Possible Consequences of Climate Change on Survival, Productivity and Reproductive Performance, and Welfare of Himalayan Yak (Bos grunniens)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Climate Change in the Himalaya
2.1. Temperature
2.2. Precipitation
2.3. Vegetation
3. Yak Population
4. Possible Consequences of Climate Changes on Yak
4.1. Climate Change and Yak Physiology
4.2. Climate Change and Reproductive Performance
4.3. Climate Change and Productivity
4.4. Climate Change and Infectious Disease Occurrence
5. Overall Welfare Status
6. Adaptation Strategies to Mitigate Adverse Effects of Climate Change on Yak
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, Q.; Zhang, G.; Ma, T.; Qian, W.; Wang, J.; Ye, Z.; Cao, C.; Hu, Q.; Kim, J.; Larkin, D.M. The yak genome and adaptation to life at high altitude. Nat. Genet. 2012, 44, 946–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Q.; Guo, Y.; Engelhardt, S.C.; Weladji, R.B.; Zhou, Y.; Long, M.; Meng, X. Endangered wild yak (Bos grunniens) in the Tibetan plateau and adjacent regions: Population size, distribution, conservation perspectives and its relation to the domestic subspecies. J. Nat. Conserv. 2016, 32, 35–43. [Google Scholar] [CrossRef]
- Krishnan, G.; Paul, V.; Biswas, T.; Chouhan, V.; Das, P.; Sejian, V. Adaptation strategies of yak to seasonally driven environmental temperatures in its natural habitat. Int. J. Biometeorol. 2018, 62, 1497–1506. [Google Scholar] [CrossRef]
- Rhode, D.; Madsen, D.B.; Brantingham, P.J.; Dargye, T. Yaks, yak dung, and prehistoric human habitation of the Tibetan Plateau. Dev. Quat. Sci. 2007, 9, 205–224. [Google Scholar]
- Feroze, S.M.; Ray, L.I.; Singh, K.J.; Singh, R. Pastoral yak rearing system is changing with change in climate: An exploration of North Sikkimin Eastern Himalaya. Clim. Chang. 2019, 157, 483–498. [Google Scholar] [CrossRef]
- Wiener, G.; Han, J.; Long, R. The Yak; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2003. [Google Scholar]
- Krishna, G.; Ramesh, K.; Chakravarty, P.; Chouhan, V.; Jayakumar, S. Effect of environment on reproductive traits in yaks. Indian J. Anim. Sci. 2010, 80, 123–124. [Google Scholar]
- Long, R.; Ding, L.; Shang, Z.; Guo, X. The yak grazing system on the Qinghai-Tibetan plateau and its status. Rangel. J. 2008, 30, 241–246. [Google Scholar] [CrossRef]
- Miao, F.; Guo, Z.; Xue, R.; Wang, X.; Shen, Y. Effects of grazing and precipitation on herbage biomass, herbage nutritive value, and Yak performance in an alpine meadow on the Qinghai–Tibetan Plateau. PLoS ONE 2015, 10, e0127275. [Google Scholar] [CrossRef]
- Namgay, K.; Millar, J.; Black, R.; Samdup, T. Transhumant agro-pastoralism in Bhutan: Exploring contemporary practices and socio-cultural traditions. Pastor. Res. Policy Pract. 2013, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Paul, V.; Maiti, S.; Krishnan, G.; Medhi, D.; Deb, S. Yak rearing on high altitude pastures of northeastern Himalaya of India: Their utilization strategies and rejuvenation. In Proceedings of the XXIII International Grassland Congress Proceedings, New Delhi, India, 1 April 2020. [Google Scholar]
- Wiener, G. The yak, an essential element of the high altitude regions of Central Asia. Etudes Mongoles et Siberienne 2013. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.; Hu, R.; Wang, Z.; Shah, A.M.; Zeng, S.; Peng, Q.; Xue, B.; Wang, L.; Zhang, X.; Wang, X. Effects of nutritional deprivation and re-alimentation on the feed efficiency, blood biochemistry, and rumen microflora in yaks (Bos grunniens). Animals 2019, 9, 807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, P.; Luo, J.; Liu, Y.; Chu, M.; Ren, Q.; Guo, X.; Tang, B.; Ding, X.; Qiu, Q.; Pan, H. The seasonal development dynamics of the yak hair cycle transcriptome. BMC Genom. 2020, 21, 355. [Google Scholar] [CrossRef]
- Krishnan, G.; Paul, V.; Hanah, S.; Bam, J.; Das, P.; Indian, J. Effects of Climate Change on Yak Production at High Altitude. Indian J. Anim. Sci. 2016, 86, 621–626. [Google Scholar]
- Wangdi, J.; Wangchuk, K. Productive and reproductive traits of yak types in Bhutan: Characteristics and comparisons. J. Appl. Anim. Res. 2018, 46, 893–897. [Google Scholar] [CrossRef]
- Sarkar, M.; Meyer, H.; Prakash, B. Is the yak (Poephagus grunniens L.) really a seasonal breeder? Theriogenology 2006, 65, 721–730. [Google Scholar] [CrossRef]
- Xu, S.-R.; Wei, P.; Yang, Q.-L.; Jia, G.-X.; Ma, S.-K.; Yang, Q.-E.; Jun, Z.; Zhang, R.-N. Transcriptome analysis revealed key signaling networks regulating ovarian activities in the domestic yak. Theriogenology 2020, 147, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Khatri Chhetri, K.; Shrestha, N.; Serchan, L. Morphological characteristics and productive reproductive performance of Yak/Nak. In Proceedings of the 1st National Workshop on Livestock and Fisheries Research in Nepal, Khumaltar, Lalitpur, Nepal, 7–9 May 1996. [Google Scholar]
- Shukla, R.; Agarwal, A.; Sachdeva, K.; Kurths, J.; Joshi, P. Climate change perception: An analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas. Clim. Chang. 2019, 152, 103–119. [Google Scholar] [CrossRef]
- Gautam, M.R.; Timilsina, G.R.; Acharya, K. Climate change in the Himalayas: Current state of knowledge. In Policy Research Working Paper; World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Eriksson, M.; Xu, J.; Shrestha, A.B.; Vaidya, R.A.; Santosh, N.; Sandström, K. The Changing Himalayas: Impact of Climate Change on Water Resources and Livelihoods in the Greater Himalayas; International Centre for Integrated Mountain Development (ICIMOD): Lalitpur, Nepal, 2009. [Google Scholar]
- Sherpa, Y.D.; Kayastha, R.B. A study of livestock management patterns in Sagarmatha National Park, Khumbu Region: Trends as affected by socio-economic factors and climate change. Kathmandu Univ. J. Sci. Eng. Technol. 2009, 5, 110–120. [Google Scholar]
- Sun, X.-B.; Ren, G.-Y.; Shrestha, A.B.; Ren, Y.-Y.; You, Q.-L.; Zhan, Y.-J.; Xu, Y.; Rajbhandari, R. Changes in extreme temperature events over the Hindu Kush Himalaya during 1961–2015. Adv. Clim. Chang. Res. 2017, 8, 157–165. [Google Scholar] [CrossRef]
- Pant, G.B.; Kumar, P.P.; Revadekar, J.V.; Singh, N. Climate change in the Himalayas; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Shrestha, U.B.; Gautam, S.; Bawa, K.S. Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 2012, 7, e36741. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.B.; Agrawal, N.K.; Alfthan, B.; Bajracharya, S.R.; Maréchal, J.; Oort, B.V. The Himalayan Climate and Water Atlas: Impact of climate change on water resources in five of Asia’s major river basins. In The Himalayan Climate and Water Atlas: Impact of Climate Change on Water Resources in Five of Asia’s Major River Basins; International Centre for Integrated Mountain Development (ICIMOD): Lalitpur, Nepal; GRID-Arendal, Arendal, Norway and the Centre for International Climate and Environmental Research-Oslo (CICERO): Oslo, Norway, 2015. [Google Scholar]
- Padma, T. Himalayan plants seek cooler climes: Race is on to record mountain biodiversity before it is lost. Nature 2014, 512, 359–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigdel, S.R.; Wang, Y.; Camarero, J.J.; Zhu, H.; Liang, E.; Peñuelas, J. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Glob. Chang. Biol. 2018, 24, 5549–5559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalle, G.; Maass, B.L.; Isselstein, J. Encroachment of woody plants and its impact on pastoral livestock production in the Borana lowlands, southern Oromia, Ethiopia. Afr. J. Ecol. 2006, 44, 237–246. [Google Scholar] [CrossRef]
- Brandt, J.S.; Haynes, M.A.; Kuemmerle, T.; Waller, D.M.; Radeloff, V.C. Regime shift on the roof of the world: Alpine meadows converting to shrublands in the southern Himalayas. Biol. Conserv. 2013, 158, 116–127. [Google Scholar] [CrossRef]
- Manish, K.; Telwala, Y.; Nautiyal, D.C.; Pandit, M.K. Modelling the impacts of future climate change on plant communities in the Himalaya: A case study from Eastern Himalaya, India. Modeling Earth Syst. Environ. 2016, 2, 92. [Google Scholar] [CrossRef] [Green Version]
- Paudel, K.P.; Andersen, P. Assessing rangeland degradation using multi temporal satellite images and grazing pressure surface model in Upper Mustang, Trans Himalaya, Nepal. Remote Sens. Environ. 2010, 114, 1845–1855. [Google Scholar] [CrossRef]
- Bai, Z.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Global Assessment of Land Degradation and Improvement: 1. Identification by Remote Sensing; ISRIC-World Soil Information: Wageningen, The Netherlands, 2008. [Google Scholar]
- Bastin, G.; Pickup, G.; Chewings, V.; Pearce, G. Land degradation assessment in central Australia using a grazing gradient method. Rangel. J. 1993, 15, 190–216. [Google Scholar] [CrossRef]
- Yang, C.; Yan, T.; Sun, Y.; Hou, F. Shrub cover impacts on yak growth performance and herbaceous forage quality on the Qinghai-Tibet Plateau, China. Rangel. Ecol. Manag. 2021, 75, 9–16. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Iglesius, A.; Yang, X.-B.; Epstein, P.R.; Chivian, E. Climate Change and Extreme Weather Events-Implications for Food Production, Plant Diseases, and Pests; NASA Publications: Washington, DC, USA, 2001. [Google Scholar]
- Cannone, N.; Sgorbati, S.; Guglielmin, M. Unexpected impacts of climate change on alpine vegetation. Front. Ecol. Environ. 2007, 5, 360–364. [Google Scholar] [CrossRef] [Green Version]
- Negi, G.; Samal, P.; Kuniyal, J.; Kothyari, B.; Sharma, R.; Dhyani, P. Impact of climate change on the western Himalayan mountain ecosystems: An overview. Trop. Ecol. 2012, 53, 345–356. [Google Scholar]
- Livestock Census, Department of Animal Husbandry and Dairying, India. Available online: https://dahd.nic.in/documents/statistics/livestock-census (accessed on 19 July 2022).
- Livestock Statistics Report, National Statistics Bureau, Bhutan. Available online: https://www.nsb.gov.bt/livestock-statistics-report/ (accessed on 19 July 2022).
- Agriculture Statistics, Ministry of Agriculture and Livestock Development, Nepal. Available online: https://moald.gov.np/publication-types/agriculture-statistics/ (accessed on 19 July 2022).
- Song, Q.; Chai, Z.; Xin, J.; Zhao, S.; Ji, Q.; Zhang, C.; Ma, Z.; Zhong, J. Genetic diversity and classification of Tibetan yak populations based on the mtDNA COIII gene. Genet. Mol. Res. 2015, 14, 1763–1770. [Google Scholar] [CrossRef]
- Zhang, C. Study on Superovulation of Tibetan Yak. Master Thesis, Chinese Academy of Agricultural Siences, Beijing, China, 2012. [Google Scholar]
- Jasra, A.W.; Hashmi, M.M.; Waqar, K.; Ali, M. Traditional yak herding in high-altitude areas of Gilgit-Baltistan, Pakistan: Transboundary and biodiversity conservation challenges. In Yak on the Move; International Centre for Integrated Mountain Development (ICIMOD): Lalitpur, Nepal, 2016; Volume 40, pp. 41–51. [Google Scholar]
- Ali, A.; Shaoliang, Y.; Nazarbekov, A.; Joshi, S. Survival in the Frontiers: Yak husbandry of Kyrgyz communities in the Pamir region of Afghanistan. In Yak on the Move; International Centre for Integrated Mountain Development (ICIMOD): Lalitpur, Nepal, 2016. [Google Scholar]
- Krishnan, G.; Ramesha, K.; Sarkar, M.; Chakravarty, P.; Kataktalware, M.; Saravanan, B. Modified temperature humidity index for yaks. Indian J. Anim. Sci. 2009, 79, 788–790. [Google Scholar]
- Krishnan, G.; Paul, V.; Biswas, T.; Chouhan, V.; Das, P.; Sejian, V. Diurnal variation and oscillatory patterns in physiological responses and HSP70 profile in heat stressed yaks at high altitude. Biol. Rhythm. Res. 2018, 49, 782–796. [Google Scholar] [CrossRef]
- Chetri, D.; Karki, D.N.; Sah, R.; Devkota, N. Transhumance effect on husbandry practices and physiological attributes of Chauri (Yak-Cattle) in Rasuwa District. Our Nat. 2011, 9, 128–137. [Google Scholar] [CrossRef]
- Sarkar, M.; Das, B.; Mondal, D.; Chatterjee, A. Physiological responses of yak under different environments. Yak Prod. Cent. Asian Highl. 2002, 388, 271–272. [Google Scholar]
- Sarkar, M.; Bandyopadhyay, S.; Krishnan, G.; Prakash, B. Seasonal variations in plasma glucocorticoid levels in yaks (Poephagus grunniens L.)(Bos grunniens). Trop. Anim. Health Prod. 2010, 42, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Correa-Calderon, A.; Armstrong, D.; Ray, D.; DeNise, S.; Enns, M.; Howison, C. Thermoregulatory responses of Holstein and Brown Swiss heat-stressed dairy cows to two different cooling systems. Int. J. Biometeorol. 2004, 48, 142–148. [Google Scholar]
- Gwazdauskas, F. Effects of climate on reproduction in cattle. J. Dairy Sci. 1985, 68, 1568–1578. [Google Scholar] [CrossRef]
- Wise, M.; Armstrong, D.; Huber, J.; Hunter, R.; Wiersma, F. Hormonal alterations in the lactating dairy cow in response to thermal stress. J. Dairy Sci. 1988, 71, 2480–2485. [Google Scholar] [CrossRef]
- Weekes, T.; Sasaki, Y.; Tsuda, T. Enhanced responsiveness to insulin in sheep exposed to cold. Am. J. Physiol. Endocrinol. Metab. 1983, 244, E335–E345. [Google Scholar] [CrossRef]
- Zhang, R. Effects of environment and management on yak reproduction. In Recent Advances in Yak Reproduction; International Veterinary Information Service: New York, NY, USA, 2000. [Google Scholar]
- Abilay, T.; Johnson, H.; Madan, M. Influence of environmental heat on peripheral plasma progesterone and cortisol during the bovine estrous cycle. J. Dairy Sci. 1975, 58, 1836–1840. [Google Scholar] [CrossRef]
- Bridges, P.; Brusie, M.; Fortune, J. Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles. Domest. Anim. Endocrinol. 2005, 29, 508–522. [Google Scholar] [CrossRef] [PubMed]
- Lenz, R.; Ball, G.; Leibfried, M.; Ax, R.; First, N. In vitro maturation and fertilization of bovine oocytes are temperature-dependent processes. Biol. Reprod. 1983, 29, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.; Renquist, B.; Xiao, Y. A 100-Year Review: Stress physiology including heat stress. J. Dairy Sci. 2017, 100, 10367–10380. [Google Scholar] [CrossRef] [PubMed]
- Zi, X.-D. Reproduction in female yaks (Bos grunniens) and opportunities for improvement. Theriogenology 2003, 59, 1303–1312. [Google Scholar] [CrossRef]
- Deori, S.; Bam, J.; Paul, V.; Baruah, K. Epidemiology of abortion in yaks (Poephagus grunniens) under farm conditions. Indian J. Anim. Res. 2013, 47, 178–180. [Google Scholar]
- Shikui, D.; Ruijun, L.; Muyi, K. Milking performance of China yak (Bos grunniens): A preliminary report. Afr. J. Agric. Res. 2007, 2, 052–057. [Google Scholar]
- Chang-Fung-Martel, J.; Harrison, M.; Brown, J.; Rawnsley, R.; Smith, A.; Meinke, H. Negative relationship between dry matter intake and the temperature-humidity index with increasing heat stress in cattle: A global meta-analysis. Int. J. Biometeorol. 2021, 65, 2099–2109. [Google Scholar] [CrossRef]
- Gao, S.; Guo, J.; Quan, S.; Nan, X.; Fernandez, M.S.; Baumgard, L.; Bu, D. The effects of heat stress on protein metabolism in lactating Holstein cows. J. Dairy Sci. 2017, 100, 5040–5049. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Rivas, R.M.O.; Marins, T.N.; Chen, Y.-C.; Gao, J.; Bernard, J.K. Impact of heat stress on lactational performance of dairy cows. Theriogenology 2020, 150, 437–444. [Google Scholar] [CrossRef]
- Dubal, Z.; Khan, M.; Dubal, P. Bacterial and viral zoonotic diseases of yak. Int. J. Bioresour. Stress Manag. 2013, 4, 288–292. [Google Scholar]
- Patz, J.A.; Epstein, P.R.; Burke, T.A.; Balbus, J.M. Global climate change and emerging infectious diseases. JAMA 1996, 275, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Gale, P.; Drew, T.; Phipps, L.; David, G.; Wooldridge, M. The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: A review. J. Appl. Microbiol. 2009, 106, 1409–1423. [Google Scholar] [CrossRef] [PubMed]
- Koirala, A.; Shrestha, K. Effects of climate change on the livestock population in Mustang District, Nepal. Asian J. Agric. Dev. 2017, 14, 37–49. [Google Scholar]
- Li, K.; Zhang, L.; Luo, H.; Mehmood, K.; Shahzad, M.; Naseer, M. Besnoitiosis: An emerging parasitic disease in yaks (Bos grunniens) and tibetan sheep (ovies aries) on the qinghai tibetan plateau, China. Pak. Vet. J. 2019, 39, 447–450. [Google Scholar] [CrossRef]
- He, L.; Bastos, R.G.; Sun, Y.; Hua, G.; Guan, G.; Zhao, J.; Suarez, C.E. Babesiosis as a potential threat for bovine production in China. Parasites Vectors 2021, 14, 460. [Google Scholar] [CrossRef]
- Khanyari, M.; Suryawanshi, K.R.; Milner-Gulland, E.; Dickinson, E.; Khara, A.; Rana, R.S.; Rose Vineer, H.; Morgan, E.R. Predicting Parasite Dynamics in Mixed-Use Trans-Himalayan Pastures to Underpin Management of Cross-Transmission Between Livestock and Bharal. Front. Vet. Sci. 2021, 8, 1108. [Google Scholar] [CrossRef]
- Gyawali, R.; Paudel, H. Plant bio-resources used in ethno-veterinary practices in Jumla District. Nepal. Vet. J. 2017, 34, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Kunwar, R.M.; Lamichhane Pandey, M.; Mahat Kunwar, L.; Bhandari, A. Medicinal plants and ethnomedicine in peril: A case study from Nepal himalaya. Evid. Based Complement. Altern. Med. 2014, 2014, 792789. [Google Scholar] [CrossRef]
- Mortenson, J.; Khan, E.; Ali, I.; Manzoor, S.; Jamil, A.; Abubakar, M.; Afzal, M.; Hussain, M. Evaluation of foot and mouth vaccination for yak (Bos grunniens) in Pakistan. Trop. Anim. Health Prod. 2017, 49, 691–695. [Google Scholar] [CrossRef]
- Zhao, B.; Gong, Q.-L.; Feng, H.-F.; Wang, Q.; Shi, J.-F.; Song, Y.-H.; Liu, F.; Shi, K.; Zong, Y.; Du, R. Brucellosis prevalence in yaks in China in 1980–2019: A systematic review and meta-analysis. Prev. Vet. Med. 2022, 198, 105532. [Google Scholar] [CrossRef] [PubMed]
- Fort, M. Natural hazards versus climate change and their potential impacts in the dry, northern Himalayas: Focus on the upper Kali Gandaki (Mustang District, Nepal). Environ. Earth Sci. 2015, 73, 801–814. [Google Scholar] [CrossRef]
- Mipam, T.-D.; Zhong, L.-L.; Liu, J.-Q.; Miehe, G.; Tian, L.-M. Productive overcompensation of alpine meadows in response to yak grazing in the eastern Qinghai-Tibet Plateau. Front. Plant Sci. 2019, 10, 925. [Google Scholar] [CrossRef] [Green Version]
- Garrard, R.; Kohler, T.; Price, M.F.; Byers, A.C.; Sherpa, A.R.; Maharjan, G.R. Land use and land cover change in Sagarmatha National Park, a world heritage site in the Himalayas of Eastern Nepal. Mt. Res. Dev. 2016, 36, 299–310. [Google Scholar] [CrossRef]
- Dorji, N.; Derks, M.; Koerkamp, P.G.; Bokkers, E. Welfare and management practices of free-ranging yaks in Bhutan. In Proceedings of the 8th International Conference on The Assessment of Animal Welfare at Farm and Group Level, Cork, Ireland, 16–19 August 2021; p. 155. [Google Scholar]
- Dorji, N. Transhumant Pastoralism in a Changing World: Challenges and Opportunities to Sustainable Yak Farming in Bhutan. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2020. [Google Scholar]
- Dorji, T.; Facelli, J.M.; Norbu, T.; Delean, S.; Brookes, J.D. Tree shelters facilitate brown oak seedling survival and establishment in a grazing-dominant forest of Bhutan, Eastern Himalaya. Restor. Ecol. 2020, 28, 1145–1157. [Google Scholar] [CrossRef]
- FAO. Management of Yak. Available online: https://www.fao.org/3/AD347E/ad347e0j.htm#TopOfPage (accessed on 19 July 2022).
- Vaidya, R.A. Governance and management of local water storage in the Hindu Kush Himalayas. Int. J. Water Resour. Dev. 2015, 31, 253–268. [Google Scholar] [CrossRef] [Green Version]
- Maiti, S.; Jha, S.K.; Garai, S.; Nag, A.; Chakravarty, R.; Kadian, K.; Chandel, B.; Datta, K.; Upadhayay, R. Adapting to climate change: Traditional coping mechanism followed by the Brokpa pastoral nomads of Arunachal Pradesh, India. Indian J. Tradit. Knowl. 2014, 1313, 752–7610114. [Google Scholar]
- Barsila, S.; Kreuzer, M.; Devkota, N.; Ding, L.; Marquardt, S. Adaptation to Himalayan high altitude pasture sites by yaks and different types of hybrids of yaks with cattle. Livest. Sci. 2014, 169, 125–136. [Google Scholar] [CrossRef]
- Barsila, S.R.; Devkota, N.R.; Kreuzer, M.; Marquardt, S. Effects of different stocking densities on performance and activity of cattle × yak hybrids along a transhumance route in the Eastern Himalaya. SpringerPlus 2015, 4, 398. [Google Scholar] [CrossRef] [Green Version]
- Osei-Amponsah, R.; Chauhan, S.S.; Leury, B.J.; Cheng, L.; Cullen, B.; Clarke, I.J.; Dunshea, F.R. Genetic selection for thermotolerance in ruminants. Animals 2019, 9, 948. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.; Ma, J.; Wang, H.; Wang, Z.; Peng, Q.; Hu, R.; Zou, H.; Bao, S.; Zhang, W.; Sun, B. High-energy diet improves growth performance, meat quality and gene expression related to intramuscular fat deposition in finishing yaks raised by barn feeding. Vet. Med. Sci. 2020, 6, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Medhi, D.; Hannah, S.; Sarmah, P.; Karmu, T.; Ali, E.; Das, P.; Deb, S. Performances of lactating yaks on silage and complete feed block based feeding regiments. Indian J. Anim. Res. 2016, 86, 203–205. [Google Scholar]
- Das, P.; Deori, S.; Deb, S. Arunachali Yak; ICAR-NRCY Publication: Dirang, India, 2016. [Google Scholar]
- Katoch, R. Tree fodder for mitigating the forage requirement in Himalayan region. Range Manag. Agrofor. 2019, 40, 173–180. [Google Scholar]
Indicator Name | Definition | Trend (d/10 Years) |
---|---|---|
Cold nights | Days when Tmin < 10th percentile | −0.977 |
Cold Days | Days when Tmax < 10th percentile | −0.511 |
Warm nights | Days when Tmin > 90th percentile | 1.695 |
Warm days | Days when Tmax > 90th percentile | 1.239 |
Frost days | Annual count when Tmin < 0 °C | −3.636 |
Summer days | Annual count when Tmax > 25 °C | 6.741 |
Country/Region | Yak Population (Year) | Reference |
---|---|---|
Tibet | 4.9 million (not dated) | Song et al. [43] cited Zhang [44] |
Bhutan | 38,642 (2021) | [41] |
India | 57,570 (2019) | [40] |
Nepal | 65,406 (2020) | [42] |
Pakistan | 25,900 (2013) | [45] |
Afghanistan | 4600 (2015) | [46] |
Type of Modification | Mitigation Strategies |
---|---|
Physical modification | |
Breeding selection |
|
Nutritional modification |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapkota, S.; Acharya, K.P.; Laven, R.; Acharya, N. Possible Consequences of Climate Change on Survival, Productivity and Reproductive Performance, and Welfare of Himalayan Yak (Bos grunniens). Vet. Sci. 2022, 9, 449. https://doi.org/10.3390/vetsci9080449
Sapkota S, Acharya KP, Laven R, Acharya N. Possible Consequences of Climate Change on Survival, Productivity and Reproductive Performance, and Welfare of Himalayan Yak (Bos grunniens). Veterinary Sciences. 2022; 9(8):449. https://doi.org/10.3390/vetsci9080449
Chicago/Turabian StyleSapkota, S., K. P. Acharya, R. Laven, and N. Acharya. 2022. "Possible Consequences of Climate Change on Survival, Productivity and Reproductive Performance, and Welfare of Himalayan Yak (Bos grunniens)" Veterinary Sciences 9, no. 8: 449. https://doi.org/10.3390/vetsci9080449
APA StyleSapkota, S., Acharya, K. P., Laven, R., & Acharya, N. (2022). Possible Consequences of Climate Change on Survival, Productivity and Reproductive Performance, and Welfare of Himalayan Yak (Bos grunniens). Veterinary Sciences, 9(8), 449. https://doi.org/10.3390/vetsci9080449