | ||
Rubber on the floors | No | 20 | 13 | 0.081 | 0.009, 0.728 | 0.025 |
Yes | 1 | 8 | 1 | - | ||
Access to pasture | No | 16 | 18 | 1.875 | 0.385, 9.120 | 0.436 |
Yes | 5 | 3 | 1 | - | ||
Final model: r2 = 0.10 | ||||||
Footbath routinely used | No | 11 | 1 | 0.043 | 0.005, 0.387 | 0.005 |
Yes | 9 | 20 | 1 | - |
Potential Influencing Factors | Level | LW * | HW * | OR | 95% CI | p |
---|---|---|---|---|---|---|
Type of milking 1 | AMS | 5 | 1 | 0.160 | 0.017, 1.511 | 0.110 |
MP | 16 | 20 | 1 | - | ||
Age of milking equipment (years) | >20 | 3 | 6 | 2.000 | 0.378, 10.577 | 0.360 |
10–20 | 9 | 5 | 0.556 | 0.133, 2.325 | ||
<10 | 9 | 9 | 1 | - | ||
Interim disinfection | No | 7 | 8 | 1.230 | 0.347, 4.357 | 0.748 |
Yes | 14 | 13 | 1 | - | ||
Milking frequency (times/day) | >2 | 12 | 5 | 0.234 | 0.062, 0.882 | 0.032 |
2 | 9 | 16 | 1 | - | ||
Cleaning teats (towels) 2 | REU | 6 | 5 | 0.556 | 0.133, 2.325 | 0.421 |
DIS | 10 | 15 | 1 | - | ||
Pre-dip routinely | No | 17 | 16 | 0.376 | 0.064, 2.224 | 0.281 |
Yes | 2 | 5 | 1 | - | ||
Post-dip routinely | No | 7 | 5 | 0.536 | 0.136, 2.109 | 0.372 |
Yes | 12 | 16 | 1 | - | ||
Milking sick cows separately | No | 12 | 12 | 0.750 | 0.199, 2.827 | 0.671 |
Yes | 6 | 8 | 1 | - | ||
Fixation after milking | No | 11 | 15 | 1.591 | 0.417, 6.073 | 0.497 |
Yes | 7 | 6 | 1 | - | ||
Dry cow therapy 3 | DEM | 4 | 10 | 3.636 | 0.905, 14.609 | 0.069 |
ROU | 16 | 11 | 1 | - | ||
Intramammary seal | No | 2 | 3 | 1.500 | 0.223, 10.076 | 0.677 |
Yes | 18 | 18 | 1 | - | ||
Udder control during dry period 3 | No | 7 | 3 | 0.297 | 0.060, 1.466 | 0.329 |
DEM | 5 | 5 | 0.692 | 0.154, 3.112 | ||
Yes | 9 | 13 | 1 | - | ||
Final model: r2 = 0.13 | ||||||
Frequency milking (times/day) | >2 | 12 | 5 | 0.208 | 0.054, 0.800 | 0.022 |
2 | 9 | 16 | 1 | - |
Potential Influencing Factors | Level | LW * | HW * | OR | 95% CI | p |
---|---|---|---|---|---|---|
Regrouping during lactation | Yes | 13 | 15 | 1.846 | 0.483, 7.062 | 0.370 |
No | 8 | 5 | 1 | - | ||
Integration of heifers 1 (time) | PP | 17 | 12 | 0.314 | 0.078, 1.260 | 0.102 |
AP | 4 | 9 | 1 | - | ||
Cow-to-stall ratio (%) | >105 | 11 | 3 | 0.099 | 0.018, 0.551 | 0.030 |
95–105 | 6 | 7 | 0.424 | 0.087, 2.061 | ||
<95 | 4 | 11 | 1 | - | ||
Mean feeding alley width (m) | <3.2 | 10 | 3 | 0.167 | 0.031, 0.904 | 0.082 |
3.2–3.6 | 6 | 9 | 0.833 | 0.185, 3.750 | ||
>3.6 | 5 | 9 | 1 | - | ||
Mean walking alley width (m) | <2.4 | 8 | 3 | 0.292 | 0.056, 1.525 | 0.231 |
2.4–2.7 | 6 | 9 | 1.167 | 0.279, 4.871 | ||
>2.7 | 7 | 9 | 1 | - | ||
Mean crossover width (m) | <2.4 | 7 | 5 | 0.446 | 0.090, 2.215 | 0.612 |
2.4–3.0 | 7 | 8 | 0.714 | 0.158, 3.231 | ||
>3.0 | 5 | 8 | 1 | - | ||
Mean walking space 2 (m2) | <3.7 | 10 | 5 | 0.222 | 0.045, 1.094 | 0.181 |
3.7–4.4 | 7 | 7 | 0.444 | 0.092, 2.150 | ||
>4.4 | 4 | 9 | 1 | - | ||
Concentrate feeder station | No | 11 | 17 | 3.864 | 0.967, 15.443 | 0.056 |
Yes | 10 | 4 | 1 | - | ||
Rotating cow brush | No | 8 | 9 | 1.219 | 0.355, 4.185 | 0.754 |
Yes | 13 | 12 | 1 | - | ||
Feeding rack type 3 | NR | 11 | 14 | 1.818 | 0.522, 6.331 | 0.348 |
HL | 10 | 7 | 1 | - | ||
Cow-to-feeding place ratio (%) | >118 | 7 | 5 | 1.786 | 0.349, 9.127 | 0.042 |
105–118 | 4 | 12 | 7.500 | 1.484, 37.905 | ||
<105 | 10 | 4 | 1 | - | ||
Trough length per cow (cm) | <4.7 | 11 | 4 | 0.218 | 0.047, 1.005 | 0.092 |
4.7–6.8 | 4 | 7 | 1.050 | 0.214, 5.158 | ||
>6.8 | 6 | 10 | 1 | - | ||
Final model: r2 = 0.18 | ||||||
Cow-to-stall ratio (%) | >105 | 11 | 3 | 0.099 | 0.018, 0.551 | 0.030 |
95–105 | 6 | 7 | 0.424 | 0.087, 2.061 | ||
<95 | 4 | 11 | 1 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gieseke, D.; Lambertz, C.; Gauly, M. Effects of Housing and Management Factors on Selected Indicators of the Welfare Quality® Protocol in Loose-Housed Dairy Cows. Vet. Sci. 2022, 9, 353. https://doi.org/10.3390/vetsci9070353
Gieseke D, Lambertz C, Gauly M. Effects of Housing and Management Factors on Selected Indicators of the Welfare Quality® Protocol in Loose-Housed Dairy Cows. Veterinary Sciences. 2022; 9(7):353. https://doi.org/10.3390/vetsci9070353
Chicago/Turabian StyleGieseke, Daniel, Christian Lambertz, and Matthias Gauly. 2022. "Effects of Housing and Management Factors on Selected Indicators of the Welfare Quality® Protocol in Loose-Housed Dairy Cows" Veterinary Sciences 9, no. 7: 353. https://doi.org/10.3390/vetsci9070353
APA StyleGieseke, D., Lambertz, C., & Gauly, M. (2022). Effects of Housing and Management Factors on Selected Indicators of the Welfare Quality® Protocol in Loose-Housed Dairy Cows. Veterinary Sciences, 9(7), 353. https://doi.org/10.3390/vetsci9070353